JPH08219778A - Method for measuring and indicating shape of wall of xcavated groove - Google Patents

Method for measuring and indicating shape of wall of xcavated groove

Info

Publication number
JPH08219778A
JPH08219778A JP2566895A JP2566895A JPH08219778A JP H08219778 A JPH08219778 A JP H08219778A JP 2566895 A JP2566895 A JP 2566895A JP 2566895 A JP2566895 A JP 2566895A JP H08219778 A JPH08219778 A JP H08219778A
Authority
JP
Japan
Prior art keywords
excavation
data
measuring
groove wall
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2566895A
Other languages
Japanese (ja)
Other versions
JP2879310B2 (en
Inventor
Kazuhisa Yamamoto
和久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JDC Corp
Toa Corp
Toray Engineering Co Ltd
Hazama Ando Corp
Haseko Corp
Original Assignee
JDC Corp
Toa Corp
Toyo Construction Co Ltd
Haseko Corp
Hasegawa Komuten Co Ltd
Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JDC Corp, Toa Corp, Toyo Construction Co Ltd, Haseko Corp, Hasegawa Komuten Co Ltd, Ando Corp filed Critical JDC Corp
Priority to JP2566895A priority Critical patent/JP2879310B2/en
Publication of JPH08219778A publication Critical patent/JPH08219778A/en
Application granted granted Critical
Publication of JP2879310B2 publication Critical patent/JP2879310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Complex Calculations (AREA)

Abstract

PURPOSE: To provide a method for measuring and indicating a shape of a wall of an excavated groove that enables automatic calculation of an excavation accuracy and quick forming of the record of the excavation accuracy when measuring an inner section of the wall of the excavated groove by means of a groove wall measuring device. CONSTITUTION: A sensor 1 of a groove wall measuring device is lowered into an excavated groove 2 and a preparation operation wherein upper and lower limit values in data to be adopted are determined from a distribution of all of the data obtained by the sensor 1, is executed. After that, measuring is started, then a median is selected from the plurality of pieces of data obtained by the sensor 1 by each prescribed range of depth, a calculated excavation accuracy is indicated on a screen and the data is preserved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、掘削された溝壁の鉛直
性および溝壁形状を適確に把握するための掘削溝壁形状
の測定表示方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring and displaying an excavated groove wall shape for accurately grasping the verticality of the excavated groove wall and the groove wall shape.

【0002】[0002]

【従来の技術】従来、地中連続壁などの掘削時におい
て、その掘削溝壁の鉛直性および溝壁形状を確認するた
めには、所定の掘削完了後に超音波溝壁測定機を使用し
ていた。例えば、上記地中連続壁の例としては、図8の
ごとくバケット21を使用して掘削を行い、次に一次ス
ライム処理、すなわち底ざらいの後、図9のごとき吸引
装置を用いて二次スライム処理を行い、さらにその掘削
溝2に図10の鉄筋かご23の建込みおよび図11の鉄
筋かご23の端部継手部を防護するため防護材24を建
て込み、その後図12のコンクリート25の打設を行っ
ている。
2. Description of the Related Art Conventionally, when excavating an underground continuous wall or the like, an ultrasonic groove wall measuring machine is used after completion of predetermined excavation in order to confirm the verticality of the excavation groove wall and the shape of the groove wall. It was For example, as an example of the underground wall, excavation is performed using a bucket 21 as shown in FIG. 8, and then a primary slime treatment is performed, that is, after the bottom is roughened, and a secondary slime is used using a suction device as shown in FIG. After the treatment, the excavation groove 2 is further equipped with a reinforcing material 24 to protect the reinforcing bar cage 23 shown in FIG. 10 and the end joint portion of the reinforcing bar cage 23 shown in FIG. I am setting up.

