JPS6373053A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS6373053A
JPS6373053A JP21666386A JP21666386A JPS6373053A JP S6373053 A JPS6373053 A JP S6373053A JP 21666386 A JP21666386 A JP 21666386A JP 21666386 A JP21666386 A JP 21666386A JP S6373053 A JPS6373053 A JP S6373053A
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
electric expansion
compressor
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21666386A
Other languages
Japanese (ja)
Inventor
慶吾 浅山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Original Assignee
Matsushita Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP21666386A priority Critical patent/JPS6373053A/en
Publication of JPS6373053A publication Critical patent/JPS6373053A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は減圧器に電動膨張弁を用いた空気調和機に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an air conditioner using an electric expansion valve as a pressure reducer.

従来の技術 近年、空気調和機は快適性、省エネルギ性の向上を目的
として、マイクロコンピュータなどで構成した電子制御
機器を搭載し、かつ周波数可変装置による能力可変形の
ものが主流となってきている。
Conventional technology In recent years, air conditioners have become mainstream with the aim of improving comfort and energy saving, and are equipped with electronic control devices such as microcomputers, and are variable in capacity using frequency variable devices. There is.

以下、第3図を参照しながら、上述したような空気調和
機について説明をおこなう。
Hereinafter, the above-mentioned air conditioner will be explained with reference to FIG.

すなわち、冷凍機の主要部品として圧縮機1゜凝縮器2
.電動膨張弁3.二次減圧器4.蒸発器5、液タンク6
、サクションアキュームレータ7を備え、冷媒配管8〜
11によって前記各部品を連結し、冷凍サイクルを構成
していた。
In other words, the main parts of the refrigerator are compressor 1 and condenser 2.
.. Electric expansion valve 3. Secondary pressure reducer4. Evaporator 5, liquid tank 6
, is equipped with a suction accumulator 7, and has refrigerant piping 8~
11 to connect each of the above-mentioned parts to form a refrigeration cycle.

次に上記のように構成された空気調和機について動作を
説明する。圧縮機1から吐出された高温高圧のガス冷媒
は、冷媒配管8を通り凝縮器2に入り、ここで室外空気
と熱交換して液化される。
Next, the operation of the air conditioner configured as described above will be explained. The high-temperature, high-pressure gas refrigerant discharged from the compressor 1 passes through the refrigerant pipe 8 and enters the condenser 2, where it exchanges heat with outdoor air and is liquefied.

液化された冷媒は冷媒配管9を通シー次減圧器である電
動膨張弁3によって減圧され、一部気化しながら冷媒配
管12を通り2次減圧器4によってさらに減圧さnる。
The liquefied refrigerant passes through the refrigerant pipe 9 and is depressurized by the electric expansion valve 3 which is a secondary pressure reducer, passes through the refrigerant pipe 12 while being partially vaporized, and is further depressurized by the secondary pressure reducer 4.

このとき冷速サイクル内の余剰冷媒は液タンク6に溜っ
ている。減圧され温度低下した冷媒は蒸発器5に・入り
ここで室内空気と熱交換して室内の冷房作用をおこなう
。前記蒸発器6で気化した冷媒は冷媒配管11を通り、
サクシコンアキュムレータ7に入り気液分離した後圧縮
機1にもどる。
At this time, surplus refrigerant in the cooling cycle remains in the liquid tank 6. The refrigerant, whose pressure has been reduced and whose temperature has been reduced, enters the evaporator 5, where it exchanges heat with indoor air and performs an indoor cooling action. The refrigerant vaporized in the evaporator 6 passes through the refrigerant pipe 11,
The liquid enters the succinic accumulator 7 and is separated into gas and liquid, and then returns to the compressor 1.

