JP3703900B2 - Pile driving management device - Google Patents

Pile driving management device Download PDF

Info

Publication number
JP3703900B2
JP3703900B2 JP03920696A JP3920696A JP3703900B2 JP 3703900 B2 JP3703900 B2 JP 3703900B2 JP 03920696 A JP03920696 A JP 03920696A JP 3920696 A JP3920696 A JP 3920696A JP 3703900 B2 JP3703900 B2 JP 3703900B2
Authority
JP
Japan
Prior art keywords
pile
displacement
amount
data
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03920696A
Other languages
Japanese (ja)
Other versions
JPH09228370A (en
Inventor
辰男 池田
浩次 石塚
敦美 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE
Mitsubishi Electric Corp
Original Assignee
INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE, Mitsubishi Electric Corp filed Critical INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE
Priority to JP03920696A priority Critical patent/JP3703900B2/en
Publication of JPH09228370A publication Critical patent/JPH09228370A/en
Application granted granted Critical
Publication of JP3703900B2 publication Critical patent/JP3703900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、構造物構築の基礎工事で実施する杭打の施工管理を行う杭打施工管理装置に関するものである。
【0002】
【従来の技術】
鋼管杭及びコンクリート杭などにハンマーを載荷しハンマー内のラムを油圧力又はディーゼル機関の爆発力である高さまで押し上げて、この高さよりラムを落下させてラムの落下エネルギーにより杭打ちを行う場合、杭が一定量貫入し硬い地盤層に到達すると杭の貫入と併せて上方へ反動するリバウンド現象が生じ、このラムの質量と落下高の積で求まる1打撃当りの打撃エネルギーに対する貫入量及びリバウンド量は杭の支持力管理の目安となっている。またラムの落下高は、杭打ち対象となる杭の種類、杭径、ラムの質量、地盤状況等によって選択されるが、1本の杭打ち作業中においても杭の貫入度合によってラムの落下高を変更しながら工事を実施する場合もある。従来このような杭打工事において貫入量・リバウンド量の測定は、杭が硬い地盤層に到達し支持力が得られた段階でラムの落下高を一定としハンマー直下にて杭の表面に記録紙を張り付け、人が鉛筆等の筆記具を押し当てて直接記録する人力測定方式が採用されている。
【0003】
また、この人力測定に替わり、杭表面に適当な段階で貼った小片のターゲットシートを船上等に設置したCCDカメラで計測する装置等が試みられているが、いずれも杭打ち作業を一時的に中断する必要があり、貫入量・リバウンド量の測定を杭打ち作業中連続して行うことができなかった。
【0004】
人力測定による方法は、変位量を測定すべき杭に直接接触させた記録ペンによることである。図7はその測定方法を概略的に示す図である。図7において、1は杭、2はハンマー、3はラム、4は地盤、5は地盤支持層、6は記録紙、7は記録ペンを示す。杭1の側面に記録紙6を貼り付け、鉛筆などの記録ペン7を記録紙6に接触させて人間が直接保持する。次に杭1をハンマー2に内蔵されているラム3を高さHから落下させて強く叩いたとき、杭の変位する量は記録紙6上に記録されるので、その量をスケールにより測定する。図8は記録紙上の記録例を示す図で横軸に時間、縦軸に変位量を取っている。図8に示すように強打された杭1は地盤4中に貫入し地盤支持層5に達した付近においては反発してリバウンドする。ラム3の1回当りの強打によるl1を最大変位量とすると、Kをリバウンド量、Sを貫入量といいl1=K+Sの関係にあり、杭打工事においてはこのリバウンド量Kと貫入量Sを用いて杭の支持力を求め施工管理基準としており、杭の支持力算出式の一例を次式に示す。この接触型は簡単明瞭であるが後述するように解決すべき多くの課題があるため、非接触型が研究された。
【0005】