【0003】以上図8から図12までの先行エレメント
の施工の後、引続き上記と同様の手順で後行エレメント
の施工を行うが、その際、図11の継手部に、後行エレ
メントの鉄筋かごの継手部を接続して、コンクリートの
打設を行うことにより地中連続壁を構築するものであ
る。そこで、上記のごとく掘削溝2の掘削完了後に、そ
の掘削溝2の溝壁形状に対する従来の測定方法として
は、図7のごとき超音波溝壁測定機のセンサー1を掘削
溝2内にウインチ5を介して下降させると同時に、その
センサー1に接続された受信記録器3から測定結果が記
録紙4により出力される。
After the construction of the preceding element shown in FIGS. 8 to 12, the succeeding element is subsequently constructed in the same procedure as described above. At that time, the reinforcing element cage of the succeeding element is attached to the joint portion of FIG. By connecting the joints of and connecting concrete, a continuous underground wall is constructed. Therefore, as a conventional measuring method for the groove wall shape of the excavation groove 2 after completion of excavation of the excavation groove 2 as described above, the sensor 1 of the ultrasonic groove wall measuring machine as shown in FIG. At the same time, the measurement result is output from the recording paper 4 from the reception recorder 3 connected to the sensor 1.

【0004】この記録紙4を測定者が物指しなどにより
記録された掘削形状に合うよう壁面記録に接線を引く等
により、その計画線(設計壁厚線)とのずれを計り、卓
上電気計算器等によりその掘削精度を計算しており、そ
の後、施工管理書類を所定の書式により作成している。
しかしながら、前記従来の方式では、掘削精度が溝壁測
定時にすぐには判らず、接線の引き方または計画線との
ずれ量等測定者の記録紙4の扱いによっては掘削壁の位
置の読みとりに、人によるバラツキが見られるという問
題があった。
By measuring the deviation from the planned line (design wall thickness line) by drawing a tangent line to the wall surface record of the recording paper 4 so that the measurer can match the excavation shape recorded by pointing and the like, a desktop electric calculator The excavation accuracy is calculated based on the above, and then the construction management documents are created in the prescribed format.
However, in the above-mentioned conventional method, the excavation accuracy is not immediately known at the time of measuring the groove wall, and the position of the excavation wall may be read depending on the measurer's handling of the recording paper 4 such as how to draw the tangent line or the deviation amount from the planned line. However, there was a problem that variations were seen among people.

【0005】一方、従来の測定方法によれば、超音波溝
壁測定機のセンサー1で掘削溝を測定する際、図13に
示すごとき掘削溝の幅方向の計測データおよび図14に
示すごとき掘削溝の長手方向の計測データがペンレコー
ダなどで描画されることになるが、これらのデータは超
音波が反射してはね返ってきた時間から距離を換算した
ものであり、安定液中の分散粒子からの反射等はね返っ
てきた情報全てを計測している。通常センサー1は、1
0cm/秒の速度で降下する場合には5cm下降する間に約
30のデータを取ってくるので、高密度記録となり、重
なり表示が多く、個々のデータを読み取ることが困難で
あった。
On the other hand, according to the conventional measuring method, when the excavation groove is measured by the sensor 1 of the ultrasonic groove wall measuring machine, the measurement data in the width direction of the excavation groove as shown in FIG. 13 and the excavation as shown in FIG. The measurement data in the longitudinal direction of the groove will be drawn with a pen recorder, etc., but these data are the distance converted from the time when ultrasonic waves are reflected and bounced, and it is calculated from dispersed particles in a stable liquid. It measures all the reflected information such as reflections of. Normal sensor 1 is 1
When descending at a speed of 0 cm / sec, about 30 data were taken while descending by 5 cm, resulting in high density recording and many overlapping displays, making it difficult to read individual data.