この一連の動作の中で電動膨張弁3は上述のごとく減圧
器として作用し、かつ冷媒流量制御も併せて行うもので
あシ、能力可変形圧縮機を搭載した空気調和機が主流に
なっている近年では、冷媒流量可変幅が大きく、マイク
ロコンピュータにより容易に精度良く冷媒流量制御がお
こなえるという利点から、従来のキャピラリチューブに
よる減圧器にかわり広く空気調和機に用いられてきた。
In this series of operations, the electric expansion valve 3 acts as a pressure reducer as described above, and also controls the refrigerant flow rate.Air conditioners equipped with variable capacity compressors have become mainstream. In recent years, they have been widely used in air conditioners instead of conventional capillary tube pressure reducers because of the advantages of having a wide range of variable refrigerant flow rate and the ability to easily and accurately control the refrigerant flow rate using a microcomputer.

発明が解決しようとする問題点 このような従来の構成において、空気調和機を運転中の
冷凍サイクル内の圧力は、圧縮機1から凝縮器2.電動
膨張弁3までの高圧側と、電動膨張弁3から蒸発器5.
圧縮機1の吸入までの低圧側に大きく別れているが、空
気調和機を停止すると高圧側の液冷媒は低圧側に流入し
て冷凍サイクル内は短時間経過後、同圧となる。
Problems to be Solved by the Invention In such a conventional configuration, the pressure within the refrigeration cycle during operation of the air conditioner is distributed from the compressor 1 to the condenser 2. The high pressure side up to the electric expansion valve 3, and the high pressure side from the electric expansion valve 3 to the evaporator 5.
Although it is largely divided into a low pressure side up to the suction of the compressor 1, when the air conditioner is stopped, the liquid refrigerant on the high pressure side flows into the low pressure side, and the pressure within the refrigeration cycle becomes the same after a short time.

しかしながら空気調和機は停止しているので蒸発器5に
流入した低温の液冷媒は室内空気の熱を吸収して蒸発す
ることなく液体の状態を保持して圧縮機1の方に流れる
。したがって再び空気調和機を運転すると、液冷媒が急
激に圧縮機1に流入し液圧縮を生じて、圧縮機1に損傷
を与えるという問題点を有していた。
However, since the air conditioner is stopped, the low-temperature liquid refrigerant flowing into the evaporator 5 absorbs the heat of the indoor air and flows toward the compressor 1 while maintaining its liquid state without being evaporated. Therefore, when the air conditioner is operated again, the liquid refrigerant suddenly flows into the compressor 1, causing liquid compression and causing damage to the compressor 1.

本発明は上記問題点を解決するもので、空気調和機の運
転を停止したとき、高圧側から低圧側へ流入しようとす
る液冷媒を電動膨張弁を閉じて阻止し、高圧側から気体
の冷媒を注入し均圧したのち電動膨張弁3を開くよう動
作させ、圧縮機に液冷媒が吸入され液圧縮がおこり故傷
が発生するのを防止することを目的とするものである。
The present invention solves the above problem, and when the operation of the air conditioner is stopped, the electric expansion valve is closed to prevent the liquid refrigerant from flowing from the high pressure side to the low pressure side, and the gas refrigerant is transferred from the high pressure side. The purpose of this is to operate the electric expansion valve 3 to open the electric expansion valve 3 after injecting the refrigerant and equalizing the pressure, thereby preventing liquid refrigerant from being sucked into the compressor, causing liquid compression, and causing damage.

問題点を解決するための手段 この問題点を解決するために本発明の空気調和機は、圧
縮機、凝縮器、電動膨張弁、2次減圧器。
Means for Solving the Problem In order to solve this problem, the air conditioner of the present invention includes a compressor, a condenser, an electric expansion valve, and a secondary pressure reducer.

蒸発器およびサクションアキュームレータを備え、これ
らそれぞれの部品を連結する冷媒配管によって冷凍サイ
クルの主回路を形成し、前記凝縮器と前記電動膨張弁と
を連結した冷媒配管と、前記蒸発器と前記サクションア
キュームレータとを連結し冷媒を通ずるバイパスキャピ
ラリチューブを設けるとともに、前記電動膨張弁を前記
圧縮機の停止と同時に全閉動作し、一定時間後に全開動
作をおこなわせる電動膨張弁制御手段を設けた構成であ
る。
A main circuit of a refrigeration cycle is formed by refrigerant piping that connects these parts, including an evaporator and a suction accumulator, and a refrigerant piping that connects the condenser and the electric expansion valve, and the evaporator and the suction accumulator. In addition to providing a bypass capillary tube that connects the compressor with the compressor and passing the refrigerant therethrough, the electric expansion valve control means fully closes the electric expansion valve at the same time as the compressor stops, and fully opens the electric expansion valve after a certain period of time. .

