JPH03281891A - Measurement of distance between inner walls of pit - Google Patents

Measurement of distance between inner walls of pit

Info

Publication number
JPH03281891A
JPH03281891A JP2080906A JP8090690A JPH03281891A JP H03281891 A JPH03281891 A JP H03281891A JP 2080906 A JP2080906 A JP 2080906A JP 8090690 A JP8090690 A JP 8090690A JP H03281891 A JPH03281891 A JP H03281891A
Authority
JP
Japan
Prior art keywords
data
distance
pit
inner walls
received data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2080906A
Other languages
Japanese (ja)
Other versions
JPH0788747B2 (en
Inventor
Tatsuya Hirayama
達也 平山
Bunji Shigematsu
文治 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2080906A priority Critical patent/JPH0788747B2/en
Publication of JPH03281891A publication Critical patent/JPH03281891A/en
Publication of JPH0788747B2 publication Critical patent/JPH0788747B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To make automatic measurement of distance between inner walls of a pit available by a method wherein ultrasonic signals are emitted several times from an ultrasonic sensor provided in the pit and the received data are stored in a memory, and a distance corresponding to a peak point detected out of summed-up data is obtained. CONSTITUTION:An ultrasonic sensor 2 is hung down into stabilizing fluid in a pit 1 and ultrasonic signals are emitted (n) times to inner walls 2a, 2b of the pit from the sensor at a measuring position in a depth where the sensor is positioned, and reflected signals are received therewith. The received data are then amplified with an amplifier 7 in a reception recorder 6. Amplified analog data are then transmitted to the reception recorder 6 and are recorded on recording paper and are also transmitted to an analog-digital converter 8 and are written into a RAM. The received data in (n) by number are transferred to a CPU and are summed up with each of front positions of the data aligned on an axis of time. A peak point is detected out of the summed-up data with the data preceding a basic range eliminated, and distance data are displayed and recorded after correction is made.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば連続地中壁形成用の溝穴の如き縦穴の
対向する内壁の間隔を測定する縦穴の内壁間隔測定方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for measuring the distance between inner walls of a vertical hole, such as a trench for forming a continuous underground wall, for measuring the distance between opposing inner walls of a vertical hole. .

(従来の技術) 例えば、連続地中壁を横築する場合には、溝穴を掘った
後、その溝穴が設計通りに掘られているかどうか、対向
する内壁の間隔(溝幅〉を深さ方向に順次測定し、得ら
れた測定データからその溝穴に打込むコンクリートの量
を測定する等の作業を準備として行う必要がある。
(Conventional technology) For example, when constructing a continuous underground wall horizontally, after digging a trench, check whether the trench has been dug as designed or not, and check the distance between opposing inner walls (groove width). It is necessary to carry out preparation work such as sequentially measuring in the horizontal direction and measuring the amount of concrete to be poured into the groove from the obtained measurement data.

従来、溝穴の対向する内壁の間隔測定は、該溝穴内に超
音波センサを吊り降して該溝穴の対向する内壁にそれぞ
れ超音波を送信し、各内壁からの反射波をそれぞれ受信
し、得られたアナログの受信データを受信記録器で放電
破壊紙よりなる記録紙に第5図に示すように記録するこ
とにより行っていた1図において、A11A2は送信波
、Bl、B、は第1反射波、C1,C2は第2反射波、
D、、C2は第3反射波である。ここで、第1−反射波
B、、B、の内端内の間隔ρが溝穴の内壁である。なお
、第5図では、横軸に距離が、縦軸に深さが目盛られて
いる。
Conventionally, to measure the distance between opposing inner walls of a slot, an ultrasonic sensor is suspended in the slot, transmitting ultrasonic waves to each of the opposing inner walls of the slot, and receiving reflected waves from each inner wall. In Figure 1, A11A2 is the transmitted wave, Bl, B are the transmitted waves, and B1 and B are the transmitted waves. 1 reflected wave, C1 and C2 are 2nd reflected waves,
D, , C2 are the third reflected waves. Here, the distance ρ within the inner end of the first reflected wave B, , B, is the inner wall of the slot. In FIG. 5, the horizontal axis is scaled with distance, and the vertical axis is scaled with depth.