【0006】また、これらのデータには掘削溝2の局所
的な崩壊等も含まれることもあり、深さが数十mにも達
する掘削溝2の精度の観点から深度方向の局所的な値を
取り上げることは必ずしも正確な値とはいえず、最終的
な精度は測定者の経験に頼るところが多いというのが実
情であった。また、掘削溝2の上部における埋土や改良
地盤等による肌落ち、および下部における支持層の玉石
や礫等による自然崩壊など土質による精度計算への処理
に経験を要したり、施工管理書類として作成するために
多大な時間を費やすという問題があった。
Further, these data may include local collapse of the excavation groove 2 and the like, and from the viewpoint of the accuracy of the excavation groove 2 having a depth of several tens of meters, a local value in the depth direction. It is not always an accurate value to pick up, but the actual situation is that the final accuracy often depends on the experience of the measurer. In addition, experience is required for the accuracy calculation process depending on the soil quality, such as skin loss due to buried soil or improved ground at the top of the excavation trench 2, and natural collapse due to cobbles and gravel in the support layer at the bottom, and as a construction management document. There was a problem that it took a lot of time to create it.

【0007】[0007]

【発明が解決しようとする課題】本発明は、前記従来の
問題点を解決するためになされたものであり、地中連続
壁などの掘削溝壁の掘削時、または掘削完了時に行う溝
壁内の超音波溝壁測定機による計測において、その掘削
溝壁面の状態を適切に把握し、掘削精度の自動計算や、
迅速な掘削精度記録の作成を可能とする掘削溝壁形状の
測定表示方法を提供することを目的としている。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art. In the groove wall, which is carried out at the time of excavating an excavation groove wall such as an underground continuous wall or at the completion of excavation. In the measurement with the ultrasonic groove wall measuring machine of, the state of the excavation groove wall surface is properly grasped, and the automatic calculation of the excavation accuracy and
It is an object of the present invention to provide a method for measuring and displaying the shape of an excavation groove wall, which enables rapid creation of excavation accuracy records.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明は、溝壁測定機のセンサーを掘削溝内に降下
させ、センサーで得られる全データの分布から採用すべ
きデータの上限値と下限値とを決定する準備作業を行っ
た後、計測を開始し、前記センサーで所定の深度幅ごと
に得られる複数のデータからその中央値を採り、その中
央値を所定の深度幅ごとの掘削溝壁の位置として表示す
ると共に、計算される掘削精度を表示し、かつ前記掘削
溝壁の位置と掘削精度を保存する掘削溝壁形状の測定方
法からなり、さらにかゝる測定表示方法において、計測
条件として掘削精度計算に影響を与える深度範囲を指定
可能な測定表示方法からなる。
SUMMARY OF THE INVENTION To achieve the above object, the present invention lowers a sensor of a groove wall measuring machine into an excavation groove, and an upper limit of data to be adopted from a distribution of all data obtained by the sensor. After performing the preparatory work to determine the value and the lower limit value, start the measurement, take the median value from a plurality of data obtained by the sensor for each predetermined depth width, the median value for each predetermined depth width And a method of displaying the calculated excavation accuracy and storing the excavation groove wall position and the excavation accuracy, and further displaying and displaying the calculated excavation accuracy. In, the measurement display method is capable of designating the depth range that affects the excavation accuracy calculation as the measurement condition.

【0009】[0009]

【実施例】以下、本発明の一実施例について説明する
が、まず、本発明の測定表示方法に適用される測定装置
の構成は、図1に示すごとく、超音波溝壁測定機のセン
サー1と、そのセンサー1に接続される受信記録器3
と、センサー1を掘削溝2内へ下降させうるウインチ5
の他、超音波溝壁測定器からの計測信号のノイズ除去と
溝壁データへの変換をする専用ボード10、変換された
溝壁データをノート型のパーソナルコンピュータ11へ
転送するプログラマブルコントローラからなるシーケン
サ12からなっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below. First, the structure of the measuring device applied to the measuring and displaying method of the present invention is as shown in FIG. And the reception recorder 3 connected to the sensor 1.
And a winch 5 that can lower the sensor 1 into the trench 2.
In addition, a sequencer including a dedicated board 10 for removing noise of the measurement signal from the ultrasonic groove wall measuring device and converting it into groove wall data, and a programmable controller for transferring the converted groove wall data to the notebook personal computer 11 It consists of 12.