作  用 この構成により、空気調和機の運転を停止すると、高圧
側から低圧側への液冷媒の流入は、電動膨張弁制御手段
の制御信号により電動膨張弁は全閉状態となり阻止され
る。また高圧側と低圧側の圧力平衡は、凝縮器と電動膨
張弁の間の冷媒配管と、蒸発器とサクションアキューム
レータ間の冷媒配管とを連結するバイパスキャピラリチ
ューブを介して気体の冷媒が供給され均圧さ九る。
With this configuration, when the operation of the air conditioner is stopped, the flow of liquid refrigerant from the high pressure side to the low pressure side is blocked by the electric expansion valve being fully closed by the control signal from the electric expansion valve control means. In addition, the pressure on the high-pressure side and the low-pressure side is balanced by supplying gaseous refrigerant through a bypass capillary tube that connects the refrigerant pipe between the condenser and the electric expansion valve and the refrigerant pipe between the evaporator and the suction accumulator. The pressure is nine.

その後、電動膨張弁は電動膨張弁制御手段の制御信号に
より再び開き次の運転に備える。したがって圧縮機は停
止後再運転しても液冷媒を吸入することなく液圧縮が防
止されることになる。
Thereafter, the electric expansion valve opens again in response to a control signal from the electric expansion valve control means to prepare for the next operation. Therefore, even if the compressor is restarted after being stopped, it will not suck in liquid refrigerant and liquid compression will be prevented.

実施例 以下本発明の一実施例について第1図および第2図にも
とづき説明する。第1図において、冷凍サイクルを構成
する部品として、圧縮機12.凝縮器13.電動膨張弁
14,2次減圧器15.蒸発器16.液タンク17.サ
クションアキュームレータ18があり、冷媒配管19〜
23によって各部品を連結し冷凍サイクルの主回路を構
成するとともに液タンク17と電動膨張弁14の間の冷
媒配管21と、蒸発器16とサクションアキュームレー
タ18の間の冷媒配管23とはバイパスキャピラリチュ
ーブ24により連結されている。このバイパスキャピラ
リチューブ24は高圧の液冷媒を減圧して低圧、低温の
液冷媒とした後気体とするため高圧側の冷媒配管19 
、20に接触固着せしめている。
EXAMPLE An example of the present invention will be described below with reference to FIGS. 1 and 2. In FIG. 1, a compressor 12. Condenser 13. Electric expansion valve 14, secondary pressure reducer 15. Evaporator 16. Liquid tank 17. There is a suction accumulator 18, and refrigerant piping 19~
The refrigerant pipe 21 between the liquid tank 17 and the electric expansion valve 14 and the refrigerant pipe 23 between the evaporator 16 and the suction accumulator 18 are bypass capillary tubes that connect each component through 23 to form the main circuit of the refrigeration cycle. 24. This bypass capillary tube 24 reduces the pressure of the high-pressure liquid refrigerant to make it into a low-pressure, low-temperature liquid refrigerant and then converts it into a gas, so the refrigerant pipe 19 on the high-pressure side
, 20 are fixed in contact with each other.

電動膨張弁制御手段26はマイクロコンピュータを搭載
した電子制御機器より成り、電過膨張弁14を制御して
減圧・冷凍能力制御のほか、空気調和機停止と同時に全
閉動作し一定時間後、全開動作をおこなわせる。
The electric expansion valve control means 26 is composed of an electronic control device equipped with a microcomputer, and controls the electric overexpansion valve 14 to control pressure reduction and refrigeration capacity, as well as fully close operation at the same time as the air conditioner stops, and fully open after a certain period of time. Make the action take place.