(発明が解決しようとする課題) しかしながら、従来の測定方法では、記録紙にアナログ
的に記録されたデータを作業器が読み取って計算機に入
力する作業を行わなければならないので、人手を要し、
且つ時間がかかる問題点があった。また、読取誤差も生
じ易い問題点があった。
(Problems to be Solved by the Invention) However, in the conventional measurement method, the data recorded analogously on recording paper must be read by a working device and inputted into a computer, which requires manual labor.
In addition, there was a problem that it took time. Additionally, there is a problem in that reading errors are likely to occur.

本発明の目的は、自動的に測定を行うことができる縦穴
の内壁間隔測定方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for measuring the inner wall distance of a vertical hole, which allows automatic measurement.

(課題を解決するための手段) 上記の目的を達成するための本発明の詳細な説明すると
、本発明は、測定すべき縦穴内に超音波センサを吊り降
して前記縦穴の対向する内壁の開隔を超音波の送受信に
より測定する縦穴の内壁間隔測定方法において、前記超
音波センサが存在する深さの測定番地の位置で該超音波
センサからその深さの位置の内壁にn回超音波信号を出
してその反射信号を逐次受信しつつ測定を行い、得られ
た同一測定番地のn個の受信データをデジタル変換して
メモリに書き込み、前記メモリから読み出した前記同一
測定番地のn個の受信データの各先頭位置を揃えて時間
軸上に並べた状態にして加算し、得られた加算データの
中から予想値から外れたデータ部分を除去し、しかる後
に前記加算データの中からピーク点を探してそのピーク
点に対応する距離を求めることを特徴とする。
(Means for Solving the Problems) To explain in detail the present invention for achieving the above object, the present invention suspends an ultrasonic sensor into a vertical hole to be measured, In a method for measuring the inner wall distance of a vertical hole in which the gap is measured by transmitting and receiving ultrasonic waves, ultrasonic waves are transmitted n times from the ultrasonic sensor to the inner wall at the depth position at the measurement address of the depth where the ultrasonic sensor is located. Measurement is performed while emitting a signal and successively receiving the reflected signals, digitally converting the obtained n received data at the same measurement address and writing it into the memory, and converting the n received data at the same measurement address read from the memory. The head positions of the received data are aligned and added together on the time axis, the data portions that deviate from the expected values are removed from the resulting added data, and then the peak point is calculated from the added data. It is characterized by searching for the peak point and finding the distance corresponding to the peak point.

(作用) このように同一の深さの測定番地当りn回の測定を行い
、得られたn個の受信データの頭を揃えて時間軸上に並
べた状態にして加算し、加算データを得ると、各受信デ
ータの中の送信信号と内壁からの反射信号とは各時間軸
上の同一位置でそれぞれn回加算されて強調されてはつ
きりした信号となる。連続地中壁形成用溝穴の場合には
、内壁が崩れないように溝内に安定液が満たされており
、この安定液中には土砂が分散しているので、これら分
散粒子からの反射信号も受信データの中に存在すること
になる。このような分散粒子からの反射信号は、位置が
さまざまなので加算されても大きくならない。超音波セ
ンサと内壁との間の液中に土のかたまり等が存在し5、
そこからの反射信号は加算されて大きくなるが、この反
射信号の位置は予想位置から外れた位置にあるので、例
えば内壁より手前側の反射信号はベーシックレンジを設
け、該ベーシックレンジより小さいものを不要信号とし
て除去する。
(Operation) In this way, measurements are performed n times per measurement address at the same depth, and the obtained n pieces of received data are added together with their heads aligned on the time axis to obtain added data. Then, the transmitted signal in each received data and the reflected signal from the inner wall are each added n times at the same position on each time axis, and are emphasized to become a sharp signal. In the case of a trench for forming a continuous underground wall, the trench is filled with a stabilizing liquid to prevent the inner wall from collapsing, and since earth and sand are dispersed in this stabilizing liquid, reflections from these dispersed particles are The signal will also be present in the received data. Since the reflected signals from such dispersed particles are at various positions, they do not become large even if they are added together. If there is a lump of soil etc. in the liquid between the ultrasonic sensor and the inner wall5,
The reflected signals from there are added together and become larger, but since the position of this reflected signal is away from the expected position, for example, a basic range is provided for the reflected signal on this side of the inner wall, and those smaller than the basic range are Remove it as an unnecessary signal.

このように明白な不要信号を除いた加算データの中から
ピーク値を探し、該ピーク値の位置から距離を求めるこ
とができる。
In this way, it is possible to search for a peak value in the added data from which obvious unnecessary signals have been removed, and to calculate the distance from the position of the peak value.