【0010】次に、上記のごときこの実施例の測定装置
による掘削溝壁の形状測定表示方法について説明する。
前記したごとく、従来の超音波測定機から送られている
計測データの中には、通常、図13および図14のB,
Cに示すように超音波が測定対象壁面以外で乱反射しは
ね返ってきたものや、電気ノイズなどの外的要因および
構造上でやむを得ない内的要因により誤って送られてく
るものが含まれている。
Next, a method for measuring and displaying the shape of the excavated trench wall by the measuring apparatus of this embodiment as described above will be described.
As described above, in the measurement data sent from the conventional ultrasonic measuring machine, normally, B of FIGS.
As shown in C, ultrasonic waves are scattered and reflected back from other than the wall surface to be measured, and some are mistakenly sent due to external factors such as electrical noise and internal factors unavoidable in terms of structure. .

【0011】そこで、この発明の方法では上記センサー
1を掘削溝2内の底まで降下させ、センサー1で得られ
る全データの分布から採用すべきデータの上限値と下限
値とを決定する。例えば、正しい溝壁データを距離に換
算した値が75cmだった場合でも、75,200,1
0,20,80,100,75,0,0,200,20
0,0,0,75,75,5,5,200,200,7
5といったデータが超音波溝壁測定機から送られてく
る。これらのデータの分布をグラフ化すると、例えば図
6のようになる。そこで、図6から採用すべきデータを
上限値と下限値の範囲(20<X<200)の値として
必要でないデータを除くと、採用すべきデータは75,
80,100,75,75,75,75となる。
Therefore, in the method of the present invention, the sensor 1 is lowered to the bottom of the excavation groove 2, and the upper limit value and the lower limit value of the data to be adopted are determined from the distribution of all the data obtained by the sensor 1. For example, even if the value obtained by converting the correct groove wall data into a distance is 75 cm, 75,200,1
0, 20, 80, 100, 75, 0, 0, 200, 20
0,0,0,75,75,5,5,200,200,7
Data such as 5 is sent from the ultrasonic groove wall measuring machine. A graph of the distribution of these data is shown in FIG. 6, for example. Therefore, except for the data that is not necessary as the data of the upper limit value and the lower limit value (20 <X <200) of the data to be adopted from FIG. 6, the data to be adopted is 75,
80,100,75,75,75,75.

【0012】以上の準備完了の後、センサー1を掘削溝
の幅方向中央位置のGL±0にセットし、計測開始のボ
タンを押してから、センサー1をウインチ5を介して掘
削溝2内に下降させて受信記録器3によりデータを取り
込んでいく。センサー1のGL±0のセット状態から、
図5に示すごとく、例えば毎秒10cmでセンサー1を掘
削溝2内に下降させると、通常深度方向5cmの幅で約3
0組の掘削溝壁データを取り込むことができ、従って、
例えば深度20mの掘削溝2の場合では、約1200組
の溝壁データを取り込むことになる。
After the above preparations are completed, the sensor 1 is set at GL ± 0 at the center position in the width direction of the excavation groove, the measurement start button is pressed, and then the sensor 1 is lowered into the excavation groove 2 via the winch 5. Then, the reception recorder 3 takes in the data. From the set state of GL ± 0 of sensor 1,
As shown in FIG. 5, when the sensor 1 is lowered into the excavation groove 2 at a rate of 10 cm / sec, for example, a width of 5 cm in the normal depth direction results in about 3 cm.
It is possible to capture 0 sets of trench wall data, and
For example, in the case of the excavation trench 2 having a depth of 20 m, about 1200 sets of trench wall data will be fetched.

【0013】そこで、前記のごとく、必要でないデータ
を除去した後の75,80,100,75,75,7
5,75のデータから中央値、すなわち75を採る。こ
こで、中央値ではなく上記のデータの平均値を採ると7
9.29となり、深度方向5cmの局所的な80,100と
いうデータの影響を受けて広い掘削幅となる危険性があ
るので、本発明では、前記データから75の中央値を採
っている。
Therefore, as described above, 75, 80, 100, 75, 75, 7 after removing unnecessary data
The median value, that is, 75 is taken from the data of 5,75. Here, if the average value of the above data is used instead of the median value, then 7
Since it becomes 9.29, there is a risk of a wide excavation width due to the influence of the local data of 80,100 in the depth direction of 5 cm, so in the present invention, the median value of 75 is taken from the above data.