上記のように構成された空気調和機の動作を次に説明す
る。空気調和機を運転すると、圧縮機12から吐出され
た高温、高圧のガス冷媒は、冷媒配管19を通シ凝縮器
13に入シ、室外空気と熱交換され冷却液化される。液
化された冷媒は冷媒配管20を通り、液タンク17を介
して一部少量の冷媒は冷媒配管21よりバイパスキャピ
ラリチューブ24に流入する。減圧し低圧・低温になっ
た液冷媒は高圧側の冷媒配管19 、20に接触固着し
ているため熱を吸収して気体となりサクションアキュー
ムレータ18に吸入される。一方高圧側の冷媒配管19
 、20は熱を放出し冷却される。
The operation of the air conditioner configured as described above will be explained next. When the air conditioner is operated, the high temperature, high pressure gas refrigerant discharged from the compressor 12 passes through the refrigerant pipe 19 and enters the condenser 13, where it exchanges heat with outdoor air and is cooled and liquefied. The liquefied refrigerant passes through the refrigerant pipe 20 , and a small amount of the refrigerant flows into the bypass capillary tube 24 from the refrigerant pipe 21 via the liquid tank 17 . The liquid refrigerant, which has been reduced in pressure to a low pressure and low temperature, is in contact with and fixed to the high pressure side refrigerant pipes 19 and 20, absorbs heat, becomes a gas, and is sucked into the suction accumulator 18. On the other hand, high pressure side refrigerant pipe 19
, 20 emit heat and are cooled.

他の大部分の冷媒は一次減圧器である電動膨張弁14と
二次減圧器15にて減圧され液冷媒の一部が気化し低温
となった後冷媒配管22を通って蒸発器16にて室内空
気と熱交換して液冷媒は蒸発し、熱交換した空気は冷却
されて冷房作用をおこなう。蒸発器16を出た低圧ガス
冷媒は、冷媒配管23を通りバイパスキャピラリチュー
ブ24から流れ出る冷媒と合流後、サクションアキュー
ムレータ18を介して圧縮機12に吸入され循環する。
Most of the other refrigerants are depressurized by the electric expansion valve 14, which is a primary pressure reducer, and the secondary pressure reducer 15, and a part of the liquid refrigerant is vaporized to a low temperature, and then passes through the refrigerant pipe 22 to the evaporator 16. The liquid refrigerant evaporates by exchanging heat with the indoor air, and the air that exchanged heat is cooled to provide air conditioning. The low-pressure gas refrigerant that has exited the evaporator 16 passes through the refrigerant pipe 23 and joins with the refrigerant flowing out of the bypass capillary tube 24, and is then sucked into the compressor 12 via the suction accumulator 18 and circulated.

空気調和機を運転中、電動膨張弁14は室内負荷に適応
した能力制御と冷凍サイクル内が適正な温度・冷媒圧力
となるよう電動膨張弁制御手動5からの制御信号によっ
て開度調節をおこなう。
While the air conditioner is in operation, the electric expansion valve 14 performs capacity control adapted to the indoor load and adjusts its opening according to a control signal from the electric expansion valve control manual 5 so that the temperature and refrigerant pressure in the refrigeration cycle are appropriate.

次に空気調和機を停止した場合の電動膨張弁14の動作
を第2図に示すタイムチャートにもとづき説明する。
Next, the operation of the electric expansion valve 14 when the air conditioner is stopped will be explained based on the time chart shown in FIG.

空気調和機が停止されると、圧縮機12停止の信号を受
けた電動膨張弁制御手段26は電動膨張弁14を即時全
閉するよう制御信号を出力し全閉状態をt秒間保持する
When the air conditioner is stopped, the electric expansion valve control means 26 receives the signal to stop the compressor 12, and outputs a control signal to immediately fully close the electric expansion valve 14, and maintains the fully closed state for t seconds.