(実施例) 以下、本発明の実施例を図面を参照して詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、連続地中壁形成用溝穴(縦穴)1の対向する
内壁1a、lbの間隔を測定する測定装置の概略構成を
示したものである。また、第2図は該測定装置の測定手
順を示したフローチャー1・図である。
FIG. 1 shows a schematic configuration of a measuring device for measuring the distance between opposing inner walls 1a and lb of a continuous underground wall forming groove (vertical hole) 1. Moreover, FIG. 2 is a flowchart 1 diagram showing the measurement procedure of the measuring device.

以下、これらの図を参照して本実施例の内壁間隔測定方
法について説明する。
Hereinafter, the inner wall distance measuring method of this embodiment will be explained with reference to these figures.

溝穴1内には、内壁1a、lbの崩れを防止するために
、ある比重と粘性をもった安定液が充填されている。こ
のような溝穴]の幅方向の中央に超音波センサ2を1対
の吊りワイヤー3a、3bで吊り降す、このように、1
対の吊りワイヤー3a、3bを用いて吊り降すと、超音
波センサ2がねじれたすせず、溝穴lの幅方向の中心に
沿って自重で下降することになる。超音波センサ2につ
ながるケーブル4及び吊りワイヤー3a、3bは、リー
ル装置f5から繰り出す、この吊りワイヤー 3 a、
3bの繰りだし長が、図示しないガイドロールの回転角
度をレゾルバ等で検出することによりわかる。従って、
超音波センサ2の位置、即ち溝穴1の測定番地がわかる
The slot 1 is filled with a stabilizing liquid having a certain specific gravity and viscosity in order to prevent the inner walls 1a, lb from collapsing. In this way, the ultrasonic sensor 2 is suspended in the widthwise center of the slot with a pair of hanging wires 3a and 3b.
When the ultrasonic sensor 2 is suspended using the pair of suspension wires 3a and 3b, the ultrasonic sensor 2 does not become twisted and descends under its own weight along the widthwise center of the slot l. The cable 4 and the hanging wires 3a, 3b connected to the ultrasonic sensor 2 are the hanging wires 3a, 3a, which are fed out from the reel device f5.
3b can be determined by detecting the rotation angle of a guide roll (not shown) using a resolver or the like. Therefore,
The position of the ultrasonic sensor 2, that is, the measurement address of the slot 1 can be found.

超音波センサ2からは、その存在する深さの測定位!で
内壁1a、lbにn回超音波信号を出してその反射信号
を逐次受信し、その受信データを受信記録器6内の増幅
器7で逐次増幅する。超音波信号は、近くからの反射信
号のレベルが大きく反射位置が遠くなるにつれて反射信
号のレベルが徐々に低下してしまうことになる。このた
め増幅器7では、超音波信号の発射時毎にゲインを一旦
下げ1時間と共にゲインを上げて受信信号を増幅するこ
とにより、受信信号のレベルの一定比を図る。
Ultrasonic sensor 2 measures the depth at which it exists! An ultrasonic signal is emitted n times to the inner walls 1a and lb, and the reflected signals are successively received, and the received data is successively amplified by the amplifier 7 in the reception recorder 6. For ultrasonic signals, the level of reflected signals from nearby sources is high, and as the reflection position becomes farther away, the level of the reflected signals gradually decreases. For this reason, in the amplifier 7, the gain is once lowered every time the ultrasonic signal is emitted, and the gain is increased after one hour to amplify the received signal, thereby achieving a constant ratio of the level of the received signal.

増幅されたアナログの受信データは、受信記録器6に導
き、記録紙に前述したように記録する。
The amplified analog reception data is led to the reception recorder 6 and recorded on recording paper as described above.

一方、増幅されたアナログの受信データは、アナログ/
デジタル変換器8に導き、スタートトリガーの入力があ
った時点くステップ5TI)から高速でサンプリングし
つつ、アナログ/デジタル変換(以下、A/D変換とい
う〉してハード装置のランダムアクセスメモリ(以下、
RAMという)に書き込む(ステップ5T2)。このA
/D変換は、例えば2■の距離分解能が得られる間隔で
行う。同一測定番地に対する受信データのとり込みが溝
穴1の壁面の存在する方向に、例えば、5mの位置まで
行えた時点で計測距離が終了したとして次のステップへ
進む(ステップ5T3)。
On the other hand, the amplified analog received data is
The data is input to the digital converter 8, and is sampled at high speed from step 5TI when the start trigger is input, and is converted to analog/digital conversion (hereinafter referred to as A/D conversion) to the random access memory of the hardware device (hereinafter referred to as A/D conversion).
(referred to as RAM) (step 5T2). This A
The /D conversion is performed at intervals that provide a distance resolution of, for example, 2 square meters. When the reception data for the same measurement address can be taken up to a position of, for example, 5 m in the direction of the wall surface of the slot 1, the measurement distance is deemed to have ended and the process proceeds to the next step (step 5T3).