【0014】ここで、種々の計算方法のあるなかで、中
央値を選択した理由としては、計算方法が簡単で、迅速
な処理が行えることと、掘削溝幅管理のための適切なデ
ータを取得できることである。もし計算方法が簡単であ
るという点からは、平均値を得ることが一番簡単ではあ
るが、その場合、適切なデータの取得という点でかなり
の誤差がでて不適当である。
Among the various calculation methods, the reason why the median value is selected is that the calculation method is simple and quick processing can be performed, and appropriate data for managing the trench width can be obtained. It is possible. If the calculation method is simple, it is easiest to obtain the average value, but in that case, there is a considerable error in obtaining appropriate data, which is inappropriate.

【0015】また、適切なデータを取得するためには最
頻値を採るのが一番良いが、その場合、その処理が複雑
になるし、データの個数、構成等によっては、処理が行
えないこともある。一方、本発明者は、超音波溝壁測定
器を用いて、数百のサンプルデータを取り、実証を行っ
た結果、適切なデータを取得するには中央値でも支障が
ないことを確認したので、本発明では中央値を採ってい
る。
Further, it is best to take the most frequent value in order to acquire appropriate data, but in that case, the processing becomes complicated and the processing cannot be performed depending on the number of data, the configuration, etc. Sometimes. On the other hand, the present inventor has obtained several hundreds of sample data using an ultrasonic groove wall measuring device, and as a result of verification, confirmed that there is no problem even with a median value in obtaining appropriate data. In the present invention, the median value is used.

【0016】センサー1が掘削溝2の底に到達したら、
計測終了ボタンを押し、これにより図2の掘削精度管理
画面上に測定した掘削溝壁が表示され、掘削精度、精度
上端深度および精度下端深度などの掘削精度がパーソナ
ルコンピュータ11などにより自動計算され画面に表示
される。データの分布から採用すべき範囲を決定した後
のこの装置による操作の流れを図3の操作フロー図に示
しており、またそのフローチャートを図4に示してい
る。
When the sensor 1 reaches the bottom of the trench 2,
When the measurement end button is pressed, the measured excavation groove wall is displayed on the excavation accuracy management screen of FIG. 2, and the excavation accuracy such as the excavation accuracy, the precision upper depth and the precision lower depth is automatically calculated by the personal computer 11 or the like, and the screen is displayed. Is displayed in. The operation flow of this apparatus after determining the range to be adopted from the distribution of data is shown in the operation flow chart of FIG. 3, and its flow chart is shown in FIG.

【0017】すなわち、上記のパーソナルコンピュータ
(図中パソコンと略記している)11は、その計測条件
が設定可能になっており、センサー1からの計測信号が
変換され、転送された溝壁データから適切なデータを選
別して求められた中央値から掘削精度を計算し、その掘
削精度を図2の掘削精度管理画面に描画すると共に、そ
の測定データをハードディスクに一次保存し、一次保存
された測定データをフロッピーディスク13等によりデ
ータ複写し、プリンター14の設置してある事務所等に
て所定の書式で出力する。
That is, the above-mentioned personal computer (abbreviated as a personal computer in the figure) 11 is capable of setting its measurement conditions, and the measurement signal from the sensor 1 is converted and converted from the transferred groove wall data. The excavation accuracy is calculated from the median value obtained by selecting appropriate data, the excavation accuracy is drawn on the excavation accuracy management screen of FIG. 2, and the measurement data is temporarily stored in the hard disk, and the temporarily saved measurement is performed. The data is copied on the floppy disk 13 or the like and output in a predetermined format at an office or the like where the printer 14 is installed.

