JPS637251B2 - - Google Patents

Info

Publication number
JPS637251B2
JPS637251B2 JP670781A JP670781A JPS637251B2 JP S637251 B2 JPS637251 B2 JP S637251B2 JP 670781 A JP670781 A JP 670781A JP 670781 A JP670781 A JP 670781A JP S637251 B2 JPS637251 B2 JP S637251B2
Authority
JP
Japan
Prior art keywords
exhaust gas
filter
amount
egr
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP670781A
Other languages
Japanese (ja)
Other versions
JPS57119121A (en
Inventor
Shigeru Kamya
Shigeru Takagi
Masahiro Tomita
Kyohiko Ooishi
Kyoshi Obata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP670781A priority Critical patent/JPS57119121A/en
Publication of JPS57119121A publication Critical patent/JPS57119121A/en
Publication of JPS637251B2 publication Critical patent/JPS637251B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/21Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system with EGR valves located at or near the connection to the intake system

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

【発明の詳細な説明】 本発明は内燃機関の排気ガス中に含まれる微粒
子を除去し、微粒子が大気中に放出されるのを防
止するための微粒子浄化装置に関するもので、特
にデイーゼル機関に適用して有効な微粒子浄化装
置を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a particulate purification device for removing particulates contained in the exhaust gas of an internal combustion engine and preventing the particulates from being released into the atmosphere, and is particularly applicable to diesel engines. The present invention provides an effective particulate purification device.

デイーゼル機関は熱効率がよいことから、車両
用機関として広く用いられるようになつてきた。
しかし一方においてデイーゼル機関はガソリン機
関に比較して多量の微粒子、いわゆるスモークを
排出する。この微粒子の主成分は、未燃のカーボ
ン粒子であつて、その表面に未燃焼炭化水素、硫
黄酸化物、窒素酸化物等の人体に有害な化合物を
吸着保持していることと、粒子径が数ミクロン以
下と非常に小さいため、大気中に放出された場
合、長期間にわたり空気中に浮遊し、肺の奥深く
まで吸入されやすい。従つてデイーゼル機関搭載
の車両が増加するにつれて、排出微粒子による人
体への悪影響が懸念され始めている。それに国に
よつてはデイーゼル機関搭載車の微粒子排出量を
一定値以下に規制しようとする動きがある。この
ような状況から、微粒子浄化装置の開発が強く望
まれている。
Diesel engines have come to be widely used as vehicle engines because of their good thermal efficiency.
However, on the other hand, diesel engines emit a larger amount of particulates, so-called smoke, than gasoline engines. The main component of these fine particles is unburned carbon particles, which adsorb and hold compounds harmful to the human body such as unburned hydrocarbons, sulfur oxides, and nitrogen oxides on their surfaces, and the particle size is small. Because they are extremely small (less than a few microns), if they are released into the atmosphere, they remain suspended in the air for a long time and are easily inhaled deep into the lungs. Therefore, as the number of vehicles equipped with diesel engines increases, concerns are beginning to be raised about the harmful effects of exhaust particulates on the human body. Additionally, some countries are trying to regulate particulate emissions from vehicles equipped with diesel engines to below a certain level. Under these circumstances, there is a strong desire to develop a particulate purification device.

従来、この種の装置としては、機関の排気系に
耐熱性を有するフイルタ部材、例えば多孔質セラ
ミツクスあるいはメタルフアイバを設置し、該フ
イルタ部材に微粒子を付着捕集する装置が案出さ
れてきた。しかしながら、これ等の装置ではフイ
ルタ表面への粒子の堆積が進むにつれてフイルタ
の通気抵抗が増大し、また粒子のかたまりがフイ
ルタ表面から脱落し始めるため、適当な周期で捕
集された粒子を加熱し焼却除去してフイルタを再
生させる手段がとられている。フイルタ再生のた
めの加熱手段としてはガスバーナ等のバーナが用
いられる。そしてこのバーナにより加熱する場
合、加熱時に加熱温度より低温の排気ガスが流通
すると加熱効率が悪く多量の熱量を必要とする。
そこで熱量を低くするために2組のフイルタを設
置し、その上流側または下流側に流路切換バルブ
を設け、フイルタ再生時には加熱側のフイルタへ
の排気ガスの流入を阻止し、他のフイルタへ排気
ガスを流入させ、これを交互に行なう手段が案出
された。しかしながらこの手段ではフイルタを2
組設置するため装置全体が非常に大型化するとい
う欠点を有している。特に、排気ガスの一部を吸
気系へ還流させて排気ガス中の窒素酸化物
(NOX)を低減せしめる排気ガス再循環装置を備
えた内燃機関では、再循環、いわゆるEGRを行
なうことによつて通常の2倍程度に排気ガス中の
微粒子が増加することが知られている。従つて
EGR装置を備えた機関では大きなフイルタ容量
を必要とし、このフイルタを2組設けるとなると
増々装置は大型化する。
Conventionally, as this type of device, a device has been devised in which a heat-resistant filter member, such as a porous ceramic or metal fiber, is installed in the exhaust system of an engine, and fine particles are attached to and collected on the filter member. However, in these devices, as particles accumulate on the filter surface, the ventilation resistance of the filter increases and particles start to fall off the filter surface, so it is necessary to heat the collected particles at appropriate intervals. Measures have been taken to regenerate the filter by incinerating it. A burner such as a gas burner is used as a heating means for filter regeneration. When heating with this burner, if exhaust gas having a temperature lower than the heating temperature flows during heating, the heating efficiency is poor and a large amount of heat is required.
Therefore, in order to reduce the amount of heat, two sets of filters are installed, and a flow path switching valve is installed on the upstream or downstream side of the filters. During filter regeneration, exhaust gas is prevented from flowing into the heating filter, and the exhaust gas is transferred to the other filters. Means were devised to allow the exhaust gas to flow in and to do this alternately. However, this method uses two filters.
The disadvantage is that the entire device becomes very large because it is installed in sets. In particular, internal combustion engines equipped with exhaust gas recirculation devices that recirculate part of the exhaust gas back into the intake system to reduce nitrogen oxides ( NO It is known that the amount of fine particles in the exhaust gas increases to about twice the normal amount. accordingly
An engine equipped with an EGR device requires a large filter capacity, and if two sets of filters are provided, the device becomes larger.

そこで本発明はEGR装置を備えた内燃機関に
おいて、コンパクトで車両搭載性がよく微粒子排
出量を低くし得る装置を提供することを目的とす
るもので、本発明の微粒子浄化装置は、排気管に
設置したフイルタと、該フイルタを通過せずに排
気ガスを排出するバイパス流路と、フイルタおよ
びパイパス流路へ選択的に排気ガスの流通を切換
える切換バルブと、フイルタにより捕集された微
粒子を燃焼せしめるバーナと、切換バルブ、バー
ナおよびEGR量を調節する調節バルブ(EGRバ
ルブ)等の制御をする制御機構を備えており、フ
イルタ再生時には、排気ガスをバイパス流路へ流
通させるとともにバーナを作動せしめ、フイルタ
を加熱してフイルタ上の微粒子を焼却除去し、か
つEGR量を通常時よりも低くすることにより
NOXの排出量をほとんど増加せしめることなく
微粒子排出量を低減せしめるものである。
Therefore, it is an object of the present invention to provide a device that is compact, easy to install in a vehicle, and can reduce particulate emissions in an internal combustion engine equipped with an EGR device. The installed filter, a bypass flow path that discharges exhaust gas without passing through the filter, a switching valve that selectively switches the flow of exhaust gas to the filter and bypass flow path, and the particulates collected by the filter are combusted. It is equipped with a control mechanism that controls the burner, switching valve, burner, and control valve (EGR valve) that adjusts the amount of EGR.When regenerating the filter, the exhaust gas is circulated to the bypass flow path and the burner is activated. By heating the filter to incinerate and remove particulates on the filter, and lowering the EGR amount than normal.
This reduces particulate emissions while hardly increasing NOx emissions.

以下、本発明を図示の実施例により説明する。 Hereinafter, the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例を示す構成図で、1
は車両のデイーゼルエンジン本体であつて、空気
がエアクリーナ2、吸気管3、吸気マニホールド
4を経て吸入されるとともに燃料噴射ポンプ5よ
り燃料が噴射される。排気ガスは排気マニホール
ド6を経て排気管7より排出される。
FIG. 1 is a configuration diagram showing one embodiment of the present invention.
is a diesel engine body of a vehicle, in which air is taken in through an air cleaner 2, an intake pipe 3, and an intake manifold 4, and fuel is injected from a fuel injection pump 5. Exhaust gas passes through an exhaust manifold 6 and is discharged from an exhaust pipe 7.

排気管7は第1の排気管7aと第2の排気管7
bに分岐し再び合流するように構成してあり、第
1の排気管7aには排気ガス中の微粒子を捕集す
るためのフイルタ部材8が設置してある。フイル
タ部材8は例えば多孔質のセラミツクス、メタル
フアイバー等よりなる。第1および第2の排気管
7a,7bの分岐部には排気ガスの流路切換バル
ブ9が設けてある。また、上記フイルタ部材8の
上流にはこれに近接してバーナ10が設けてあ
る。このバーナ10では燃料供給装置および空気
供給装置(いずれも図示せず)よりそれぞれ燃料
および空気が供給されて混合気がつくられ、燃焼
される。
The exhaust pipe 7 includes a first exhaust pipe 7a and a second exhaust pipe 7.
A filter member 8 for collecting particulates in the exhaust gas is installed in the first exhaust pipe 7a. The filter member 8 is made of, for example, porous ceramics, metal fiber, or the like. An exhaust gas flow path switching valve 9 is provided at the branch portion of the first and second exhaust pipes 7a, 7b. Further, a burner 10 is provided upstream of and close to the filter member 8. In this burner 10, fuel and air are supplied from a fuel supply device and an air supply device (neither of which are shown), and a mixture is prepared and combusted.

上記第1および第2の排気管7a,7bの合流
部には排気ガス再循環用の管路11(以下、
EGRパイプという)の一端が接続され、他端は
上記吸気管3に接続されている。そしてEGRパ
イプ11の途中には吸気管3へ還流される排気ガ
スの流量を調節するバルブ12(以下、EGRバ
ルブという)が設けてある。
A pipe line 11 for exhaust gas recirculation (hereinafter referred to as
One end (referred to as an EGR pipe) is connected to the EGR pipe, and the other end is connected to the intake pipe 3. A valve 12 (hereinafter referred to as an EGR valve) is provided in the middle of the EGR pipe 11 to adjust the flow rate of exhaust gas returned to the intake pipe 3.

13は制御装置であつて、上記切換バルブ9を
駆動するアクチユエータ14、EGRバルブ12、
バーナ10等を制御する作用をなす。吸気マニホ
ールド4には真空ポンプ15が設置してあり、こ
れはEGRバルブ12を作動させる負圧を発生す
る。上記燃料噴射ポンプ5は噴射量調整ラツク
(図示せず)を有しており、ラツク位置を示す電
気信号が伝送線16により制御装置13に送られ
る。本体1には機関の回転数を検出する装置17
が設けてあり、回転速度が電気信号により制御装
置13に送られる。上記真空ポンプ15とEGR
バルブ12とを連通するパルプ18には真空ポン
プ15からEGRバルブ12へ供給される負圧を
調整する電磁バルブ19が設けてあり、この電磁
バルブ19は制御装置13から発信されるパルス
信号により開閉される。上記パイプ18には一端
が大気に連通する絞り流路20が設けてあり、
EGRバルブ12の負圧室12aの負圧を除々に
逃す作用をなす。
13 is a control device, which includes an actuator 14 that drives the switching valve 9, an EGR valve 12,
It acts to control the burner 10 etc. A vacuum pump 15 is installed in the intake manifold 4 and generates negative pressure to operate the EGR valve 12. The fuel injection pump 5 has an injection amount adjustment rack (not shown), and an electric signal indicating the position of the rack is sent to the control device 13 via a transmission line 16. The main body 1 includes a device 17 for detecting the rotation speed of the engine.
is provided, and the rotational speed is sent to the control device 13 by an electrical signal. The above vacuum pump 15 and EGR
The pulp 18 communicating with the valve 12 is provided with an electromagnetic valve 19 that adjusts the negative pressure supplied from the vacuum pump 15 to the EGR valve 12, and this electromagnetic valve 19 is opened and closed by a pulse signal sent from the control device 13. be done. The pipe 18 is provided with a throttle channel 20 whose one end communicates with the atmosphere,
It functions to gradually release the negative pressure in the negative pressure chamber 12a of the EGR valve 12.

次に、本実施例の作動について説明すれば、通
常時、切換バルブ9は第1の排気管7aを開路し
ており、排気ガス全量がフイルタ部材8を流通
し、排気ガス中の微粒子が捕集される。また、排
気ガスの一部はEGRパイプ11よりEGRバルブ
12にて調量されて吸気管3に再循環し、これに
よりNOX排出が低減される。
Next, to explain the operation of this embodiment, normally, the switching valve 9 opens the first exhaust pipe 7a, the entire amount of exhaust gas flows through the filter member 8, and particulates in the exhaust gas are captured. collected. Furthermore, a portion of the exhaust gas is metered by the EGR valve 12 from the EGR pipe 11 and recirculated to the intake pipe 3, thereby reducing NOx emissions.

車両の走行距離あるいは燃料消費量が所定値に
達すると、制御装置13からの信号により切換バ
ルブ9が回動してバイパス流路をなす第2の排気
管7bが開路され排気ガスが流入する。これと同
時にバーナ10が燃焼を開始し、フイルタ部材8
が加熱され、捕集されている微粒子は焼却除去さ
れる。
When the travel distance or fuel consumption of the vehicle reaches a predetermined value, the switching valve 9 is rotated in response to a signal from the control device 13, and the second exhaust pipe 7b forming a bypass flow path is opened, allowing exhaust gas to flow in. At the same time, the burner 10 starts combustion, and the filter member 8
is heated, and the collected particles are incinerated and removed.

ところで、微粒子の焼却除去によるフイルタ再
生中は排気ガス中の微粒子は除去されることなく
排気ガスとともに第2の排気管7bより排出され
ることになる。特にEGR装置を備えたデイーゼ
ル内燃機関では、これを備えていないものに比し
て2倍程度の微粒子排出量となる。そこでフイル
タ再生中における微粒子排出量抑制のために排気
ガス再循環量(以下EGR量という)を低下させ
る制御について説明する。
By the way, during filter regeneration by incinerating and removing particulates, the particulates in the exhaust gas are not removed and are discharged from the second exhaust pipe 7b together with the exhaust gas. In particular, diesel internal combustion engines equipped with an EGR device emit about twice as much particulate matter as those without. Therefore, control for reducing the amount of exhaust gas recirculation (hereinafter referred to as EGR amount) in order to suppress the amount of particulate emissions during filter regeneration will be explained.

デイーゼル内燃機関のEGR量制御手段として
は、通常、マツプ式制御が用いられている。マツ
プ式制御は、機関の回転数、ならびに負荷すなわ
ち噴射ポンプのラツク位置の2つをパラメータと
して、これ等のあらゆる組合せに対するEGRバ
ルブの開弁度を予め定めてこれを電気的に制御装
置に記憶させ、実際の走行時にはエンジン回転
数、ラツク位置を常時検出し、これ等により決ま
る開弁度にEGR弁を開閉制御するものである。
Map type control is usually used as an EGR amount control means for diesel internal combustion engines. Map-type control uses two parameters: the engine speed and the load, i.e., the easy position of the injection pump, to predetermine the opening degree of the EGR valve for all combinations of these parameters, and stores this electrically in the control device. During actual driving, the engine speed and rack position are constantly detected, and the EGR valve is controlled to open and close to the degree of opening determined by these factors.

本発明の上記実施例においては、EGRバルブ
開度は、制御装置13より電磁バルブ19に周期
的に送られる電気パルスのパルス幅を調整するこ
とにより制御される。すなわち、パルス幅が長く
なればEGRバルブ負圧室12aの負圧が高くな
りバルブのリフト量が増大し、EGR量が増大す
る。従つて、エンジン回転数とラツク位置に対応
する電気パルス幅を予め電気的に記憶させること
により適正なEGR量の制御が可能となる。以下
の説明において、上記のエンジン状態と電気パル
ス幅の関係をマツプと称する。
In the above embodiment of the present invention, the EGR valve opening degree is controlled by adjusting the pulse width of the electric pulse periodically sent from the control device 13 to the electromagnetic valve 19. That is, as the pulse width becomes longer, the negative pressure in the EGR valve negative pressure chamber 12a becomes higher, the lift amount of the valve increases, and the EGR amount increases. Therefore, by electrically storing the electric pulse width corresponding to the engine speed and the rack position in advance, it becomes possible to control the EGR amount appropriately. In the following explanation, the relationship between the engine state and the electrical pulse width will be referred to as a map.

フイルタ再生時にEGR量を低下させるには、
通常状態でのEGR量を定めるマツプAと、EGR
量を低減させるマツプBを用意し、フイルタ再生
時にはマツプBにて制御を行なうことにより
EGR量を適正に低下せしめる。必要によつては
フイルタ再生時にEGRを行なわない場合もあり
得る。なお、フイルタ再生時にEGR量を減少さ
せると微粒子の排出量は低下するが、NOXの排
出量は増加する。EGR量の減少を具体的にどの
程度にするかは個々のエンジンの特性により決め
られる。
To reduce the EGR amount during filter regeneration,
Map A that determines the amount of EGR in normal conditions and EGR
By preparing map B that reduces the amount and controlling with map B during filter regeneration,
Appropriately lower the EGR amount. If necessary, EGR may not be performed during filter regeneration. Note that if the EGR amount is reduced during filter regeneration, the amount of particulate emissions will decrease, but the amount of NOx emissions will increase. The specific degree to which the amount of EGR is reduced is determined by the characteristics of each individual engine.

第2図は装置の作動を示すタイムチヤートであ
つて、排気ガスの流れがフイルタ部材8を設けた
第1の排気管7aからバイパス流路の第2の排気
管7bに切換えられると同時にバーナ10の燃焼
作用がなされ、またEGR量制御がマツプAによ
る制御からマツプBによる制御に切換えられる。
そしてバーナ10はフイルタ部材8に捕集された
微粒子を燃焼除去するに必要な熱量を供給した後
その作動を停止し、上記熱量により微粒子が燃焼
除去されるに必要な時間経過時に排気ガスの流路
がフイルタ部材8側に切換えられるとともに
EGR量制御はマツプBからマツプAに切換えら
れる。
FIG. 2 is a time chart showing the operation of the device, in which the flow of exhaust gas is switched from the first exhaust pipe 7a provided with the filter member 8 to the second exhaust pipe 7b of the bypass passage, and at the same time the burner 10 The combustion action is performed, and the EGR amount control is switched from control by MAP A to control by MAP B.
Then, the burner 10 stops its operation after supplying the amount of heat necessary to burn and remove the particulates collected by the filter member 8, and when the time required for the amount of heat to burn and remove the particulates has elapsed, the exhaust gas flow is changed. As the path is switched to the filter member 8 side,
EGR amount control is switched from map B to map A.

第3図はEGR量とNOX排出量ならびに微粒子
排出量の関係を示すもので、通常のEGR、すな
わちマツプAによるEGR量の制御を行なつた状
態で排気ガスを上記第2の排気管7bによりバイ
パスさせると多量の微粒子が黒煙となつて排出さ
れるのであるが、フイルタ再生時にマツプBによ
る制御、特に図示の領域Cのような範囲に切換え
るとNOX排出量を大きく増加させることなく、
微粒子排出量を低減することができる。ここで、
NOX排出量が全体としてどの程度増加するかは
次の見積りで推定することができる。
Figure 3 shows the relationship between the EGR amount, NOx emission amount, and particulate emission amount, and shows the relationship between the EGR amount, NOx emission amount, and particulate emission amount. If bypassed, a large amount of fine particles will be emitted as black smoke, but if the map B is used to control the filter during filter regeneration, especially switching to the area C shown in the diagram, NOx emissions will not increase significantly. ,
The amount of particulate emissions can be reduced. here,
The overall increase in NOx emissions can be estimated using the following estimate.

本発明による微粒子浄化装置はほぼ200Km〜300
Km走行ごとに、例えば毎時60Kmで3時間〜5時間
走行ごとにフイルタ再生作動を行ない再生時間は
約3分〜4分である。そしてフイルタ再生時に
NOXの排出量が通常時の2倍となつたと仮定し
ても総排出量としてのNOX排出量の増加は1.3%
〜2.2%程度であつて、フイルタ再生作動の環境
に与える影響はほとんど無視し得る程度におさえ
ることができる。また通常時のNOX排出量を
EGR量の調整により2%程度低減すれば、フイ
ルタ再生時のNOX排出量増大分を総排出量とし
てはほぼ完全になくすることができる。
The particulate purification device according to the present invention can be used for approximately 200Km to 300Km.
The filter is regenerated every time the vehicle travels for Km, for example every 3 to 5 hours at 60 Km/hour, and the regeneration time is approximately 3 to 4 minutes. And when playing the filter
Even if we assume that the amount of NO
It is approximately 2.2%, and the influence of filter regeneration operation on the environment can be suppressed to an almost negligible level. In addition, the amount of NOx emissions under normal conditions
If the EGR amount is reduced by about 2% by adjusting the EGR amount, the increase in NOx emissions during filter regeneration can be almost completely eliminated as a total amount of emissions.

以上述べたように本発明においては、フイルタ
再生時には排気ガスをフイルタ部材を通さずに排
出する。このためフイルタ再生時間は可及的に短
かいことが微粒子排出量を少なくする上で好まし
い。そこで本発明は更に短時間でフイルタ再生を
可能にする手段を提供する。
As described above, in the present invention, exhaust gas is discharged without passing through the filter member during filter regeneration. For this reason, it is preferable that the filter regeneration time be as short as possible in order to reduce the amount of fine particles discharged. Therefore, the present invention provides a means that enables filter regeneration in even shorter time.

フイルタ部材に捕集される微粒子は大部分がカ
ーボン微粒子であるために、約600℃の加熱でこ
れを焼却除去できる。一方、バーナの燃焼ガス温
度はバーナの出口で約1400℃、フイルタ入口部で
約1000℃程度であり、必要な加熱温度より可成り
高い。また、バーナ燃焼ガスの流量は発熱量毎時
3000キロカロリーの場合、常温換算で毎分約65
、毎時10000キロカロリーの場合、同様に毎分
220程度である。このようにバーナ燃焼ガスは
必要なフイルタ加熱温度より高く、また流量は少
ない。その結果、フイルタ部材の下流側まで加熱
するには可成りの時間を要し、フイルタ温度は
800℃〜1000℃といつた必要以上の高い温度とな
る。
Since most of the particles collected by the filter member are carbon particles, they can be incinerated and removed by heating at about 600°C. On the other hand, the combustion gas temperature of the burner is about 1400°C at the burner outlet and about 1000°C at the filter inlet, which is considerably higher than the necessary heating temperature. In addition, the flow rate of burner combustion gas is the calorific value per hour.
In the case of 3000 kilocalories, it is approximately 65 per minute at room temperature.
, for 10000 kcal per hour, similarly per minute
It is about 220. Thus, the burner combustion gas is higher than the required filter heating temperature and the flow rate is low. As a result, it takes a considerable amount of time to heat up the downstream side of the filter member, and the filter temperature decreases.
The temperature is higher than necessary, reaching 800℃ to 1000℃.

そこで本発明は、バーナの燃焼ガスに排気ガス
を適当量混入せしめてフイルタ部材に流れるバー
ナ燃焼ガスの温度を低下させ、かつ流量を増加さ
せることにより、フイルタ部材を必要以上に加熱
することなく、かつ迅速にフイルタ部材を再生せ
しめるものである。
Therefore, the present invention mixes an appropriate amount of exhaust gas into the burner combustion gas to lower the temperature of the burner combustion gas flowing to the filter member and increase the flow rate, thereby preventing the filter member from being heated more than necessary. Moreover, the filter member can be regenerated quickly.

この排気ガス混入手段の実施例を第4図および
第5図に示す。第4図の実施例では、上記第1お
よび第2の排気管7a,7bへのガス流路の切換
えをなす切換バルブ9に小径の多数の穴9aが設
けてあり、この穴によりフイルタ再生時における
排気ガスの供給を行なう。穴径は0.5mm〜3.0mm程
度でよい。第5図の実施例では、切換バルブ9と
排気管7の一部をなす切換バルブハウジングとの
間に間隙21が設けてある。しかして上記の穴9
aあるいは間隙21よりフイルタ再生時に排気ガ
スの適当量がバーナ燃焼ガスに補給されて燃焼ガ
ス量が増加し、フイルタ部材全体を600℃以上に
迅速に加熱でき、フイルタ再生時間を短縮するこ
とができる。
An embodiment of this exhaust gas mixing means is shown in FIGS. 4 and 5. In the embodiment shown in FIG. 4, a switching valve 9 that switches the gas flow path to the first and second exhaust pipes 7a and 7b is provided with a large number of small diameter holes 9a, and these holes are used during filter regeneration. supply of exhaust gas. The hole diameter may be approximately 0.5 mm to 3.0 mm. In the embodiment shown in FIG. 5, a gap 21 is provided between the switching valve 9 and the switching valve housing forming part of the exhaust pipe 7. In the embodiment shown in FIG. However, the hole 9 above
An appropriate amount of exhaust gas is replenished into the burner combustion gas through a or the gap 21 during filter regeneration, the amount of combustion gas increases, the entire filter member can be quickly heated to 600°C or more, and the filter regeneration time can be shortened. .

次に本発明の微粒子浄化装置を内燃機関の排気
マニホールドに組込んだ実施例を説明する。
Next, an embodiment in which the particulate purification device of the present invention is incorporated into an exhaust manifold of an internal combustion engine will be described.

第6図および第7図の実施例において、収納容
器22の上部には機関の各気筒に対応する排気ガ
ス入口22a,22b,22c,22dが形成さ
れている。容器内には隔壁23により上下に仕切
られており、上室は排気集合部を形成する。隔壁
23には上下の両室を連通する連絡孔24が設け
てある。下室にはフイルタ部材8a,8bが並設
してあり、フイルタ部材8aと容器内壁との間に
は空間25が形成され、フイルタ部材8bと容器
壁との間には上記連絡孔24と連通するガス流路
切換部をなす空間26が形成されており、上記空
間25は図示しない流路を介し開口27によりガ
ス流路切換部26と連通している。またガス流路
切換部26の底部にはバーナ10が設置してお
り、また側壁には排気管7が接続されている。排
気管7は分岐部28においてEGRパイプ(図示
せず)に接続される。上記ガス流路切換部26に
は上記連絡孔24をフイルタ部材8a,8b側ま
たは排気管7側のいずれかへ選択的に連通せしめ
る作動をなす切換バルブ9が設置してある。
In the embodiments shown in FIGS. 6 and 7, exhaust gas inlets 22a, 22b, 22c, and 22d are formed in the upper part of the storage container 22, corresponding to each cylinder of the engine. The inside of the container is partitioned into upper and lower parts by a partition wall 23, and the upper chamber forms an exhaust collection part. A communication hole 24 is provided in the partition wall 23 to communicate the upper and lower chambers. Filter members 8a and 8b are arranged side by side in the lower chamber, a space 25 is formed between the filter member 8a and the inner wall of the container, and a space 25 is formed between the filter member 8b and the container wall to communicate with the communication hole 24. A space 26 forming a gas flow path switching section is formed, and the space 25 communicates with the gas flow path switching section 26 through an opening 27 via a flow path (not shown). Further, a burner 10 is installed at the bottom of the gas flow path switching section 26, and an exhaust pipe 7 is connected to the side wall. The exhaust pipe 7 is connected to an EGR pipe (not shown) at a branch 28. A switching valve 9 is installed in the gas flow switching section 26 and operates to selectively communicate the communicating hole 24 to either the filter members 8a, 8b side or the exhaust pipe 7 side.

第6図はフイルタ部材に排気ガスを流す通常時
の状態を示すもので、排気ガスは白い矢印で示す
ように連絡孔24からフイルタ部材8a,8bを
通り、該部材により微粒子が捕集された排気ガス
は図示しない流路および開口27を経て排気管7
より排出される。またその一部はEGR量装置へ
循環する。
Figure 6 shows the normal state in which exhaust gas flows through the filter member, and the exhaust gas passes through the filter members 8a and 8b from the communication hole 24 as shown by the white arrow, and particulates are collected by the member. The exhaust gas passes through a flow path and an opening 27 (not shown) to the exhaust pipe 7.
more excreted. A part of it is also circulated to the EGR quantity device.

第7図はフイルタ再生時の状態を示すもので、
切換バルブ9が切換えられて排気ガスは連絡孔2
4から流路切換部26を経て排気管7へと流れ
る。このとき、バーナ10が作動し、燃焼ガスを
供給してフイルタ部材8a,8bを加熱し、これ
によりフイルタ部材8a,8bに捕集されている
微粒子は燃焼除去される。なお、このフイルタ再
生時にはEGR量制御はマツプBに切換えられる。
Figure 7 shows the state during filter playback.
The switching valve 9 is switched and the exhaust gas is transferred to the communication hole 2.
4, flows through the flow path switching section 26 to the exhaust pipe 7. At this time, the burner 10 is activated to supply combustion gas to heat the filter members 8a, 8b, thereby burning and removing the particulates collected by the filter members 8a, 8b. Note that during this filter regeneration, the EGR amount control is switched to map B.

次に第8図は別の実施例を示すもので、上記第
6図、第7図に示す実施例では、EGRパイプへ
の排気ガスの取出口28は、排気ガスとフイルタ
部材8a,8bを加熱したバーナ燃焼ガスとが合
流する部分に設けてあるのに対して、本実施例で
は、フイルタ部材8a,8bを加熱したバーナ燃
焼ガスの出口部たる空間25にEGRパイプ11
が接続されている。他の構造は上記実施例と実質
的に同一である。
Next, FIG. 8 shows another embodiment, and in the embodiment shown in FIGS. 6 and 7, the exhaust gas outlet 28 to the EGR pipe connects the exhaust gas with the filter members 8a and 8b. In this embodiment, the EGR pipe 11 is provided at the part where the heated burner combustion gas joins, whereas in this embodiment, the EGR pipe 11 is provided in the space 25 which is the outlet of the burner combustion gas that heated the filter members 8a and 8b.
is connected. The other structure is substantially the same as the above embodiment.

すなわち、本実施例はフイルタ再生時のEGR
ガスとしてその大部分がバーナ燃焼ガスを用いる
ことができる。バーナ燃焼ガスは、機関排気ガス
に比べガス中の二酸化炭素濃度が高く、EGRガ
スとして用いるときは少量で効果的にNOXを低
減することができる。また同時にEGRガスが少
量ですむので微粒子排出量の増加も少くすること
ができる効果もある。
In other words, in this embodiment, EGR during filter regeneration is
The gas can be mostly burner combustion gas. Burner combustion gas has a higher concentration of carbon dioxide than engine exhaust gas, and when used as EGR gas, NOx can be effectively reduced with a small amount. At the same time, since only a small amount of EGR gas is required, the increase in particulate emissions can also be reduced.

以上説明したように、本発明においては、フイ
ルタ部材に捕集された微粒子を燃焼除去するフイ
ルタ再生時に、EGR量を通常時よりも少く制御
することによりフイルタ再生時の微粒子排出量の
増加を回壁することができる。またフイルタ再生
時にバーナ燃焼ガスに適当量の排気ガスを補給す
ることによりフイルタ再生制御を短縮することが
できる。またEGRガスとしてバーナ燃焼ガスを
用いることにより、微粒子排出量およびNOX
出量の大幅な増大を回避することができる。
As explained above, in the present invention, the increase in the amount of particulate emissions during filter regeneration is avoided by controlling the EGR amount to be smaller than normal during filter regeneration to burn and remove particulates collected on the filter member. Can be walled. Furthermore, by replenishing the burner combustion gas with an appropriate amount of exhaust gas during filter regeneration, filter regeneration control can be shortened. Furthermore, by using burner combustion gas as the EGR gas, a significant increase in particulate emissions and NOx emissions can be avoided.

しかして本発明は内燃機関、特にデイーゼル内
燃機関における黒煙排出防止に極めて有効かつ実
用的な手段を提供するものである。
Therefore, the present invention provides extremely effective and practical means for preventing black smoke emissions in internal combustion engines, particularly diesel internal combustion engines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による微粒子浄化装置を用いた
内燃機関の全体構成図、第2図は装置作動のタイ
ムチヤートを示す図、第3図はEGR量と微粒子
排出量およびNOX排出量の関係を示す図、第4
図および第5図はそれぞれ本発明装置のガス流路
切換バルブの実施例を示す図、第6図ないし第8
図はそれぞれ本発明装置実施例の要部を示す断面
図である。 1……内燃機関本体、6……排気マニホール
ド、7……排気管、7b……バイパス流路、8,
8a,8b……フイルタ部材、9……ガス流路切
換バルブ、10……バーナ、11……排気ガス再
循環パイプ、13……装置作動制御装置。
Fig. 1 is an overall configuration diagram of an internal combustion engine using the particulate purification device according to the present invention, Fig. 2 is a diagram showing a time chart of the device operation, and Fig. 3 is the relationship between EGR amount, particulate emissions, and NO x emissions. Figure 4 showing
5 and 5 are views showing an embodiment of the gas flow path switching valve of the device of the present invention, and FIGS. 6 to 8 respectively.
Each of the figures is a sectional view showing a main part of an embodiment of the device of the present invention. 1... Internal combustion engine main body, 6... Exhaust manifold, 7... Exhaust pipe, 7b... Bypass flow path, 8,
8a, 8b...Filter member, 9...Gas flow path switching valve, 10...Burner, 11...Exhaust gas recirculation pipe, 13...Device operation control device.

Claims (1)

【特許請求の範囲】 1 排気ガスの一部を吸気系へ還流せしめる排気
ガス再循環装置を備え、排気管には排気ガス中の
カーボンを主成分とする微粒子を捕集する微粒子
捕集フイルタと、該フイルタに捕集された微粒子
を加熱して燃焼除去しフイルタを再生させるバー
ナを設置した内燃機関のカーボン微粒子浄化装置
において、排気管に上記フイルタを通過せずに排
気ガスを排出するバイパス流路を設けるととも
に、上記フイルタの上流側および下流側のいずれ
かに排気ガスの経路を切換えるための流路切換バ
ルブを設け、通常時には排気ガスをフイルタに流
通させフイルタによる微粒子捕集量が所定値に達
したときには排気ガス流路を上記バイパス流路に
切換えるべく切換バルブを作動させるとともに上
記バーナを作動させ、かつ排気ガス再循環量を通
常時よりも少量に制御する制御機構を具備せしめ
たことを特徴とする内燃機関のカボン微粒子浄化
装置。 2 上記流路切換バルブに微少量の排気ガスが流
通する間隙を設けた特許請求の範囲第1項記載の
内燃機関のカーボン微粒子浄化装置。
[Claims] 1. An exhaust gas recirculation device that recirculates part of the exhaust gas to the intake system is provided, and the exhaust pipe is equipped with a particulate collection filter that collects particulates whose main component is carbon in the exhaust gas. In a carbon particulate purification device for an internal combustion engine equipped with a burner that heats and burns off the particulates collected by the filter and regenerates the filter, a bypass flow is provided in which exhaust gas is discharged into the exhaust pipe without passing through the filter. In addition to providing a passage, a passage switching valve is provided either upstream or downstream of the filter to switch the route of the exhaust gas, and under normal conditions, the exhaust gas flows through the filter and the amount of particulates collected by the filter is set to a predetermined value. A control mechanism is provided that operates a switching valve to switch the exhaust gas flow path to the bypass flow path and operates the burner, and controls the amount of exhaust gas recirculation to a smaller amount than normal. A Kabon particulate purification device for internal combustion engines, which is characterized by: 2. The carbon particulate purification device for an internal combustion engine according to claim 1, wherein the flow path switching valve is provided with a gap through which a minute amount of exhaust gas flows.
JP670781A 1981-01-19 1981-01-19 Carbon fine particle purifier of internal combustion engine Granted JPS57119121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP670781A JPS57119121A (en) 1981-01-19 1981-01-19 Carbon fine particle purifier of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP670781A JPS57119121A (en) 1981-01-19 1981-01-19 Carbon fine particle purifier of internal combustion engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP62047300A Division JPS639619A (en) 1987-03-02 1987-03-02 Purifier of fine carbon particle for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS57119121A JPS57119121A (en) 1982-07-24
JPS637251B2 true JPS637251B2 (en) 1988-02-16

Family

ID=11645766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP670781A Granted JPS57119121A (en) 1981-01-19 1981-01-19 Carbon fine particle purifier of internal combustion engine

Country Status (1)

Country Link
JP (1) JPS57119121A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050209A (en) * 1983-08-29 1985-03-19 Mitsubishi Motors Corp Exhaust gas recirculation device for diesel engine
JPH0617644B2 (en) * 1984-03-02 1994-03-09 三菱自動車工業株式会社 Diesel patty quilt collecting member protection device
JPH0324819Y2 (en) * 1985-02-22 1991-05-30
JPH0424096Y2 (en) * 1985-10-30 1992-06-05

Also Published As

Publication number Publication date
JPS57119121A (en) 1982-07-24

Similar Documents

Publication Publication Date Title
JP3593305B2 (en) Exhaust system for internal combustion engine
EP1211392B1 (en) Exhaust cleaning device for internal combustion engines
JP2003003830A (en) Exhaust emission control device for diesel engine
JP3714252B2 (en) Exhaust gas purification device for internal combustion engine
JP2005299480A (en) Engine exhaust emission control device
WO2005028824A1 (en) Exhaust gas-purifying device
KR102540442B1 (en) System of forcibly regenerating gasoline particulate filter
JPS6239246B2 (en)
GB2408470A (en) An engine exhaust system
US6837043B2 (en) Device for purifying the exhaust gas of an internal combustion engine
JPS637251B2 (en)
JPH0431613A (en) Exhaust treatment system for internal combustion engine
JPS59173515A (en) Diesel particulate filter regenerating device
JPH0598932A (en) Exhaust emission control device for internal combustion engine
JPS62162762A (en) Exhaust gas purifier for diesel engine
JPS6132122Y2 (en)
KR20030003599A (en) Regeneration Method in Particulate Exhaust Reduction Device and Regeneration Device Using the Same
JPS6126573Y2 (en)
JP3632633B2 (en) Exhaust gas purification device for internal combustion engine
JPH037009B2 (en)
JP2926769B2 (en) Exhaust gas purification device for internal combustion engine
JPH05163929A (en) Exhaust particulate emission control device
JP4581287B2 (en) Exhaust gas purification device for internal combustion engine
JPS639619A (en) Purifier of fine carbon particle for internal combustion engine
JPH0543852B2 (en)