このステップST3の終了時点で、同一測定番地に対す
るn個の受信データがRAMに書き込まれる。
At the end of step ST3, n pieces of received data for the same measurement address are written into the RAM.

次に、ハード装置のRAMに記録された同一測定番地の
n個の受信データを8内のCPUへ転送するくステップ
5T4)。n個の全データの転送が終了した時点(ステ
ップ5T5)で、ステップST6に進む、ステップST
6では、同一測定番地のn個の受信データの各先頭位置
を揃えて時間軸上に並べた状態にして加算する。
Next, n pieces of received data at the same measurement address recorded in the RAM of the hardware device are transferred to the CPU in 8 (step 5T4). When the transfer of all n pieces of data is completed (step 5T5), proceed to step ST6, step ST
In step 6, the starting positions of n pieces of received data at the same measurement address are aligned and added together on the time axis.

即ち。第3図(A)に示す送信波T1と溝穴1の壁面か
らの反射波R,とを含む第1回目の受信データと、第3
図(B)に示す送信波T2と溝穴1の壁面からの反射波
R2とを含む第2回目の受信データとを、その先頭位置
を揃えて加算する。この操作により、送信波T1とT2
とが加算されて第3図(C)に示すように約2倍の大き
さを有する加算送信波]゛が得られ、且つ反射波R1と
R2とが加算されて第3図(C)に示すように約2倍の
大きさを有する加算反射波Rが得られる。各受信データ
上に乗っているノイズ成分は、時間軸上の位置が不規則
なので、ピーク位置が並んで加算される確率は少なく、
大きくはならない6次に、得られた第3図(C)に示す
加算データに対して、第3回目の受信データが同様にし
て加算される。このようにして同一測定番地に対するn
個の受信データが加算され、これにより送信波と反射波
がノイズに対して強調された大きさとなる。n個の加算
が終了したら(ステップ5T7)次のステップST8に
進む。
That is. The first received data including the transmitted wave T1 and the reflected wave R from the wall surface of the slot 1 shown in FIG.
The transmitted wave T2 shown in FIG. 2B and the second received data including the reflected wave R2 from the wall surface of the slot 1 are added together with their leading positions aligned. With this operation, the transmitted waves T1 and T2
are added to obtain an additional transmitted wave with approximately twice the size as shown in FIG. 3(C), and reflected waves R1 and R2 are added to obtain As shown, an added reflected wave R having approximately twice the size is obtained. The noise components on each received data have irregular positions on the time axis, so the probability that the peak positions are added together is low.
The third received data is added in the same manner to the obtained addition data shown in FIG. 3(C). In this way, n for the same measurement address
received data are added, and the transmitted wave and the reflected wave have a magnitude that is enhanced with respect to noise. When n additions are completed (step 5T7), the process proceeds to the next step ST8.

ステップST8では、超音波センサ2から溝穴1の壁面
1a(lb)に至る距離より手前の位置からの反射波に
対するベーシックレンジを設けておき、該ベーシックレ
ンジより手前のデータを除去する。この操作で予想位置
から外れた時間軸上にある受信データが除去されるので
、超音波センサ2と壁面1a(lb)との間に存在する
土のかたまり等からの反射波が除去される。
In step ST8, a basic range is provided for reflected waves from a position before the distance from the ultrasonic sensor 2 to the wall surface 1a (lb) of the slot 1, and data before the basic range is removed. This operation removes the received data on the time axis that deviates from the expected position, so that reflected waves from a lump of soil or the like existing between the ultrasonic sensor 2 and the wall surface 1a (lb) are removed.

次に、ステップST9に進む、該ステップST9では、
加算データの中からピーク点を探す、このピーク点の位
置のアドレスが目的としている壁面1 a (lb)上
での距離データである(ステップ5710)。
Next, proceed to step ST9. In step ST9,
A peak point is searched from the added data, and the address of the position of this peak point is distance data on the target wall surface 1 a (lb) (step 5710).