【0018】また、上記の測定の際、パーソナルコンピ
ュータ11に、計測条件として、掘削溝2の上部および
下部での肌落ちおよび自然崩壊などにより掘削精度計算
に影響を与える深度範囲の指定をすることにより、その
深度範囲を外して、掘削精度を再計算することができ
る。なお、本発明は地中連続壁だけでなく、場所打ち杭
等、他の掘削溝壁の形状を測定する場合にも適用するこ
とができる。
Further, at the time of the above-mentioned measurement, the personal computer 11 is required to specify, as a measurement condition, a depth range which affects excavation accuracy calculation due to skin falling and natural collapse at the upper and lower portions of the excavation groove 2. Thus, the excavation accuracy can be recalculated by removing the depth range. The present invention can be applied not only to the underground continuous wall, but also to the case of measuring the shape of other excavated trench walls such as cast-in-place piles.

【0019】[0019]

【発明の効果】以上に説明したごとく、本発明の掘削溝
壁形状の測定表示方法によれば、掘削溝壁の位置を適切
に把握でき、掘削精度が溝壁の測定時に自動計算により
迅速に判ると共に、従来のごとく、記録紙に接線を引く
等の取扱上による掘削精度の人的バラツキがなく、適切
な測定結果が得られる。
As described above, according to the method for measuring and displaying the shape of the excavation groove wall of the present invention, the position of the excavation groove wall can be properly grasped, and the excavation accuracy can be quickly calculated automatically when measuring the excavation groove wall. As is clear, there is no human variation in the excavation accuracy due to handling such as drawing a tangent line on the recording paper as in the conventional case, and an appropriate measurement result can be obtained.

【0020】また、前記のごとく、土質による掘削精度
計算に影響を与える深度範囲を指定することにより、そ
の範囲を外して必要とする掘削溝壁面の掘削精度が再度
自動計算により得られる。さらに、掘削精度測定記録
や、施工精度表などの見やすい施工管理書類の迅速な作
成ができ、掘削溝壁情報の蓄積ができる。
Further, as described above, by designating the depth range that influences the calculation of the excavation accuracy due to the soil properties, the required excavation accuracy of the excavation groove wall surface can be obtained again by automatic calculation outside the range. Furthermore, it is possible to quickly create easy-to-read construction management documents such as excavation accuracy measurement records and construction accuracy tables, and accumulate excavation groove wall information.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の測定表示方法で掘削溝壁形状を測定表
示する装置の一実施例に係る概略配置の斜視図である。
FIG. 1 is a perspective view of a schematic arrangement according to an embodiment of an apparatus for measuring and displaying the shape of a trench wall by the measuring and displaying method of the present invention.

【図2】図1の掘削精度管理画面の正面図である。FIG. 2 is a front view of an excavation accuracy management screen of FIG.

【図3】データの分布から採用すべきデータの範囲を決
定した後の図1の装置の一連の操作を示す操作フロー図
である。
FIG. 3 is an operation flow chart showing a series of operations of the apparatus of FIG. 1 after determining the range of data to be adopted from the distribution of data.

【図4】データの分布から採用すべきデータの範囲を決
定した後の図1の装置のフローチャートである。
4 is a flow chart of the apparatus of FIG. 1 after determining the range of data to be adopted from the distribution of data.

【図5】図1の掘削溝壁内を降下するセンサーによる溝
壁データ取り込みの説明図である。
FIG. 5 is an explanatory diagram of capturing groove wall data by a sensor that descends inside the excavation groove wall in FIG. 1;

【図6】図5による超音波溝壁測定機によるデータ取得
時のデータの分布を示す線図である。
FIG. 6 is a diagram showing a data distribution at the time of data acquisition by the ultrasonic groove wall measuring machine according to FIG.

【図7】従来の測定表示方法による測定装置の配置を示
す斜視図である。
FIG. 7 is a perspective view showing an arrangement of measuring devices according to a conventional measurement display method.