を秒間保持している間、高圧側からバイパスキャピラリ
チューブ24を通じ低圧側に流入するガス冷媒により、
高圧側の圧力は低下し、低圧側の圧力は上昇して均圧化
する。前記バイパスキャピラリチューブ24は、高圧側
から流入し減圧・冷却した液冷媒が気化するよう、高圧
側の熱を吸収する配置としているので高圧側の圧力低下
を促進する働きも併せもっている。
is maintained for seconds, the gas refrigerant flowing from the high pressure side to the low pressure side through the bypass capillary tube 24 causes
The pressure on the high pressure side decreases, and the pressure on the low pressure side increases to equalize the pressure. The bypass capillary tube 24 is arranged to absorb heat from the high pressure side so that the liquid refrigerant that flows in from the high pressure side and is depressurized and cooled is vaporized, so it also has the function of promoting pressure reduction on the high pressure side.

を秒経過後、電動膨張弁14は圧縮機起動時の開度不足
による急激な圧力上昇の発生を防ぐため、電動膨張弁制
御手段25からの制御信号により全開動作をおこなう。
After seconds have elapsed, the electric expansion valve 14 is fully opened in response to a control signal from the electric expansion valve control means 25 in order to prevent a sudden pressure rise due to insufficient opening at the time of starting the compressor.

以上のように動作する構成のため圧縮機12は液冷媒を
吸入し液圧縮を起こすことはない。
Because of the configuration that operates as described above, the compressor 12 sucks liquid refrigerant and does not cause liquid compression.

なお、本実施例ではバイパスキャピラリチューブ24の
高圧側接続部は冷媒配管21としたが、冷媒配管2oの
液タンク17側に近接して接続しても作用効果に差異は
生じない。
Note that in this embodiment, the high-pressure side connection portion of the bypass capillary tube 24 is connected to the refrigerant pipe 21, but there is no difference in operation and effect even if it is connected close to the liquid tank 17 side of the refrigerant pipe 2o.

発明の効果 以上のように本発明によれば、空気調和機の運転中は適
正な冷媒圧力、吸入温度にて冷凍サイクル内が安定動作
し、かつ室内負荷に応じて冷房能力制御をおこなうよっ
て開度調節する電力、膨張弁が、機器停止と同時に全閉
状態となり、全閉保持の間に、高圧側からバイパスキャ
ピラリチューブを介して気化冷媒が低圧側に流入し均圧
するため、蒸発器への液冷媒流入は生じず、このため再
起動時にサクションアキュームレータを通じて急激に液
冷媒が大量に戻って圧縮機に吸入され液圧縮を発生する
ことがなくなり、圧縮機の故障が防止され信頼性が向上
するという効果が得られる。
Effects of the Invention As described above, according to the present invention, while the air conditioner is operating, the refrigeration cycle operates stably with appropriate refrigerant pressure and suction temperature, and the cooling capacity is controlled according to the indoor load. The expansion valve is fully closed at the same time as the equipment is stopped, and while it is maintained fully closed, vaporized refrigerant flows from the high pressure side to the low pressure side via the bypass capillary tube and equalizes the pressure, so the evaporator is There is no inflow of liquid refrigerant, so when restarting, a large amount of liquid refrigerant suddenly returns through the suction accumulator and is sucked into the compressor, preventing liquid compression from occurring, preventing compressor failure and improving reliability. This effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における空気調和機の冷凍サ
イクル図、第2図は同空気調和機停止から一定時間経過
するまでの電動膨張弁の開閉動作を示すタイムチャート
、第3図は従来の空気調和機の冷凍サイクル図である。 12・・・・・圧縮機、13・・・・・・凝縮器、14
・・・・・・電動膨張弁、15・・・・・2次減圧器、
16・・・・・・蒸発器、18・・・・・・サクション
アキュームレータ、19〜23・・・・・・冷媒配管、
24・・・・・・バイパスキャピラリチューブ、25・
・・・・・電動膨張弁制御手段。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名− 
              H L81筈イ憬ら    袈S偉駒廿旺づ区 (’4
Fig. 1 is a refrigeration cycle diagram of an air conditioner according to an embodiment of the present invention, Fig. 2 is a time chart showing the opening/closing operation of the electric expansion valve from the time the air conditioner is stopped until a certain period of time has elapsed, and Fig. 3 is a It is a refrigeration cycle diagram of a conventional air conditioner. 12... Compressor, 13... Condenser, 14
...Electric expansion valve, 15...Secondary pressure reducer,
16... Evaporator, 18... Suction accumulator, 19-23... Refrigerant piping,
24... Bypass capillary tube, 25.
...Electric expansion valve control means. Name of agent: Patent attorney Toshio Nakao and 1 other person
H.

Claims (1)

【特許請求の範囲】[Claims]  圧縮機、凝縮器、電動膨張弁、2次減圧器、蒸発器お
よびサクションアキュームレータを備え、これらそれぞ
れの部品を連結する冷媒配管によって冷凍サイクルの主
回路を形成し、前記凝縮器と前記電動膨電動膨張弁とを
連結した冷媒配管と前記蒸発器と前記サクションアキュ
ームレータを連結した冷媒配管とを連結し冷媒を通ずる
バイパスキャピラリチューブを設けるとともに、前記電
動膨張弁を前記圧縮機の停止と同時に全閉動作し、一定
時間後に全開動作をおこなわせる電動膨張弁制御手段を
設けた空気調和機。
The main circuit of the refrigeration cycle includes a compressor, a condenser, an electric expansion valve, a secondary pressure reducer, an evaporator, and a suction accumulator. A bypass capillary tube is provided that connects the refrigerant pipe connecting the expansion valve to the refrigerant pipe that connects the evaporator and the suction accumulator and allows the refrigerant to pass therethrough, and the electric expansion valve is fully closed at the same time as the compressor is stopped. An air conditioner equipped with an electric expansion valve control means that opens the valve fully after a certain period of time.
JP21666386A 1986-09-12 1986-09-12 Air conditioner Pending JPS6373053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21666386A JPS6373053A (en) 1986-09-12 1986-09-12 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21666386A JPS6373053A (en) 1986-09-12 1986-09-12 Air conditioner

Publications (1)

Publication Number Publication Date
JPS6373053A true JPS6373053A (en) 1988-04-02

Family

ID=16691976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21666386A Pending JPS6373053A (en) 1986-09-12 1986-09-12 Air conditioner

Country Status (1)

Country Link
JP (1) JPS6373053A (en)

Similar Documents

Publication Publication Date Title
US10365022B2 (en) Liquid line charge compensator
US9194618B2 (en) Air conditioner
WO2021228020A1 (en) Method for controlling multi-split air conditioning system
CN106403373A (en) Heat pump system, control method and refrigerating unit
WO2021008331A1 (en) Heat pump unit
CN106949657B (en) Air conditioning system with supercooling device and control method thereof
CN115143658B (en) Double-working-condition water chilling unit and control method thereof
CN111043723A (en) Air conditioner and control method thereof
JPWO2019171600A1 (en) Refrigeration cycle equipment
JPS6373053A (en) Air conditioner
JPH0282060A (en) Heat pump type air conditioner
JP3268967B2 (en) Air conditioner
JPH04263742A (en) Refrigerator
JPH04268165A (en) Double-stage compression and freezing cycle device
JPS59208353A (en) Refrigerator
CN118376019A (en) Air conditioner and control method thereof
JPS608291Y2 (en) Refrigeration cycle for air conditioners
JPH1038389A (en) Freezer
JPH03158656A (en) Controlling method for capacity of two-cylinder compressor
JPH06313636A (en) Refrigerating equipment
CN114413406A (en) Air conditioner with heat storage device
JPS5984063A (en) Heat pump type refrigeration cycle
JPH0285660A (en) Heat pump type air conditioner
CN117663506A (en) Air conditioning system and control method thereof
JPH01123965A (en) Air conditioner