次に、ステップ5T11に進む、このステップ5T11
では、得られた距離データの移動平均をとり、該距離デ
ータの上限と下限の値からなる連続溝壁ゲート以内に該
距離データが納まっているか否かを判定する。連続溝壁
ゲート以内に納まっていない距離データは、誤信号とし
て捨てる。
Next, proceed to step 5T11, this step 5T11
Then, a moving average of the obtained distance data is taken, and it is determined whether the distance data falls within a continuous groove wall gate consisting of the upper and lower limit values of the distance data. Distance data that does not fall within the continuous groove wall gate is discarded as an erroneous signal.

連続溝壁ゲート以内に納まっている距離データに対して
は、次のステップ5T12で温度による超音波の伝播速
度の補正等の補正を行うか、補正済の距離データは表示
部に表示すると共にプリンタ10やX−Yプロッタ11
でプリントアウトし、且つフロッピーデスク12に記録
する(ステップ5T13)。
For the distance data that falls within the continuous groove wall gate, in the next step 5T12, corrections such as correction of the ultrasonic propagation velocity due to temperature are performed, or the corrected distance data is displayed on the display and printed on the printer. 10 and X-Y plotter 11
and record it on the floppy disk 12 (step 5T13).

次に、ステップSTIに戻り、次の測定番地に対する測
定を同様にして行う。
Next, the process returns to step STI and the next measurement address is similarly measured.

第4図は、本発明の方法で測定した測定データの記録図
である。従来の第5図に示すような測定データと比べ、
本発明の測定データは不要信号が除去され、きれいな値
となっている。なお、この第4図でも、横軸に距離が、
縦軸に深さが目盛られている。
FIG. 4 is a recording diagram of measurement data measured by the method of the present invention. Compared to the conventional measurement data shown in Figure 5,
The measurement data of the present invention has clean values with unnecessary signals removed. In addition, in this figure 4 as well, the distance is on the horizontal axis,
The depth is scaled on the vertical axis.

このような本発明の測定データを基に連続地中壁形成用
溝穴の容積をパーソナルコンピュータ9で計算し、コン
クリートの使用量を出す等の施工管理を行う。
Based on such measurement data of the present invention, the volume of the groove for forming a continuous underground wall is calculated by the personal computer 9, and construction management such as determining the amount of concrete to be used is performed.

なお、ステップST8では、予想値の上限と下限を越え
ているデータを除去することができる。
Note that in step ST8, data exceeding the upper and lower limits of the predicted value can be removed.

上記実施例では、連続地中壁形成用溝穴の対向内壁間の
距離測定に本発明を適用した場合について示したが、本
発明はこれに限定されるものではなく丸形の縦穴の対向
内壁間の距離測定(直径)にも同様に適用できるもので
ある。
In the above embodiment, the present invention was applied to measuring the distance between the opposing inner walls of a continuous underground wall forming groove, but the present invention is not limited to this. This can be similarly applied to measuring the distance between (diameter).

(発明の効果) 以上説明したように本発明に係る縦穴の内壁間隔測定方
法は、同−深さの測定番地当たり0回の測定を行い、得
られたn個の受信データの頭を揃えて時間軸上に並べた
状態において加算し加算データとするので、各受信デー
タの中の送信信号と内壁からの反射信号とが各時間軸上
の同一位置でそれぞれn回加算されて強調され、はっき
りした信号となる利点がある。
(Effects of the Invention) As explained above, the method for measuring the inner wall interval of a vertical hole according to the present invention performs zero measurements per measurement address of the same depth, and aligns the heads of the obtained n pieces of received data. Since the data is summed by summing data when they are arranged on the time axis, the transmitted signal and the reflected signal from the inner wall in each received data are added n times at the same position on each time axis and are clearly emphasized. This has the advantage of providing a signal that

また、本発明では、加算データの中から予想値から外れ
たものを除去するので、内壁に至る手前に存在する粒子
等からの反射信号等、予想外の信号が除去され、前述し
た効果と相俟って、種々の不要信号の中に混じって受信
される内壁からの反射信号の抽出が容易となる利点があ
る。かくして処理された加算データの中からピーク値を
探し、該ピーク値の位置から距離を求めるので、土砂等
が混じった安定液中等の中での超音波測定にも拘らず、
容易に対向内壁間の距離測定を行うことができる。
In addition, in the present invention, since those that deviate from the expected values are removed from the added data, unexpected signals such as reflected signals from particles that are present before reaching the inner wall are removed, which is compatible with the above-mentioned effect. This has the advantage that it is easy to extract the reflected signal from the inner wall, which is received mixed in with various unnecessary signals. Since the peak value is searched for in the added data processed in this way and the distance is calculated from the position of the peak value, it is possible to perform ultrasonic measurement in a stabilizing liquid mixed with earth and sand, etc.
The distance between opposing inner walls can be easily measured.