Figure 0003703900
ここで
Ru:動的極限支持力
ef:機械効率
wh:ラム重量
H :ラム落下高
S :貫入量
K :リバウンド量
【0006】
非接触型の一例は杭表面に貼り付けたターゲットシートを一定距離離れた場所からCCDカメラで撮像し、ハンマー内のラムの落下により杭を強打した時のターゲットシートの動きすなわち杭の挙動を計測するものである。図9はその測定装置を概略的に示す図である。図9において、1〜5は図7の測定対象と同一のものであり8はターゲットシート、9はハロゲン光源、10はCCDカメラ、11はカメラコントローラ、12は計測演算装置、13はペンレコーダを示す。図9のように構成された装置では杭1の側面にターゲットシート8を貼り付け、ハロゲン光源9で十分なコントラストが得られるように照明してその画像をCCDカメラ10で撮像し、カメラコントローラ11から出力される撮像信号を計測演算装置12で処理して、概略1ms毎にターゲットシート8の撮像位置を求めこの位置に対応したアナログ電圧を出力し、これをペンレコーダ13で記録し杭の変位量を求めることができる。
【0007】
【発明が解決しようとする課題】
接触型ではハンマーで杭を強打するとき、作業者は適当な段階で杭に記録紙を張り付け、記録ペンを保持する必要があり、作業の途中に頭上から物が落下する危険が大きく、また船上の作業では足場が不安定となってより危険が増す問題があり、そのため作業者の危険性が極めて大きかった。また作業者による記録後スケールを用いて貫入量、リバウンド量を読みとり杭の支持力を計算して求めるため現場での作業に迅速性がなく、記録結果及び読みとり値に作業者の個人差による誤差が含まれるといった欠点がある。
【0008】
一方非接触型では、作業の危険性は改善されるが打込み杭毎にターゲットシートとなるものを正確に取り付ける現場作業を必要とするため杭打ち作業の中断が必要であること、また杭の打込み測定範囲がターゲットシートとCCDカメラ間の距離及び視野で限定されるため杭の打込み長全体にわたって連続した計測ができないといった欠点がある。
【0009】
この発明は、前述の従来の課題を改善し、杭の打込み方向の変位量を非接触で、リアルタイムに且つ高精度でしかも容易に測定可能とし、さらに人手をわずらわすことなく、杭の打撃回数、貫入量、リバウンド量、支持力、杭の全打ち込み長さ等のデータを連続して取得し杭打施工管理を行える装置を提供することを目的とする。
【0010】
この発明は、船上での計測のようにセンサ部が杭に対して相対的に上下動揺している場合でも、動揺成分をキャンセルして精度良く計測可能とすることを目的としている。
【0011】
またこの発明は、船上での計測のように杭とセンサ部間の相対距離が大きく変動してセンサ部の計測領域から外れる場合でも、杭とセンサ部間の相対距離変動に対応してセンサ部の位置を追従制御することで、安定した計測を可能とすることを目的としている。
【0012】
【課題を解決するための手段】
この発明に係わる杭打施工管理装置は、レーザ光のドップラ効果を利用して杭との相対速度及び相対変位を測定するためのセンサ部と信号処理部、さらにこの速度信号、変位信号をもとにハンマーの打撃による打撃波形データを取得し、このデータからハンマーの打撃間隔、杭の貫入量、リバウンド量を抽出して、打撃エネルギー、打撃回数を演算すると共に杭の支持力、杭の全打ち込み長さを演算し、表示及び出力するデータ処理部とを具備し、装置設置部の動揺による杭との相対上下動によって発生する変位測定誤差を、打撃前後の速度値を抽出してその間の時間で台形積分することにより装置自身の動揺による変位量を求め、元の計測変位データから減算することで測定対象物の真の変位変化を求めるものである。
【0015】
また、この発明に係わる杭打施工管理装置は、打撃による杭の貫入速度を検出するための閾値を設け、上記速度データがこの閾値を越えた瞬間を打撃タイミングとして検出し、この前後の速度データ及び変位データを打撃波形として抽出している。
【0016】
この発明に係わる杭打施工管理装置は、打撃タイミングより一定時間前の変位データを一定時間平均して変位零値とし、また前記打撃タイミングより一定時間後の変位データを一定時間平均して変位終了値として、変位終了値から変位零値を減算した値を貫入量としている。
【0017】
また、この発明に係わる杭打施工管理装置は、打撃タイミングから一定時間後までの変位データから変位最大値を求め、この変位最大値から前記変位終了値を減算した値をリバウンド量としている。
【0018】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1を示したものであり、1〜6は従来の測定対象と同一のものである。14は杭1の速度に比例したドップラ信号を検出するセンサ部、15、16はセンサ部14から照射されるレーザビーム、17は照射レーザビーム15、16が杭1で反射された散乱光、18はセンサ部で検出したドップラ信号から杭1の速度及び変位を演算出力する信号処理部、19、20は各々信号処理部18から出力される速度及び変位のアナログ電圧信号、21はこの速度及び変位信号を処理してハンマー2内のラム3の落下エネルギー、打撃回数、杭1の貫入量、リバウンド量、支持力等を演算処理するデータ処理部であり、22は計測結果を出力するためのプリンターである。なお、データ処理部21を構成している23、24はアナログ電圧信号をデジタルデータに変換するA/D変換器、25はA/D変換したデータを蓄積するためのメモリー、26は速度及び変位データから各種演算を行う機能、入力機能及び表示機能を持つ演算処理部である。また図6は杭1に対するセンサ部14の設置条件を示したものであり、センサ部14の計測領域は照射レーザビーム15、16の交差領域で与えられ照射レーザビーム15、16の交点を中心として前後Δlの範囲であるため、センサ部14は杭1に対し測定基準距離lの位置に設置される。なお通常測定基準距離lは1m、計測領域Δlは140mm程度の値である。
【0019】
上記のように構成された杭打施工管理装置においては、センサ部14から交差角φで照射される2つのレーザビーム15、16の散乱光17をセンサ部14で受光し電気信号に変換するとドップラー効果により次式に示す杭1の移動速度Vに比例したドップラ周波数fdの周波数信号が得られる。
【0020】
fd=(2V/λ)・sin(φ/2) (2)
ここで
V:杭1の移動速度
λ:レーザ光の波長
φ:2つのレーザビーム14、15の交差角
【0021】
センサ部14で得られたドップラ周波数信号は信号処理部18で杭1の移動する速度データ19及びこの時間積分として求まる変位データ20に変換処理出力される。ここで図2は信号処理部18から出力される速度データ19及変位データ20の時間軸波形を示す図である。また図3はデータ処理部21の処理フローを示すフローチャートであり、図中のS1〜S16はフローチャートの各ステップを示しており、これに基づきデータ処理手順を説明する。ステップS1で処理を起動し、ステップS2で測定年月日、工事名、施工場所等の工事情報と図2に示した演算開始時間α、演算終了時間β、変位零点平均時間a、貫入量平均時間b、立上り判定レベルe、ラム重量wh、及びあらかじめハンマーにより定まるラム落下高Hと毎分当たりの打撃回数の関係テーブル等の測定条件を入力する。ここで、例えば油圧方式のハンマー2ではラム落下高Hが数段階切替えられる機構となっており、ラム3が杭を打撃した時刻から油圧力でラム3を高さHだけ押し上げてその後ラム3が高さHだけ落下して再度杭を打撃する時刻までに要する時間はこのラム落下高Hに一対一に対応した時間となるため、ラム落下高Hと毎分当たりの打撃回数は一対一の関係にありハンマーの性能諸元として予め示されている。
【0022】
次に測定開始キーを押すとステップS3で測定処理が開始され、ステップS4で信号処理部18から出力される速度データ19及変位データ20をA/D変換器23、24でデジタル値に変換してメモリー24に読み込み、ステップS5で図2に示す速度波形からラム3の打撃タイミングを速度の立上り判定レベルeを越えた速度タイミングで検出し、ステップS6ではステップS5を通過した毎に打撃回数カウンタを更新して打撃回数を積算カウントし、ステップS7で前回の打撃タイミング時刻から今回の打撃タイミング時刻を引いて打撃間隔時間Δtnを求め、ステップS8で打撃間隔時間Δtnの逆数を演算し毎分当たりの打撃回数を求めラム落下高Hと毎分当たりの打撃回数の関係テーブルよりラム落下高Hを決定しラム落下高Hとラム重量whを乗算して打撃エネルギーを演算する。続いてステップS9で打撃タイミングより演算開始時間α前の変位データを変位零点平均時間aだけ平均した値を変位の零点F0 とし、ステップS10で打撃タイミングから打撃タイミングより演算終了β後までの変位データから最大値を求めこれより変位の零点F0 を減算した値を最大変位量Fmaxとし、ステップS11で打撃タイミングより演算終了時間β後の変位データを貫入量平均時間bだけ平均した値から変位の零点F0 を減算した値を貫入量Fsとするとともにこれを一打撃毎に累積加算して杭の累積貫入量ΣFsを求め、ステップS12で最大変位量Fmaxから貫入量Fsを減算した値をリバウンド量Fkとする。上記貫入量Fs、リバウンド量Fk及び打撃エネルギーH×whを用いてステップS13で前述で示した支持力算出式の一例である(1)式の演算を実施して支持力を求め、ステップS14で以上の処理によって求まった累積打撃回数n、打撃間隔Δtn、貫入量Fs、累積貫入量ΣFs、リバウンド量Fk、支持力を表示出力し、ステップS15で測定終了キーが押されていなければ以上の処理を繰り返し一打撃毎に表示出力データがリアルタイムにて更新される。なおステップS15で測定終了キーが押されていれば測定を終了し、ステップS16で上記一連のデータ処理で得られたデータを集計し帳票としてまとめプリントアウト出力する。
【0023】
本構成の杭打施工管理装置によれば、ラム3の落下衝撃による打撃波形を1打撃毎に検出し、この打撃波形の回数を数えることにより打撃回数nを求め、この打撃波形の発生する時間間隔Δtnをもとにラム3の落下エネルギーを演算し、打撃波形の変位データ20から貫入量Fsとリバウンド量Fkを求め、さらにこの貫入量Fsの積算値を求めることにより杭1の累積貫入量ΣFsを求め、貫入量Fs、リバウンド量Fk、ラム3の落下エネルギーから杭の支持力を演算し表示出力をおこなうので、杭打作業の開始から終了まで連続して一打撃毎の累積打撃回数、打撃間隔、貫入量、累積貫入量、リバウンド量、支持力等のデータをリアルタイムで計測可能であり、これらのデータの集計作業も自動化することが可能である。
【0024】
実施の形態2.
図4はこの発明の実施の形態2を示す動揺補正処理説明図であり、図4(b)はセンサ部14の上下等の動揺によって発生する変位変化量が実際の打撃による変位変化に重畳した場合の変位波形を示すもので図4(a)はこのときの速度波形を示している。ここで動揺成分による変位変化量(シフト量)は、演算開始時刻tstにおける速度値Vstと演算終了時刻tendにおける速度値Vendを直線で結び次式に示すように台形積分することで近似的に求めることがでる。
【0025】
Fec=(1/2)・(Vst+Vend)・(tend−tst) (3)
ここで
Fec:動揺変位補正値
【0026】
したがって変位量に動揺成分が重畳した場合であっても、動揺変位補正値Fecを演算して減算することにより精度良い計測が実現できる。なおこの動揺補正方式では動揺周期3Hz、動揺振幅±25mmの条件下において、演算開始時刻tst〜演算終了時刻tendまでの時間間隔が0.4秒以下であれば±1mmの精度で補正可能である。
【0027】
実施の形態3.
図5はこの発明の実施の形態3を示したものであり、図中1〜21は実施の形態1と同一のものである。27は超音波の往復時間により距離を求める超音波距離計で代表される非接触な距離計、28は上記距離計27の出力と測定基準距離lとの差から制御信号を出力するコントローラ、29は上記コントローラ28の出力を受けてセンサ部14及び距離計27を杭1に対し前後に移動させるリニアアクチュエータ、30は杭打船、31は海水である。
【0028】
以上の構成の杭打施工管理装置において、杭1とセンサ部14の相対距離が測定基準距離lから変化すると、距離計27の測定距離出力を受けてコントローラ28は測定基準距離lに対する変位量が零となるよう制御信号をリニアアクチュエータ29に与え、常に杭1とセンサ部14の相対距離が測定基準距離lに一致するよう動作して、波浪により杭打船30から杭1を海水31中に打ち込む際に杭1とセンサ部14の相対距離が大きく変動しても安定した計測が可能となる。
【0029】
【発明の効果】
この発明は、以上説明したように構成されているので、以下に記載されるような効果を有する。
【0030】
この発明によれば、レーザ光のドップラー効果を利用しているので非接触で杭の移動する速度及び変位を人手をわずらわすことなく自動計測ができ、速度及び変位を連続して取得できるため杭打施工管理に必要な打撃回数、杭支持力、累積貫入量等を連続してリアルタイムで表示出力することが可能となり、またデータ処理部に杭打施工管理データが全て集まり打ち込み記録等の集計作業も自動化できるので、現在人力等によってほとんど行われている杭打施工管理の作業の安全化、省力化に大きな効果が得られる。
【0031】
またこの発明によれば、船上での計測のようにセンサ部が杭に対して相対的に動揺している場合でも動揺成分をキャンセルすることができ、計測精度を向上させ、適用範囲を拡大させる効果がある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1を示す杭打施工管理機の構成図である。
【図2】 この発明の実施の形態1の動作波形図である。
【図3】 この発明の実施の形態1のフローチャートである。
【図4】 この発明の実施の形態2の動作波形図である。
【図5】 この発明の実施の形態3を示す杭打施工管理機の構成図である。
【図6】 この発明で適用するセンサ部の測定範囲を示す概要図である。
【図7】 従来の記録ペン式リバウンド量計測方法を示す構成図である。
【図8】 従来の動作波形を示す図である。
【図9】 従来の非接触式リバウンド量計測装置を示す構成図である。
【符号の説明】
1 杭、2 ハンマー、3 ラム、4 地盤、5 地盤支持層、6 記録紙、7 記録ペン、8 ターゲットシート、9 ハロゲン光源、10 CCDカメラ、11 カメラコントローラ、12 計測演算装置、13 ペンレコーダ、14センサ部、15 照射レーザビーム、16 照射レーザビーム、17 散乱光、18 信号処理部、19 速度信号、20 変位信号、21 データ処理部、22 プリンター、23 A/D変換器1、24 A/D変換器2、25 メモリー、26 演算処理部、27 距離計、28 コントローラ、29 リニアアクチュエータ、30 杭打船、31 海水。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pile driving management apparatus for managing the pile driving performed in the foundation work for constructing a structure.
[0002]
[Prior art]
When a hammer is loaded on a steel pipe pile or concrete pile, the ram in the hammer is pushed up to the height that is the hydraulic pressure or the explosive force of the diesel engine, the ram is dropped from this height and pile driving is performed by the falling energy of the ram. When the pile penetrates a certain amount and reaches the hard ground layer, a rebound phenomenon occurs that recoils along with the penetration of the pile, and the penetration amount and rebound amount for the impact energy per impact determined by the product of the mass of the ram and the drop height Is a measure of pile bearing capacity management. The drop height of the ram is selected according to the type of pile to be piled, the pile diameter, the mass of the ram, the ground condition, etc. The drop height of the ram depends on the penetration of the pile even during one pile driving operation. In some cases, construction may be carried out while changing. Conventionally, in such pile driving work, the amount of penetration and rebound is measured by recording paper on the surface of the pile just below the hammer with a constant ram drop height when the pile reaches the hard ground layer and the bearing capacity is obtained. A human power measurement method is employed in which a person directly presses a writing instrument such as a pencil to record directly.
[0003]
In addition, instead of this human power measurement, an attempt has been made to measure a small target sheet pasted on the surface of a pile with a CCD camera installed on the ship, etc. It was necessary to interrupt, and it was not possible to continuously measure the amount of penetration and rebound during pile driving.
[0004]
The method by manpower measurement is with a recording pen in direct contact with the pile whose displacement is to be measured. FIG. 7 schematically shows the measurement method. In FIG. 7, 1 is a pile, 2 is a hammer, 3 is a ram, 4 is the ground, 5 is a ground support layer, 6 is a recording paper, and 7 is a recording pen. The recording paper 6 is affixed to the side surface of the stake 1, and a recording pen 7 such as a pencil is brought into contact with the recording paper 6 and is directly held by a human. Next, when the ram 3 built in the hammer 2 is dropped from the height H and struck strongly, the displacement amount of the pile is recorded on the recording paper 6, and the amount is measured with a scale. . FIG. 8 is a diagram showing an example of recording on recording paper, with the horizontal axis representing time and the vertical axis representing displacement. As shown in FIG. 8, the struck pile 1 penetrates into the ground 4 and rebounds and rebounds in the vicinity of reaching the ground support layer 5. Assuming that l1 due to one stroke of the ram 3 is the maximum displacement amount, K is the rebound amount, S is the penetration amount, and there is a relationship of l1 = K + S. In pile driving work, this rebound amount K and penetration amount S are It is used to determine the bearing capacity of the pile and is used as a construction management standard. An example of a formula for calculating the bearing capacity of a pile is shown below. Although this contact type is simple and clear, there are many problems to be solved as described later, so the non-contact type has been studied.
[0005]
Figure 0003703900
Where Ru: Dynamic limit bearing force ef: Mechanical efficiency wh: Ram weight H: Ram drop height S: Penetration amount K: Rebound amount
An example of a non-contact type is to capture the target sheet attached to the surface of the pile with a CCD camera from a certain distance, and measure the movement of the target sheet, that is, the behavior of the pile when the pile is struck by the fall of the ram in the hammer. To do. FIG. 9 schematically shows the measuring apparatus. In FIG. 9, 1 to 5 are the same as the measurement object of FIG. 7, 8 is a target sheet, 9 is a halogen light source, 10 is a CCD camera, 11 is a camera controller, 12 is a measurement calculation device, and 13 is a pen recorder. Show. In the apparatus configured as shown in FIG. 9, a target sheet 8 is attached to the side surface of the pile 1, illumination is performed with a halogen light source 9 so that sufficient contrast is obtained, and the image is captured by the CCD camera 10. Is processed by the measurement arithmetic unit 12 to determine the imaging position of the target sheet 8 approximately every 1 ms, and an analog voltage corresponding to this position is output, and this is recorded by the pen recorder 13 and the displacement of the pile The amount can be determined.
[0007]
[Problems to be solved by the invention]
In the contact type, when hammering a pile with a hammer, the operator must attach a recording paper to the pile at an appropriate stage and hold the recording pen, and there is a great risk that objects will fall from overhead during the work. In this work, there was a problem that the scaffolding became unstable and the danger increased, so the danger of the worker was extremely great. In addition, since the intrusion amount and rebound amount are read using the scale after recording by the operator and the bearing capacity of the pile is calculated, the work at the site is not quick, and the recorded results and reading values are subject to errors due to individual differences among the operators. Is included.
[0008]
On the other hand, in the non-contact type, although the risk of work is improved, it is necessary to interrupt the pile driving work because it requires field work to accurately attach the target sheet for each driven pile, and the driving of the pile Since the measurement range is limited by the distance between the target sheet and the CCD camera and the visual field, there is a drawback that continuous measurement cannot be performed over the entire pile driving length.
[0009]
The present invention improves the above-mentioned conventional problems, makes it possible to measure the displacement in the driving direction of the pile in a non-contact manner, in real time, with high accuracy and easily, and further, without hitting the manpower, An object is to provide a device capable of continuously acquiring data such as the number of times, penetration amount, rebound amount, supporting force, total pile driving length, and the like to perform pile driving management.
[0010]
The object of the present invention is to cancel the sway component and enable accurate measurement even when the sensor unit sways up and down relative to the pile as in the measurement on a ship.
[0011]
In addition, even when the relative distance between the pile and the sensor unit greatly fluctuates and deviates from the measurement area of the sensor unit as in the measurement on the ship, the sensor unit responds to the relative distance fluctuation between the pile and the sensor unit. The purpose is to enable stable measurement by tracking control of the position.
[0012]
[Means for Solving the Problems]
The pile driving management apparatus according to the present invention uses a sensor unit and a signal processing unit for measuring relative speed and relative displacement with a pile using the Doppler effect of laser light, and further based on the speed signal and displacement signal. The hammer waveform is obtained from the hammer, and the hammer hit interval, pile penetration, and rebound amount are extracted from this data to calculate the strike energy and the number of strikes. It has a data processing unit that calculates the length, displays and outputs it , extracts the displacement measurement error caused by the relative vertical movement with the pile due to the shaking of the device installation unit, extracts the speed value before and after hitting, and the time between Thus, the amount of displacement due to the shaking of the apparatus itself is obtained by trapezoidal integration, and the true displacement change of the measurement object is obtained by subtracting from the original measured displacement data .
[0015]
In addition, the pile driving construction management device according to the present invention provides a threshold for detecting the penetration speed of the pile due to hammering, detects the moment when the speed data exceeds this threshold as the hammering timing, and velocity data before and after this The displacement data is extracted as a hitting waveform.
[0016]
The pile driving construction management device according to the present invention averages displacement data for a fixed time before the hitting timing to obtain a zero displacement, and averages displacement data after a fixed time after the hitting timing for a fixed time to complete the displacement. The value obtained by subtracting the displacement zero value from the displacement end value is the penetration amount.
[0017]
Further, the pile driving management apparatus according to the present invention obtains a displacement maximum value from displacement data from a hitting timing to a certain time later, and uses a value obtained by subtracting the displacement end value from the displacement maximum value as a rebound amount.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 shows Embodiment 1 of the present invention, and 1 to 6 are the same as those of a conventional measurement object. 14 is a sensor unit that detects a Doppler signal proportional to the velocity of the pile 1, 15 and 16 are laser beams emitted from the sensor unit 14, 17 are scattered light beams of the irradiated laser beams 15 and 16 reflected by the pile 1, 18 Is a signal processing unit that calculates and outputs the speed and displacement of the pile 1 from the Doppler signal detected by the sensor unit, 19 and 20 are analog voltage signals of speed and displacement output from the signal processing unit 18, respectively, and 21 is the speed and displacement. A data processing unit that processes signals to calculate the falling energy of the ram 3 in the hammer 2, the number of hits, the amount of penetration of the pile 1, the amount of rebound, the supporting force, etc. 22 is a printer for outputting measurement results It is. Reference numerals 23 and 24 constituting the data processing unit 21 are A / D converters for converting analog voltage signals into digital data, 25 is a memory for storing A / D converted data, and 26 is speed and displacement. An arithmetic processing unit having a function of performing various calculations from data, an input function, and a display function. FIG. 6 shows the installation conditions of the sensor unit 14 with respect to the pile 1. The measurement region of the sensor unit 14 is given by the intersection region of the irradiation laser beams 15 and 16, and the intersection of the irradiation laser beams 15 and 16 is the center. Since it is in the range of front and rear Δl, the sensor unit 14 is installed at the position of the measurement reference distance l relative to the pile 1. The normal measurement reference distance l is 1 m, and the measurement region Δl is a value of about 140 mm.
[0019]
In the pile driving management apparatus configured as described above, when the scattered light 17 of the two laser beams 15 and 16 irradiated from the sensor unit 14 at the crossing angle φ is received by the sensor unit 14 and converted into electrical signals, Doppler is used. As a result, a frequency signal having a Doppler frequency fd proportional to the moving speed V of the pile 1 shown in the following equation is obtained.
[0020]
fd = (2V / λ) · sin (φ / 2) (2)
Where V: moving speed of pile 1 λ: wavelength of laser light φ: intersection angle of two laser beams 14 and 15
The Doppler frequency signal obtained by the sensor unit 14 is converted and output by the signal processing unit 18 to velocity data 19 for moving the pile 1 and displacement data 20 obtained as this time integration. Here, FIG. 2 is a diagram showing time axis waveforms of the velocity data 19 and the displacement data 20 output from the signal processing unit 18. FIG. 3 is a flowchart showing the processing flow of the data processing unit 21, and S1 to S16 in the figure show the steps of the flowchart, and the data processing procedure will be described based on this. The process is started in step S1, and in step S2, the construction date and time, construction name, construction location, and other construction information and the computation start time α, computation end time β, displacement zero average time a, penetration amount average shown in FIG. Measurement conditions such as a relation table of time b, rising judgment level e, ram weight wh, and ram fall height H determined by a hammer in advance and the number of hits per minute are input. Here, for example, the hydraulic hammer 2 has a mechanism in which the ram fall height H can be switched in several stages. The ram 3 is pushed up by the height H by hydraulic pressure from the time when the ram 3 hits the pile, and then the ram 3 The time required to drop the height H and hit the pile again is a time corresponding to the ram fall height H on a one-to-one basis, so there is a one-to-one relationship between the ram drop height H and the number of hits per minute. It is shown in advance as performance specifications of the hammer.
[0022]
Next, when the measurement start key is pressed, the measurement process is started in step S3, and the speed data 19 and the displacement data 20 output from the signal processing unit 18 are converted into digital values by the A / D converters 23 and 24 in step S4. In step S5, the striking timing of the ram 3 is detected from the speed waveform shown in FIG. 2 at a speed timing exceeding the speed rising judgment level e. In step S6, the striking number counter is counted every time step S5 is passed. Is updated, and the number of hits is cumulatively counted. In step S7, the current hit timing time is subtracted from the previous hit timing time to obtain the hit interval time Δtn. In step S8, the reciprocal of the hit interval time Δtn is calculated per minute. The ram drop height H is determined from the table of the relationship between the ram drop height H and the hit count per minute. The striking energy is calculated by multiplying the ram weight wh. Subsequently, in step S9, a value obtained by averaging the displacement data before the calculation start time α from the impact timing by the displacement zero average time a is defined as a displacement zero point F 0. In step S10, the displacement from the impact timing to the end of the calculation β after the impact timing. the value obtained by subtracting the zero point F 0 of the displacement than this the maximum value from the data set to the maximum displacement amount Fmax, the displacement from the value of the displacement data were averaged by penetration amount average time b after calculation end time β from striking timing in step S11 of which cumulatively added for each one striking a value obtained by subtracting the zero point F 0 with a penetration amount Fs yield a cumulative penetration amount ΣFs of pile, the value obtained by subtracting the penetration amount Fs from the maximum displacement amount Fmax in step S12 The rebound amount is Fk. Using the penetration amount Fs, the rebound amount Fk, and the impact energy H × wh, the calculation of formula (1), which is an example of the support force calculation formula described above in step S13, is performed to obtain the support force, and in step S14 The accumulated number of hits n, the hit interval Δtn, the penetration amount Fs, the cumulative penetration amount ΣFs, the rebound amount Fk, and the support force obtained by the above processing are displayed and output. If the measurement end key is not pressed in step S15, the above processing is performed. The display output data is updated in real time for each impact. If the measurement end key has been pressed in step S15, the measurement is terminated, and in step S16, the data obtained by the series of data processing is totaled and printed out as a form.
[0023]
According to the pile driving construction management device of this configuration, the hit waveform due to the drop impact of the ram 3 is detected for each hit, the number of hits n is obtained by counting the number of hit waveforms, and the time at which this hit waveform is generated. The fall energy of the ram 3 is calculated based on the interval Δtn, the penetration amount Fs and the rebound amount Fk are obtained from the displacement data 20 of the hitting waveform, and the cumulative value of the penetration amount Fs is obtained to obtain the cumulative penetration amount of the pile 1 Since ΣFs is obtained and the pile supporting force is calculated from the penetration amount Fs, the rebound amount Fk, and the fall energy of the ram 3 and the display output is performed, the cumulative number of hits per hit from the start to the end of the pile driving work, Data such as the hitting interval, penetration amount, cumulative penetration amount, rebound amount, support force and the like can be measured in real time, and the tabulation work of these data can be automated.
[0024]
Embodiment 2. FIG.
FIG. 4 is a diagram for explaining the fluctuation correction process according to the second embodiment of the present invention. FIG. 4B is a diagram in which the displacement change amount generated by the up-and-down movement of the sensor unit 14 is superimposed on the displacement change caused by the actual hitting. FIG. 4A shows the velocity waveform at this time. Here, the displacement change amount (shift amount) due to the fluctuation component is approximately obtained by connecting the speed value Vst at the calculation start time tst and the speed value Vend at the calculation end time tend with a straight line and performing trapezoidal integration as shown in the following equation. It comes out.
[0025]
Fec = (1/2). (Vst + Vend). (Tend-tst) (3)
Where Fec: fluctuation displacement correction value
Therefore, even when a fluctuation component is superimposed on the displacement amount, accurate measurement can be realized by calculating and subtracting the fluctuation displacement correction value Fec. In this shake correction method, correction can be made with an accuracy of ± 1 mm if the time interval from the calculation start time tst to the calculation end time tend is 0.4 seconds or less under the conditions of a swing period of 3 Hz and a swing amplitude of ± 25 mm. .
[0027]
Embodiment 3 FIG.
FIG. 5 shows a third embodiment of the present invention, in which 1 to 21 are the same as those in the first embodiment. 27 is a non-contact distance meter represented by an ultrasonic distance meter that obtains a distance based on the round-trip time of the ultrasonic wave, 28 is a controller that outputs a control signal from the difference between the output of the distance meter 27 and the measurement reference distance l, 29 Is a linear actuator that receives the output of the controller 28 and moves the sensor unit 14 and the distance meter 27 back and forth with respect to the pile 1, 30 is a pile driving ship, and 31 is seawater.
[0028]
When the relative distance between the pile 1 and the sensor unit 14 is changed from the measurement reference distance l in the pile driving management apparatus having the above configuration, the controller 28 receives the measurement distance output of the distance meter 27 and the amount of displacement with respect to the measurement reference distance l is increased. A control signal is given to the linear actuator 29 so that it becomes zero, and the relative distance between the pile 1 and the sensor unit 14 always operates so as to coincide with the measurement reference distance l. Stable measurement is possible even when the relative distance between the pile 1 and the sensor unit 14 varies greatly during driving.
[0029]
【The invention's effect】
Since the present invention is configured as described above, it has the effects described below.
[0030]
According to the present invention, since the Doppler effect of the laser beam is used, the speed and displacement of the pile moving in a non-contact manner can be automatically measured without bothering the manpower, and the speed and displacement can be obtained continuously. It is possible to continuously display and output the number of hits required for pile driving management, pile supporting force, cumulative penetration amount, etc. in real time, and collect all pile driving management data in the data processing section Since the work can be automated, a great effect can be obtained in the safety and labor saving of the pile driving management work that is currently performed almost manually.
[0031]
Moreover, according to this invention, even when a sensor part is rocking relatively with respect to a pile like measurement on a ship, a rocking | fluctuation component can be canceled, a measurement precision is improved and an application range is expanded. effective.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a pile driving management machine showing Embodiment 1 of the present invention.
FIG. 2 is an operation waveform diagram according to the first embodiment of the present invention.
FIG. 3 is a flowchart according to the first embodiment of the present invention.
FIG. 4 is an operation waveform diagram according to the second embodiment of the present invention.
FIG. 5 is a block diagram of a pile driving management machine showing Embodiment 3 of the present invention.
FIG. 6 is a schematic diagram showing a measurement range of a sensor unit applied in the present invention.
FIG. 7 is a configuration diagram showing a conventional recording pen type rebound amount measuring method.
FIG. 8 is a diagram showing a conventional operation waveform.
FIG. 9 is a block diagram showing a conventional non-contact type rebound amount measuring apparatus.
[Explanation of symbols]
1 Pile, 2 Hammer, 3 Ram, 4 Ground, 5 Ground support layer, 6 Recording paper, 7 Recording pen, 8 Target sheet, 9 Halogen light source, 10 CCD camera, 11 Camera controller, 12 Measurement calculation device, 13 Pen recorder, 14 sensor units, 15 irradiation laser beam, 16 irradiation laser beam, 17 scattered light, 18 signal processing unit, 19 speed signal, 20 displacement signal, 21 data processing unit, 22 printer, 23 A / D converter 1, 24 A / D converter 2, 25 Memory, 26 Arithmetic processing unit, 27 Distance meter, 28 Controller, 29 Linear actuator, 30 Pile driver, 31 Seawater.

Claims (4)

所定場所にハンマーにより地盤中に打ち込まれて貫入する杭にレーザ光を照射しその散乱光を受光して杭の貫入速度に比例したドップラ信号を検出するセンサ部と上記ドップラ信号から杭の貫入速度及び変位を演算出力する信号処理部とで構成されるレーザドップラー速度計と、上記レーザドップラー速度計の出力データからハンマーの杭への打撃波形を検出して打撃回数を検出する手段、上記打撃波形の発生する時間間隔を検出しその時間間隔より打撃エネルギーを求める手段、上記信号処理部から出力される変位データからハンマー打撃毎の杭の貫入量と杭のリバウンド量を検出する手段、上記貫入量、リバウンド量、打撃エネルギーとから杭の支持力を求める手段とを有するデータ処理部とを具備し、装置設置部の動揺による杭との相対上下動によって発生する変位測定誤差を、打撃前後の速度値を抽出してその間の時間で台形積分することにより装置自身の動揺による変位量を求め、元の計測変位データから減算することで測定対象物の真の変位変化を求めることを特徴とする杭打施工管理装置。The pile that penetrates into the ground by hammering into a predetermined place is irradiated with laser light and the scattered light is received to detect the Doppler signal proportional to the penetration speed of the pile and the penetration speed of the pile from the Doppler signal And a laser Doppler velocimeter composed of a signal processing unit for calculating and outputting displacement, means for detecting the number of hits by detecting the hit waveform on the hammer pile from the output data of the laser Doppler velocimeter, and the hit waveform Means for detecting the time interval of occurrence and determining the impact energy from the time interval, means for detecting the pile penetration amount and the pile rebound amount for each hammer strike from the displacement data output from the signal processing unit, the penetration amount rebound amount; and a data processing unit and a striking energy and a means for determining the bearing capacity of the pile, the phase of the pile by shaking of the device installation unit The displacement measurement error caused by the vertical movement is extracted by extracting the velocity value before and after the impact and integrating the trapezoid with the time between them to obtain the displacement amount due to the fluctuation of the device itself, and subtracting it from the original measured displacement data A pile driving management device characterized by obtaining a true displacement change of an object. 前記打撃波形を検出する手段は打撃による杭の移動速度を検出するための閾値を設け、上記速度データがこの閾値を越えた瞬間を打撃タイミングとして検出し、この前後の速度データ及び変位データを打撃波形として抽出することを特徴とする請求項1記載の杭打施工管理装置。  The means for detecting the hitting waveform provides a threshold for detecting the moving speed of the pile due to hitting, detects the moment when the speed data exceeds the threshold as the hitting timing, and hits the speed data and displacement data before and after the hitting timing. The pile driving management device according to claim 1, wherein the pile driving management device is extracted as a waveform. 前記貫入量を検出する手段は打撃タイミングより一定時間前の変位データを一定時間平均して変位零値とし、また前記打撃タイミングより一定時間後の変位データを一定時間平均して変位終了値として、変位終了値から変位零値を減算した値を貫入量とすることを特徴とする請求項1記載の杭打施工管理装置。  The means for detecting the penetration amount averages displacement data for a predetermined time before the impact timing to a displacement zero value, and averages displacement data after a certain time from the impact timing as a displacement end value, 2. The pile driving management apparatus according to claim 1, wherein a value obtained by subtracting a displacement zero value from a displacement end value is used as the penetration amount. 前記リバウンド量を検出する手段は打撃タイミングから一定時間後までの変位データから変位最大値を求め、この変位最大値から前記変位終了値を減算した値をリバウンド量とすることを特徴とする請求項1記載の杭打施工管理装置。  The means for detecting the rebound amount obtains a displacement maximum value from displacement data from a hitting timing to a predetermined time later, and uses a value obtained by subtracting the displacement end value from the displacement maximum value as a rebound amount. The pile driving construction management apparatus according to 1.
JP03920696A 1996-02-27 1996-02-27 Pile driving management device Expired - Lifetime JP3703900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03920696A JP3703900B2 (en) 1996-02-27 1996-02-27 Pile driving management device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03920696A JP3703900B2 (en) 1996-02-27 1996-02-27 Pile driving management device

Publications (2)

Publication Number Publication Date
JPH09228370A JPH09228370A (en) 1997-09-02
JP3703900B2 true JP3703900B2 (en) 2005-10-05

Family

ID=12546670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03920696A Expired - Lifetime JP3703900B2 (en) 1996-02-27 1996-02-27 Pile driving management device

Country Status (1)

Country Link
JP (1) JP3703900B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3675164B2 (en) * 1998-03-27 2005-07-27 コベルコクレーン株式会社 Support ground position detection method and support ground position detection device for ground improvement machine
FI115071B (en) * 2002-08-05 2005-02-28 Mikko Pasanen Method and apparatus for measuring distance
JP7079186B2 (en) * 2018-11-01 2022-06-01 株式会社ケー・エフ・シー Ground strength calculation device and ground strength calculation program
KR102201871B1 (en) * 2019-08-22 2021-01-11 윤춘호 Apparatus and method for measuring final penetration of foundation pile pile using laser
CN113957932A (en) * 2021-09-10 2022-01-21 中交四航局江门航通船业有限公司 Pile foundation penetration measuring device
CN117853077A (en) * 2024-03-07 2024-04-09 中建三局集团华南有限公司 Piling process management method, device, equipment and storage medium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441802B2 (en) * 1971-09-22 1979-12-11
JPS6373128A (en) * 1986-07-21 1988-04-02 Kazuma Uto Method and apparatus for measuring dynamic supporting force of pile
JP2700397B2 (en) * 1988-12-23 1998-01-21 財団法人土木研究センター Pile displacement measuring device for construction piles
JPH0430410U (en) * 1990-07-04 1992-03-11
JP2501776B2 (en) * 1994-04-28 1996-05-29 レンゴー株式会社 Method and device for cutting long objects

Also Published As

Publication number Publication date
JPH09228370A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
US5105650A (en) Monitoring compaction of backfill
KR920704116A (en) Method and apparatus for quantity measurement of roll hardness
CN1696686A (en) System for testing quality of cast in place concrete pile
US4586366A (en) Method and apparatus for measuring driving resistance and velocity of piles during driving
CN102506727B (en) Method and system for measuring vibration displacement of arm support and concrete pump truck comprising same
CN104264718A (en) Pile foundation integrality detection method
JP3703900B2 (en) Pile driving management device
JP2010230482A (en) Device and method for measuring pile rebound quantity
JP2005264505A (en) Construction management method for pile driving
JP3653685B2 (en) Pile head displacement measuring method and pile bearing capacity calculation device
JPH06317510A (en) Dynamic penetration testing method and measuring instrument used for it
CN100494888C (en) Base-pile tilt nondestructive detecting method
JP2700397B2 (en) Pile displacement measuring device for construction piles
JPH034688B2 (en)
JPS6373128A (en) Method and apparatus for measuring dynamic supporting force of pile
CN1057338A (en) Portable nondestructive testing instrument for pile foundation
JPH05339931A (en) Bearing force analysis of pile foundation and its device
JPH0658351B2 (en) Cavity detection device for concrete structures
JPS5930007A (en) Method for measuring sinking state of pile
JP6871886B2 (en) Stopping management method for driving piles and stopping management auxiliary system for driving piles
JPH10160446A (en) Rebound instrument for driving pile
JP3173719B2 (en) Piling construction management system
JP4093580B2 (en) Measuring method for bearing capacity of foundation pile
JPH1078333A (en) Measuring monitoring system for driven pile
JPS58213920A (en) Measure for displacing amount of driven pile during driving period

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term