【図8】地中連続壁の掘削時の説明用の概念図である。FIG. 8 is a conceptual diagram for explaining the excavation of a continuous underground wall.

【図9】図8の後の二次スライム処理の概念図である。FIG. 9 is a conceptual diagram of secondary slime processing after FIG.

【図10】図9の後の鉄筋かご建込みの概念図である。FIG. 10 is a conceptual diagram of reinforced cage installation after FIG. 9.

【図11】図10の後の継手部防護の概念図である。11 is a conceptual diagram of joint part protection after FIG.

【図12】図11の後のコンクリート打設の概念図であ
る。
FIG. 12 is a conceptual diagram of concrete pouring after FIG. 11.

【図13】従来の超音波溝壁測定器による掘削溝の幅方
向の計測データの記録である。
FIG. 13 is a record of measurement data in the width direction of an excavation groove by a conventional ultrasonic groove wall measuring device.

【図14】図13の長手方向の計測データの記録であ
る。
FIG. 14 is a record of measurement data in the longitudinal direction of FIG.

【符号の説明】[Explanation of symbols]

1 センサー 2 掘削溝 3 受信記録器 X 測定値 1 sensor 2 excavation ditch 3 receiver recorder X measured value

【手続補正書】[Procedure amendment]

【提出日】平成7年6月9日[Submission date] June 9, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】 以上の準備完了の後、センサー1を掘削
溝の幅方向中央位置のGL±0にセットし、計測開始の
ボタンを押してから、センサー1をウインチ5を介して
掘削溝2内に下降させて受信記録器3によりデータを取
り込んでいく。センサー1のGL±0のセット状態か
ら、図5に示すごとく、例えば毎秒10cmでセンサー
1を掘削溝2内に下降させると、通常深度方向5cmの
幅で約30組の掘削溝壁データを取り込むことができ、
従って、例えば深度20mの掘削溝2の場合では、約
2,000組の溝壁データを取り込むことになる。
After the above preparations are completed, the sensor 1 is set at GL ± 0 at the center position in the width direction of the excavation groove, the measurement start button is pressed, and then the sensor 1 is lowered into the excavation groove 2 via the winch 5. Then, the reception recorder 3 takes in the data. As shown in FIG. 5, when the sensor 1 is lowered into the excavation groove 2 at a rate of 10 cm / sec from the set state of the sensor 1 of GL ± 0, about 30 sets of excavation groove wall data with a width of 5 cm in the normal depth direction are fetched. It is possible,
Therefore, for example, in the case of the excavation groove 2 having a depth of 20 m, about 1
It will take in 2,000 sets of groove wall data.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000150615 株式会社長谷工コーポレーション 東京都港区芝2丁目32番1号 (72)発明者 山本 和久 東京都港区芝浦三丁目12番8号 安藤建設 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 000150615 Haseko Corporation 2-32-1, Shibaura, Minato-ku, Tokyo (72) Inventor Kazuhisa Yamamoto 3-12-8 Shibaura, Minato-ku, Tokyo Ando Construction Co., Ltd. In the company

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溝壁測定機のセンサーを掘削溝内に降下
させ、センサーで得られる全データの分布から採用すべ
きデータの上限値と下限値とを決定する準備作業を行っ
た後、計測を開始し、前記センサーで所定の深度幅ごと
に得られる複数のデータからその中央値を採り、その中
央値を所定の深度幅ごとの掘削溝壁の位置として表示す
ると共に、計算される掘削精度を表示し、かつ前記掘削
溝壁の位置と掘削精度を保存する掘削溝壁形状の測定表
示方法。
1. A measurement of a groove wall measuring machine after descending the sensor into an excavation groove and performing a preparatory work for determining an upper limit value and a lower limit value of data to be adopted from a distribution of all data obtained by the sensor. Starting, and taking the median value from a plurality of data obtained for each predetermined depth width with the sensor, displaying the median value as the position of the excavation groove wall for each predetermined depth width, and the calculated excavation accuracy And a method for measuring and displaying the shape of the trench groove wall, wherein the position of the trench groove wall and the excavation accuracy are stored.
【請求項2】 計測条件として掘削精度計算に影響を与
える深度範囲を指定可能な請求項1記載の掘削溝壁形状
の測定表示方法。
2. The method for measuring and displaying the excavation groove wall shape according to claim 1, wherein a depth range that affects excavation accuracy calculation can be designated as the measurement condition.
JP2566895A 1995-02-14 1995-02-14 Measurement display method of excavation groove wall shape Expired - Fee Related JP2879310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2566895A JP2879310B2 (en) 1995-02-14 1995-02-14 Measurement display method of excavation groove wall shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2566895A JP2879310B2 (en) 1995-02-14 1995-02-14 Measurement display method of excavation groove wall shape