また、本発明では、受信データをデジタル信号に変換し
て取扱っているので、得られた測定値もデジタル値とな
り、従って作業員が読み取る作業が不要になり、省力化
でき、且つ読み取り誤り等もなくなり、直ちに次の作業
の入力信号として使える利点がある。
In addition, in the present invention, since the received data is converted into a digital signal and handled, the obtained measured value is also a digital value, so there is no need for the worker to read it, which saves labor and prevents reading errors. This has the advantage that it can be used immediately as an input signal for the next operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する装置の一例を示す斜視
図、第2図は本実施例の装置の動作手順を示すフローチ
ャート図、第3図(A)(B)(C)は、本実施例での
受信データの加算の一例を示す波形図、第4図は、本実
施例の装置による測定データ図、第5図は従来の装置に
よる測定データ図である。 1・・・連続地中壁形成用溝穴(縦穴)、la、lb・
・・内壁、3a、3b・・・吊りワイヤー4・・・ケー
ブル、5・・・リール装置、6・・・受信記録器、7・
・・増幅器、8・・・アナログ/デジタル変換器、 9・・・パーソナルコンピュータ、10・・・プリンタ
、11・・・X−Yプロッタ、 12・・・フロッピーディスク。 第1図
FIG. 1 is a perspective view showing an example of an apparatus for implementing the method of the present invention, FIG. 2 is a flowchart showing the operating procedure of the apparatus of this embodiment, and FIGS. 3 (A), (B), and (C) are FIG. 4 is a waveform diagram showing an example of addition of received data in this embodiment. FIG. 4 is a diagram of measurement data by the apparatus of this embodiment, and FIG. 5 is a diagram of measurement data by the conventional apparatus. 1... Continuous underground wall formation groove (vertical hole), la, lb.
...Inner wall, 3a, 3b... Hanging wire 4... Cable, 5... Reel device, 6... Receiving recorder, 7...
...Amplifier, 8...Analog/digital converter, 9...Personal computer, 10...Printer, 11...X-Y plotter, 12...Floppy disk. Figure 1

Claims (1)

【特許請求の範囲】  測定すべき縦穴内に超音波センサを吊り降して前記縦
穴の対向する内壁の間隔を超音波の送受信により測定す
る縦穴の内壁間隔測定方法において、 前記超音波センサが存在する深さの測定番地の位置で該
超音波センサからその深さの位置の内壁にn回超音波信
号を出してその反射信号を逐次受信しつつ測定を行い、
得られた同一測定番地のn個の受信データをデジタル変
換してメモリに書き込み、前記メモリから読み出した前
記同一測定番地のn個の受信データの各先頭位置を揃え
て時間軸上に並べた状態にして加算し、得られた加算デ
ータの中から予想値から外れたデータ部分を除去し、し
かる後に前記加算データの中からピーク点を探してその
ピーク点に対応する距離を求めることを特徴とする縦穴
の内壁間隔測定方法。
[Scope of Claims] A method for measuring an interval between inner walls of a vertical hole, in which an ultrasonic sensor is suspended in a vertical hole to be measured, and an interval between opposing inner walls of the vertical hole is measured by transmitting and receiving ultrasonic waves, wherein the ultrasonic sensor is present. Measurement is performed by emitting an ultrasonic signal from the ultrasonic sensor to the inner wall at the depth position n times at the measurement address of the depth and successively receiving the reflected signals,
The obtained n pieces of received data at the same measurement address are digitally converted and written into a memory, and the start positions of the n pieces of received data at the same measurement address read from the memory are aligned and arranged on the time axis. The method is characterized in that a data portion that deviates from the expected value is removed from the obtained added data, and then a peak point is searched for from the added data and a distance corresponding to the peak point is determined. A method for measuring the inner wall spacing of a vertical hole.
JP2080906A 1990-03-30 1990-03-30 Measuring method for inner wall spacing of vertical holes Expired - Fee Related JPH0788747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2080906A JPH0788747B2 (en) 1990-03-30 1990-03-30 Measuring method for inner wall spacing of vertical holes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2080906A JPH0788747B2 (en) 1990-03-30 1990-03-30 Measuring method for inner wall spacing of vertical holes

Publications (2)

Publication Number Publication Date
JPH03281891A true JPH03281891A (en) 1991-12-12
JPH0788747B2 JPH0788747B2 (en) 1995-09-27

Family

ID=13731422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2080906A Expired - Fee Related JPH0788747B2 (en) 1990-03-30 1990-03-30 Measuring method for inner wall spacing of vertical holes

Country Status (1)

Country Link
JP (1) JPH0788747B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07146128A (en) * 1993-07-12 1995-06-06 Wheelabrator Eng Syst Inc Measuring apparatus of ringed region
JPH08219778A (en) * 1995-02-14 1996-08-30 Ando Corp Method for measuring and indicating shape of wall of xcavated groove
JP2018523033A (en) * 2015-08-14 2018-08-16 パイル ダイナミクス インコーポレイテッド Borehole test equipment
CN112033317A (en) * 2020-09-02 2020-12-04 中煤科工集团西安研究院有限公司 Method for online measurement of three-dimensional data of escape hole of manned lifting cabin
US12000975B2 (en) 2022-04-21 2024-06-04 Pile Dynamics, Inc. Borehole inspecting and testing device and method of using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07146128A (en) * 1993-07-12 1995-06-06 Wheelabrator Eng Syst Inc Measuring apparatus of ringed region
JPH08219778A (en) * 1995-02-14 1996-08-30 Ando Corp Method for measuring and indicating shape of wall of xcavated groove
JP2018523033A (en) * 2015-08-14 2018-08-16 パイル ダイナミクス インコーポレイテッド Borehole test equipment
CN112033317A (en) * 2020-09-02 2020-12-04 中煤科工集团西安研究院有限公司 Method for online measurement of three-dimensional data of escape hole of manned lifting cabin
CN112033317B (en) * 2020-09-02 2022-04-22 中煤科工集团西安研究院有限公司 Method for online measurement of three-dimensional data of escape hole of manned lifting cabin
US12000975B2 (en) 2022-04-21 2024-06-04 Pile Dynamics, Inc. Borehole inspecting and testing device and method of using the same

Also Published As

Publication number Publication date
JPH0788747B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
US4468959A (en) Method and apparatus for tallying pipe
CN106545329B (en) Drilled pile hole quality detection device and method
US4780858A (en) Borehole televiewer mudcake monitor
CA2856358A1 (en) Acoustic transducer apparatus, systems, and methods
EP1604096A1 (en) Method for determining a position of an object
CN210621786U (en) Improved structure of foundation pile guide wheel by ultrasonic transmission method
US20190339411A1 (en) Borehole Size Determination Downhole
JPH03281891A (en) Measurement of distance between inner walls of pit
US4027281A (en) Digital recording of sonic log wavetrains
CN210194703U (en) Low strain integrality detection device of two survey points in hole of foundation pile
CN204754918U (en) Pore -forming grooving detection device
US3835953A (en) Acoustic caliper logging
EP0075997A2 (en) Well logging device
US3727178A (en) Echo sounding distance measurement method and apparatus
KR100470269B1 (en) Three-Dimensional Image Processing Method of Subsurface survey and The Same System
CN207407857U (en) A kind of settlement of foundation automatic detection device
CN209231274U (en) The acoustic wave detection devices that the bonding quality of gas storage well cement protective layer is detected
JPS6373128A (en) Method and apparatus for measuring dynamic supporting force of pile
JPH0781482B2 (en) Method and device for measuring the wall shape of a continuous underground wall
CN214749971U (en) Synchronous lifting device of sound wave test transducer and ultrasonic detection system
JP3121237B2 (en) Excavator position measuring device and excavator position measuring method
US4899144A (en) Method of transmitting ultrasonic amplitude & time travel information over a logging cable
Kuznetsov et al. Advanced standard operating procedures for survey of buildings and structures of metallurgical production
CN205788317U (en) A kind of piling machinery construction monitoring monitor
JP2755438B2 (en) How to detect inside a hole using sound waves

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees