JPS6372065A - Nonaqueous solvent secondary battery - Google Patents

Nonaqueous solvent secondary battery

Info

Publication number
JPS6372065A
JPS6372065A JP61213990A JP21399086A JPS6372065A JP S6372065 A JPS6372065 A JP S6372065A JP 61213990 A JP61213990 A JP 61213990A JP 21399086 A JP21399086 A JP 21399086A JP S6372065 A JPS6372065 A JP S6372065A
Authority
JP
Japan
Prior art keywords
positive electrode
positive
active material
material powder
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61213990A
Other languages
Japanese (ja)
Inventor
Kuniaki Inada
稲田 圀昭
Katsuharu Ikeda
克治 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP61213990A priority Critical patent/JPS6372065A/en
Publication of JPS6372065A publication Critical patent/JPS6372065A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a battery having long charge-discharge cycle life and large discharge capacity by preparing a positive mix by bonding positive active material powder comprising chalcogen compound and conductive material powder with a binder having three dimensional net structure, and sticking the positive mix on a core to form a positive electrode. CONSTITUTION:Positive active material powder mainly comprising amorphous metal chalcogen compound is mixed with conductive material powder such as graphite. A fluorine resin binder, which forms a three dimensional net in molding process, such as polytetrafluoroethylene, chlorotrifluoroethylene, and tetrafluoroethylene-hexafluoroethylene copolymer is added to the mixture, and they are kneaded, then molded in a sheet by a roller to form a positive mix. The positive mix is sticked on a metal core to form a positive electrode 2. A negative active material 4 comprising lithium foil is placed on the positive electrode 2 through a separator 3. A negative can 5 is fitted to a positive can through an insulating gasket 6 to form a nonaqueous solvent secondary battery.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は改良された正極を具備する非水溶媒二次電池に
関し、更に詳しくは、重負荷時の充放電サイクル寿命が
長く、放電容量も大きく、したがって使用時における経
済性も高い非水溶媒二次電池に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a non-aqueous solvent secondary battery equipped with an improved positive electrode, and more specifically, it has a long charge/discharge cycle life under heavy load and a low discharge capacity. The present invention relates to a nonaqueous solvent secondary battery that is large in size and therefore highly economical in use.

(従来技術) 近年、リチウムを負極活物質とする非水溶媒二次電池は
高エネルギーを有する電池としてい注1」されている。
(Prior Art) In recent years, non-aqueous solvent secondary batteries using lithium as a negative electrode active material have been noted as batteries with high energy.

これらの非水溶媒二次電池において、リチウムと組合わ
せる正極活物質には、例えばチタン、モリブデン、バナ
ジウム、ジルコニウム、ハフニウム、タンタル、ニオブ
、クロムのよ    ゛うな金属の酸化物、硫化物、セ
レン化物又はテルル化物、すなわち金属カルコゲン化合
物が提案されている。
In these nonaqueous solvent secondary batteries, the positive electrode active materials combined with lithium include metal oxides, sulfides, and selenides, such as titanium, molybdenum, vanadium, zirconium, hafnium, tantalum, niobium, and chromium. Alternatively, tellurides, ie, metal chalcogen compounds, have been proposed.

これら金属カルコゲン化合物のなかでも五酸化バナジウ
ムは電気的特性が有用であるため、これを正極活物質と
するリチウム系非水溶媒二次電池の開発が進められてい
る。
Among these metal chalcogen compounds, vanadium pentoxide has useful electrical properties, and therefore lithium-based nonaqueous solvent secondary batteries using vanadium pentoxide as a positive electrode active material are being developed.

このような二次電池の1例を縦断面図として第2図に示
す。図において、■は正極缶で例えばステンレス鋼の表
面にニッケルメッキを施した材料の缶体であり、正8i
端子板の機能も兼ねている。
An example of such a secondary battery is shown in FIG. 2 as a longitudinal sectional view. In the figure, ■ is a positive electrode can made of a material such as stainless steel with nickel plating on the surface.
It also functions as a terminal board.

この正極缶1の中には、図のように正極2が配設される
Inside this positive electrode can 1, a positive electrode 2 is arranged as shown in the figure.

この正極2は、後述する正極合剤を、ニッケル、ステン
レス鋼などから成る金網、パンチトメタル、エキスバン
ドメタル、フオームメタルのような金属芯体の片面又は
両面に着設一体化したものを所定形状に裁断又は打抜き
加工して製造される。
This positive electrode 2 is a predetermined product in which a positive electrode mixture described below is integrally attached to one or both sides of a metal core made of nickel, stainless steel, etc., such as a wire mesh, punched metal, expanded metal, or foam metal. Manufactured by cutting or punching into shapes.

ここで正極合剤は、上記したような金属カルコゲン化合
物の粉末と黒鉛のような導電材の粉末とをポリエチレン
、ポリプロピレンのような結着剤で決着せしめて構成さ
れている。
Here, the positive electrode mixture is composed of a metal chalcogen compound powder as described above and a conductive material powder such as graphite bound together with a binder such as polyethylene or polypropylene.

この場合一般には、金属カルコゲン化合物の粉末と導電
材粉末とを所定量比で混合し、得られた混合粉に所定量
の結着剤を添加したのち全体を充分混練し、得られた混
練物を板状又はシート状に成形して製箔される。
In this case, generally, metal chalcogen compound powder and conductive material powder are mixed in a predetermined ratio, a predetermined amount of binder is added to the resulting mixed powder, and the whole is sufficiently kneaded to obtain a kneaded product. It is made into foil by forming it into a plate or sheet.

3は正極2の上面に載設されたセパレータで例えばポリ
プロピレン不織布から成る。このセパレータには算木電
解液が含浸せしめられている。電解府としては1例えば
、L iCI O4+LiPF6  、LiBF4 、
Li0文のようなリチウム塩又はN a CI O4の
ようなその他一般にリチウム系電池で使用されている電
解質と、プロピレンカーボネート、1.2−ジメトキシ
エタン。
A separator 3 is placed on the upper surface of the positive electrode 2 and is made of, for example, a polypropylene nonwoven fabric. This separator is impregnated with an electrolyte. For example, LiCI O4 + LiPF6, LiBF4,
Lithium salts such as Li0 or other commonly used electrolytes in lithium-based batteries such as NaCIO4, propylene carbonate, 1,2-dimethoxyethane.

γ−ブチロラクトン、ジオキソラン、エチレンカーボネ
ート、2−メチルテトラヒドロフランのような非プロト
ン性有機溶媒との単独あるいは、混合の溶液が使用され
ている。
Solutions with aprotic organic solvents such as γ-butyrolactone, dioxolane, ethylene carbonate, and 2-methyltetrahydrofuran alone or in combination are used.

4は負極活物質であるリチウム箔でセパレータ3の上に
配置されている。、5は負極端子板も兼ねる負極缶で例
えばステンレス鋼の表面にニッケルメッキを施して構成
されている。
4 is a lithium foil which is a negative electrode active material and is placed on the separator 3. , 5 is a negative electrode can which also serves as a negative electrode terminal plate, and is made of, for example, stainless steel with nickel plating applied to its surface.

そして、絶縁バッキング6を介して負極缶5を正極缶2
に嵌着し正極缶2の周縁部を内側に折曲して全体を封口
し電池が形成されている。
Then, the negative electrode can 5 is connected to the positive electrode can 2 via the insulating backing 6.
A battery is formed by fitting the positive electrode can 2 into the positive electrode can 2 and bending the peripheral edge of the positive electrode can 2 inward to seal the whole.

(発明が解決しようとする問題点) 正極活物質として上記した金属カルコゲン化合物を用い
た二次電池においては次のような問題が生じている。
(Problems to be Solved by the Invention) The following problems occur in secondary batteries using the above metal chalcogen compounds as positive electrode active materials.

1つは、放電時に階段状に電位が変化するような放電曲
線を描き、充電時と放電時との可逆性が低く、特に放電
深度が深い場合は充放電サイクル寿命が短いという問題
である。第2の問題は、前述したポリエチレン、ポリプ
ロピレンのような結着剤の場合は活物質粉末や導電材粉
末の粒子表面を被覆した状態で結着剤同志が相互に結合
することにより正極合剤の結着能が付与されるので、適
正な結着能を維持するためにも多量の結着剤を必要とし
、その結果、正極合剤の導電性が低下することは勿論の
こと、活物質の電池反応に寄与する反応面積も大幅に減
少してその電気化学的活性度は低下し放電電圧が低くな
るという問題である。
One problem is that during discharge, the battery draws a discharge curve in which the potential changes in a stepwise manner, and the reversibility between charging and discharging is low, and particularly when the depth of discharge is deep, the charge/discharge cycle life is short. The second problem is that in the case of binders such as polyethylene and polypropylene mentioned above, the binders bond to each other while coating the particle surface of the active material powder or conductive material powder, resulting in the formation of a positive electrode mixture. Since binding ability is imparted, a large amount of binder is required to maintain proper binding ability, and as a result, not only the conductivity of the positive electrode mixture decreases but also the active material The problem is that the reaction area that contributes to battery reactions is also significantly reduced, resulting in lower electrochemical activity and lower discharge voltage.

本発明は、上記した問題を解消し、重負荷詩の充放電サ
イクル寿命が長く、内部抵抗も小さく、放電容量も大き
い新規な非水溶媒二次電池の提供を目的とする。
The present invention aims to solve the above-mentioned problems and provide a novel non-aqueous solvent secondary battery that has a long charge/discharge cycle life under heavy load, has a low internal resistance, and has a large discharge capacity.

(問題点を解決するための手段) 未発明者らは上記した問題点を解決すべく正極に関して
鋭意研究を重ねた結果、正極が後述するような構成の場
合には、優れた効果が得られるとの水実を見出し、本発
明の電池を開発するに到った。
(Means for Solving the Problems) As a result of extensive research into positive electrodes by non-inventors in order to solve the above-mentioned problems, it has been found that excellent effects can be obtained when the positive electrode has the configuration described below. The inventors discovered that the battery of the present invention was developed.

すなわち、本発明の非水溶媒二次電池は、非晶質金属カ
ルコゲン化合物を主成分とする正極活物質粉末と導電材
粉末とが三次元、網状構造のフッ素系樹脂結着剤によっ
て拘持された正極合剤を余塵芯体に着設して成る正極が
具備されていることを特徴とする。
That is, in the non-aqueous solvent secondary battery of the present invention, a positive electrode active material powder containing an amorphous metal chalcogen compound as a main component and a conductive material powder are held together by a fluororesin binder having a three-dimensional, network structure. The present invention is characterized in that it is equipped with a positive electrode formed by attaching a positive electrode mixture of 10% or more to a residual dust core.

本発明の電池は、正極とりわけ正極合剤に特徴を有する
ものであって、他の要素は第2図に示した従来電池と同
様であるので、以後の説明は正極とりわけ正極合剤に絞
って進める。
The battery of the present invention is characterized by the positive electrode, especially the positive electrode mixture, and other elements are the same as the conventional battery shown in FIG. 2, so the following explanation will focus on the positive electrode, especially the positive electrode mixture. Proceed.

まず、正極活物質の主成分は前述したような金属カルコ
ゲン化合物の粉末であるが、非晶質構造のものが選定さ
れる。非晶質の金属カルコゲン化合物の方が結晶質のそ
れに比へて、電池をその駐止電圧以下まで過放電をした
場合の充電が可逆的に生じ過放電による容がはなく耐過
放電能が優れているからである。なお、ここでいう非晶
質とは、対象とする金属カルコゲン化合物をX線回折法
で同定したときに、結晶質の場合には発現するであろう
ピーク強度が現われないような状態をいう。
First, the main component of the positive electrode active material is a metal chalcogen compound powder as described above, and one with an amorphous structure is selected. Compared to crystalline metal chalcogen compounds, amorphous metal chalcogen compounds charge more reversibly when the battery is over-discharged to below its parking voltage, and have no over-discharge capacity. This is because it is excellent. Note that the term "amorphous" as used herein refers to a state in which, when the metal chalcogen compound of interest is identified by X-ray diffraction, the peak intensity that would appear in the case of a crystalline compound does not appear.

このような非晶質全屈カルコゲン化合物は、結晶質、非
晶質を問わず所定組成の金属カルコゲン化合物を高温で
加熱融解せしめたのち、その融液を急冷することによっ
て容易に調製することができる。
Such an amorphous totally bent chalcogen compound can be easily prepared by heating and melting a metal chalcogen compound of a predetermined composition, whether crystalline or amorphous, at a high temperature and then rapidly cooling the melt. can.

次に導電材としては、従来から使用されているものであ
れば何であってもよく、例えば黒鉛粉末、カーボンブラ
ックをあげることができる。
Next, the conductive material may be any conventionally used material, such as graphite powder and carbon black.

また、結着剤としては、正極合剤の後述する成形時にお
いて、三次元の網状に変形し得るようなフッ素系樹脂で
ある。具体的には剪断応力が印加されると、繊維化しそ
れらが三次元的にからみあった状態になるようなフッ素
系樹脂である0例えば、ポリテトラフルオロエチレン、
クロロトリフルオロエチレン、テトラフルオロエチレン
−ヘキサンフルオロプロピレン共重合体を好適なものと
してあげることができる。
Further, the binder is a fluororesin that can be deformed into a three-dimensional network shape during molding of the positive electrode mixture, which will be described later. Specifically, when shear stress is applied, fluorine-based resins that turn into fibers and become three-dimensionally intertwined, such as polytetrafluoroethylene,
Suitable examples include chlorotrifluoroethylene and tetrafluoroethylene-hexanefluoropropylene copolymer.

本発明にかかる正極合剤は次にようにして製造すること
ができる。
The positive electrode mixture according to the present invention can be manufactured as follows.

まず非晶質の金属カルコゲン化合物粉末と導電材粉末と
を所定量比で混合する。これら粉末は、通常、平均粒径
3〜90μのものが使用される。
First, amorphous metal chalcogen compound powder and conductive material powder are mixed in a predetermined ratio. These powders usually have an average particle size of 3 to 90 microns.

また、両者の混合割合は、前者が98〜70重礒部、後
者が2〜30重量部に設定することが好ましい。
The mixing ratio of the two is preferably set to 98 to 70 parts by weight for the former and 2 to 30 parts by weight for the latter.

つぎに、この混合粉に前述したフッ素系樹脂の結着剤を
添加して混練する。添加績は、混合粉100重量部に対
しフッ素系樹脂として3〜10重量部であることが好ま
しい。あまり多く添加すると得られる合剤の導電性が低
下し、あまりに少ないと結着能が付与されないからであ
る。
Next, the above-mentioned fluororesin binder is added to this mixed powder and kneaded. The amount added is preferably 3 to 10 parts by weight of the fluororesin per 100 parts by weight of the mixed powder. This is because if too much is added, the conductivity of the mixture obtained will decrease, and if too little is added, no binding ability will be imparted.

混合粉と結着剤の混練は、この結着剤に予備的に剪断応
力を印加できるという点で、ボールミル、自動乳鉢ミキ
サー、スクリウコンベアなどを用いて行なうことが好ま
しい。
The mixed powder and the binder are preferably kneaded using a ball mill, an automatic mortar mixer, a screw conveyor, or the like, since shear stress can be preliminarily applied to the binder.

得られた混練物を次に例えば複数回のロール成形を施し
て板状又はシート状にする。この成形過程で、結着剤は
強く剪断応力を受けて繊維化しかつこれらが網目状にか
らみ合って三次元網状構造となる。同時に正極活物質の
粉末及導電材の粉末は、それぞれその表面全部を結着剤
で被覆された状態ではなく、その一部表面が結着剤と結
着しかつ結着剤の網状構造の中しこ拘持された状態とな
る。
The obtained kneaded product is then subjected to, for example, multiple roll forming operations to form a plate or sheet. During this molding process, the binder is subjected to strong shearing stress and becomes fiberized, and these fibers become entangled in a network to form a three-dimensional network structure. At the same time, the powder of the positive electrode active material and the powder of the conductive material are not coated on their entire surface with the binder, but some of their surfaces are bound to the binder and inside the network structure of the binder. He is in a state of strict restraint.

すなわち、正極活物質、導電材の各粉末は結着剤の網状
構造の中に取り込まれ、拘束された状態で保持されるの
である。したがって、各粉末の全面被覆の場合に比べて
結着剤の量は少ないにもかかわらず1合剤全体の結着能
は高い水準を維持することになる。しかも、活物質粉末
のうち電池反応に寄与する反応面積は大きい状態が保持
されるのである。
That is, each powder of the positive electrode active material and the conductive material is taken into the network structure of the binder and held in a restrained state. Therefore, the binding ability of the entire mixture is maintained at a high level even though the amount of binder is smaller than in the case where the entire surface is coated with each powder. Moreover, the reaction area of the active material powder that contributes to the battery reaction remains large.

このようにして得られた正極合剤のシート又は板を従来
と同様に金属芯体に着設すれば、本発明にかかる正極を
得ることができる。
The positive electrode according to the present invention can be obtained by attaching the sheet or plate of the positive electrode mixture thus obtained to a metal core in the conventional manner.

その後、この正極を従来と同様にして電池に組込めば、
本発明の非水溶媒二次電池が得られる。
After that, if this positive electrode is assembled into a battery in the same way as before,
A non-aqueous solvent secondary battery of the present invention is obtained.

(発明の実施例) 実施例 五酸化バナジウムと三敢化タングステンとをモル比で9
5=5となるように混合し、この混合物を1500 ’
Cで8時間溶融したのち、乾仔空気中において、冷却速
度lXl0’℃/secで急冷し、V205−5モル%
WO3なる金属カルコゲン化合物を:A製した。そのも
のをX線回折法で同定したところ、非晶質構造であった
(Embodiment of the invention) Example Vanadium pentoxide and tungsten trichloride in a molar ratio of 9
Mix so that 5=5, and heat this mixture for 1500'
After melting at C for 8 hours, it was rapidly cooled in dry air at a cooling rate of lXl0'°C/sec to obtain V205-5 mol%.
A metal chalcogen compound called WO3 was prepared by A. When it was identified by X-ray diffraction, it was found to have an amorphous structure.

この活物質の粉末(平均粒径70μm)75重都部、ア
セチレンブラック25重量部、ポリテトラフルオロエチ
レン粉末5重量部をボールミルで充分混合したのち、得
られた混合物を人が体重をかける程度の剪断応力を加え
ながら8回反復したロール成形を行なって厚み0.4m
mのシートにした。
After thoroughly mixing 75 parts of this active material powder (average particle size 70 μm), 25 parts by weight of acetylene black, and 5 parts by weight of polytetrafluoroethylene powder in a ball mill, the resulting mixture was heated to the extent that a person could put their weight on it. Roll forming was repeated 8 times while applying shear stress to a thickness of 0.4 m.
I made it into a sheet of m.

このシートの片面を、60メツシユのステンレス鋼金網
に圧着したのち、打抜き加工を施し、厚み0.5m+o
直径0.51111の正極を得た。
One side of this sheet was crimped to a 60-mesh stainless steel wire gauze, then punched to a thickness of 0.5 m + o.
A positive electrode with a diameter of 0.51111 mm was obtained.

この正極を組込んで第2図に示した構造のボタン型非水
溶媒二次電池を製作しこれを実施例電池とした。負極は
リチウム箔、電解液はプロピレンカーボネートにLic
iO4を1モル/文の濃度で溶解したもの、セパレータ
はポリプロピレン不織布である。
A button-type non-aqueous solvent secondary battery having the structure shown in FIG. 2 was manufactured by incorporating this positive electrode, and this was used as an example battery. The negative electrode is lithium foil, and the electrolyte is propylene carbonate.
iO4 was dissolved at a concentration of 1 mol/liter, and the separator was a polypropylene nonwoven fabric.

比較のために、正極活物質が結晶質のV2O5−5モル
%WO3であったことを除いては実施例電池と同様の構
造を有する電池を製作し、これを比較例1電池とした。
For comparison, a battery having the same structure as the Example battery except that the positive electrode active material was crystalline V2O5-5 mol % WO3 was manufactured, and this was designated as Comparative Example 1 battery.

また、結着剤がポリエチレンであったことを除いては実
施例電池と同様の構成を有する電池を製作し、これを比
較例?電池とした。
In addition, a battery having the same structure as the example battery except that the binder was polyethylene was manufactured, and this was used as a comparative example. It was used as a battery.

これら3種類の電池につき、LOKΩの定負荷で3vか
ら2vまでの放電を行ない、再び3■まで充゛准すると
いう工程を1サイクルとし、各サイクル毎の容量変化を
調べる充放電サイクル特性評価試騨を行なった。その結
果を特性図として第1図に示した。第1図で横軸はサイ
クル数を表わし、縦軸は各サイクルにおける初期容量に
対する放電容量劣化率(%)を表わす。図から明らかな
ように、本発明の電池は、比較例の電池に比べて放電容
量を大きくできるとともに、とくに重負荷時の充放電サ
イクル寿命が著しく向上している。
For these three types of batteries, one cycle consisted of discharging from 3V to 2V under a constant load of LOKΩ and then charging to 3V again, and a charge/discharge cycle characteristic evaluation test was conducted to examine the capacity change for each cycle. I performed a funeral. The results are shown in FIG. 1 as a characteristic diagram. In FIG. 1, the horizontal axis represents the number of cycles, and the vertical axis represents the discharge capacity deterioration rate (%) relative to the initial capacity in each cycle. As is clear from the figure, the battery of the present invention has a larger discharge capacity than the battery of the comparative example, and has a significantly improved charge/discharge cycle life, especially under heavy loads.

(発明の効果) 以上の説明で明らかなように、本発明の非水溶媒二次電
池は、放電深度が深くなるとともに生じていた正極活物
質の不活性化に伴なう充放電サイクル寿命の短命を防止
し、活物質粉の全表面が結着剤で被覆されていないため
、活物質の放電反応面積も大きくなり、活物質と電解液
とのなじみがよく、その結果、とくに重負荷時における
放電特性が改善されている。また、結着剤の使用量を従
来に比べて大幅に減少せしめるにもかかわらず正極全体
の機械的強度は充分である。更番こ、結着剤の使用量が
少ないので正極の電気抵抗も小さくなり、電池の放電特
性が向上する。
(Effects of the Invention) As is clear from the above explanation, the non-aqueous solvent secondary battery of the present invention has a shorter charge-discharge cycle life due to inactivation of the positive electrode active material that occurs as the depth of discharge becomes deeper. In order to prevent short life, the entire surface of the active material powder is not coated with a binder, so the discharge reaction area of the active material is also large, and the active material and electrolyte are compatible with each other. The discharge characteristics have been improved. Furthermore, the mechanical strength of the entire positive electrode is sufficient even though the amount of binder used is significantly reduced compared to the conventional method. Furthermore, since the amount of binder used is small, the electrical resistance of the positive electrode is also reduced, and the discharge characteristics of the battery are improved.

このように、本発明の電池は、その性詣が優れるととも
に、正極の製造が簡単かつ量産に適していて工業的価値
は大である。
As described above, the battery of the present invention has excellent properties, the positive electrode is easy to manufacture, and is suitable for mass production, so it has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電池の充放電サイクル数と放電容量劣化率との
関係を表わす図であり、第2図はボタン型非水溶媒二次
電池の縦断面図である。 1−正極缶 2−正極  3−セパレータ4−負極  
5−負極缶 6−絶縁バッキング第2図
FIG. 1 is a diagram showing the relationship between the number of charge/discharge cycles of a battery and the discharge capacity deterioration rate, and FIG. 2 is a longitudinal cross-sectional view of a button-type nonaqueous solvent secondary battery. 1-Positive electrode can 2-Positive electrode 3-Separator 4-Negative electrode
5- Negative electrode can 6- Insulating backing Figure 2

Claims (1)

【特許請求の範囲】 1、非晶質金属カルコゲン化合物を主成分とする正極活
物質粉末と導電機粉末とが三次元網状構造のフッ素系樹
脂結着剤によって拘持された正極合剤を金属芯体に着設
して成る正極が具備されていることを特徴とする非水溶
媒二次電池。 2、該フッ素系樹脂結着剤が、ポリテトラフルオロエチ
レン、クロロトリフルオロエチレン又はテトラフルオロ
エチレン−ヘキサフルオロエチレン共重体のいずれか1
種である特許請求の範囲第1項記載の非水溶媒電池。
[Scope of Claims] 1. A positive electrode mixture in which a positive electrode active material powder mainly composed of an amorphous metal chalcogen compound and a conductive powder are held together by a fluororesin binder with a three-dimensional network structure is A non-aqueous solvent secondary battery comprising a positive electrode attached to a core. 2. The fluororesin binder is any one of polytetrafluoroethylene, chlorotrifluoroethylene, or tetrafluoroethylene-hexafluoroethylene copolymer
The non-aqueous solvent battery according to claim 1, which is a seed.
JP61213990A 1986-09-12 1986-09-12 Nonaqueous solvent secondary battery Pending JPS6372065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61213990A JPS6372065A (en) 1986-09-12 1986-09-12 Nonaqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61213990A JPS6372065A (en) 1986-09-12 1986-09-12 Nonaqueous solvent secondary battery

Publications (1)

Publication Number Publication Date
JPS6372065A true JPS6372065A (en) 1988-04-01

Family

ID=16648428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61213990A Pending JPS6372065A (en) 1986-09-12 1986-09-12 Nonaqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JPS6372065A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735093A1 (en) * 1994-10-19 1996-10-02 Daikin Industries, Ltd. Binder for cell and composition for electrode and cell prepared therefrom
JP2015508220A (en) * 2012-02-28 2015-03-16 フラウンホーファー−ゲゼルシャフト ツア フォルデルング デア アンゲヴァンテン フォルシュング エー ファウ Lithium-containing battery cathode and method for producing the same without solvent
JP2015531977A (en) * 2012-09-14 2015-11-05 フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ Li-S battery having high cycle life and method of operating the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735093A1 (en) * 1994-10-19 1996-10-02 Daikin Industries, Ltd. Binder for cell and composition for electrode and cell prepared therefrom
EP0735093A4 (en) * 1994-10-19 1998-05-06 Daikin Ind Ltd Binder for cell and composition for electrode and cell prepared therefrom
JP2015508220A (en) * 2012-02-28 2015-03-16 フラウンホーファー−ゲゼルシャフト ツア フォルデルング デア アンゲヴァンテン フォルシュング エー ファウ Lithium-containing battery cathode and method for producing the same without solvent
US10062900B2 (en) 2012-02-28 2018-08-28 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V Cathode for lithium-containing batteries and solvent-free method for the production thereof
JP2015531977A (en) * 2012-09-14 2015-11-05 フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ Li-S battery having high cycle life and method of operating the same

Similar Documents

Publication Publication Date Title
DE112010002062B4 (en) Active material for a cathode, cathode, non-aqueous secondary battery, module and energy storage system
CN104145358B (en) Anode material for lithium-ion secondary battery, lithium ion secondary battery cathode and lithium rechargeable battery
EP1291941B1 (en) Active material for battery and method of preparing the same
DE69531275T2 (en) Non-aqueous secondary battery
CN110431695A (en) Cathode active material for lithium secondary battery and preparation method thereof
US10547051B2 (en) Multi-phase structured cathode active material for lithium ion battery
EP1347524A1 (en) Positive electrode active material and nonaqueous electrolyte secondary cell
JP2012104290A (en) Positive electrode active material for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JPS6223433B2 (en)
JP3532016B2 (en) Organic electrolyte secondary battery
JP6477691B2 (en) Secondary battery electrode binder composition, secondary battery electrode slurry composition, secondary battery electrode, and secondary battery
JP2000149948A (en) Positive active material, lithium ion secondary battery and manufacture of its positive active material
DE69837484T2 (en) Secondary cell with nonaqueous electrolyte
JPH02139860A (en) Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
KR102111482B1 (en) Electrode for lithium secondary battery and lithium secondary battery comprising the same
DE112020000220T5 (en) ABUSE-TOLERANT LITHIUM-ION BATTERY CATHODE MIXTURES WITH SYMBIOTIC PERFORMANCE ADVANTAGES
JP4101927B2 (en) Non-aqueous electrolyte secondary battery
JPS6372065A (en) Nonaqueous solvent secondary battery
JP3544015B2 (en) Non-aqueous electrolyte secondary battery
JP2000012017A (en) Graphite particle and manufacture therefor, negative electrode carbon material for lithium secondary battery, negative electrode for the lithium secondary battery, and lithium secondary battery
JP2792373B2 (en) Non-aqueous electrolyte secondary battery
JP2839627B2 (en) Rechargeable battery
CN113423665A (en) Negative electrode active material based on lithium iron hydroxysulfide
JPS6369155A (en) Nonaqueous electrolyte secondary battery
JPH02132760A (en) Nonaqueous solvent secondary battery