Publications (2)

Publication Number Publication Date
JPH08219778A true JPH08219778A (en) 1996-08-30
JP2879310B2 JP2879310B2 (en) 1999-04-05

Family

ID=12172172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2566895A Expired - Fee Related JP2879310B2 (en) 1995-02-14 1995-02-14 Measurement display method of excavation groove wall shape

Country Status (1)

Country Link
JP (1) JP2879310B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626738A (en) * 1979-08-14 1981-03-14 Nippon Telegr & Teleph Corp <Ntt> Manufacturing apparatus of optical fiber base material
JPH03281891A (en) * 1990-03-30 1991-12-12 Penta Ocean Constr Co Ltd Measurement of distance between inner walls of pit
JPH0572005A (en) * 1991-09-12 1993-03-23 Hitachi Ltd Method and device for detecting tendency of small fluctuation of time-series data

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626738A (en) * 1979-08-14 1981-03-14 Nippon Telegr & Teleph Corp <Ntt> Manufacturing apparatus of optical fiber base material
JPH03281891A (en) * 1990-03-30 1991-12-12 Penta Ocean Constr Co Ltd Measurement of distance between inner walls of pit
JPH0572005A (en) * 1991-09-12 1993-03-23 Hitachi Ltd Method and device for detecting tendency of small fluctuation of time-series data

Also Published As

Publication number Publication date
JP2879310B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
US3946598A (en) Method and apparatus for determining the dynamic parameters of soil in situ
US10713843B2 (en) Cored rock analysis planning through CT images
EP1813934A1 (en) Concrete structure crack inspection device and crack inspection method
JP4678789B2 (en) Rubble throwing work support device and rubble throwing simulation work support device
Cahoon et al. A method for measuring vertical accretion, elevation, and compaction of soft, shallow-water sediments
JPH08219778A (en) Method for measuring and indicating shape of wall of xcavated groove
US5559754A (en) Sediment classification system
KR100470269B1 (en) Three-Dimensional Image Processing Method of Subsurface survey and The Same System
CN114838713A (en) Three-dimensional point cloud data-based bank collapse treatment construction amount measuring and calculating system
JPH03281891A (en) Measurement of distance between inner walls of pit
JPH0781482B2 (en) Method and device for measuring the wall shape of a continuous underground wall
JPS61246417A (en) Monitoring/management device for paper drain driving work
JP2007040773A (en) Measurement control system and measurement control program
Yoshikoshi Vertical earth pressure on a pipe in the ground
US7013234B1 (en) Simplified construction site layout method and apparatus
JP2763580B2 (en) Excavated soil volume measuring device and excavation method
JP3068256B2 (en) Soil identification device for small-diameter pipe propulsion machine
JP2503002B2 (en) Bathymetry device
JP2939496B2 (en) Underwater sand layer thickness measuring device and method
CN106997523A (en) A kind of high pressure overhead power line houseclearing acquisition device and method
JPS63180813A (en) Depth surveying method
JP2681821B2 (en) Construction management system for ground improvement method
JPS63198826A (en) Casting method for underwater cement hardening material
Liu et al. PAVECHECK: Updated User's Manual
JP2003227127A (en) Ground survey system for building site

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120129

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees