JPS637193A - Exhaust fan driver - Google Patents

Exhaust fan driver

Info

Publication number
JPS637193A
JPS637193A JP61148109A JP14810986A JPS637193A JP S637193 A JPS637193 A JP S637193A JP 61148109 A JP61148109 A JP 61148109A JP 14810986 A JP14810986 A JP 14810986A JP S637193 A JPS637193 A JP S637193A
Authority
JP
Japan
Prior art keywords
upper limit
exhaust fan
inverter
temperature
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61148109A
Other languages
Japanese (ja)
Inventor
Yukio Sonoda
薗田 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61148109A priority Critical patent/JPS637193A/en
Publication of JPS637193A publication Critical patent/JPS637193A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To most efficiently exhaust flue gas free of overload on a driving motor and an inverter at the time of low temperature initially of generating gas by providing an upper limit command calculator. CONSTITUTION:Temperature in a flue gas duct 7 is detected from a temperature sensor 9 attached to a suction port 7a, and the current of an induction motor 4 is detected by a current transformer 10. An upper limit command calculator 11 calculates the upper limit speed on the basis of a detection signal from the sensor 9 and the transformer 10, and outputs an upper limit frequency operation command to an inverter 3 due to the calculated result. In other words, the operation that the gas temperature rises from low to high is valve executed in the most efficient state free of overload state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、温度変化の大きな排気ダクトに用いる排気
用ファン駆動装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an exhaust fan drive device used in an exhaust duct where temperature changes are large.

〔従来の技術〕[Conventional technology]

第3図は従来の排気用ファン駆動装置を示す概略図であ
り、図において、1は商用電源、2は入力遮断器、3は
可変電圧可変周波電源装置(以下、インバータ装置と略
す)、4は駆動電動機としての誘導電導機、5は排気用
ファン、6はプロセス機器等のガス発生源、7は排気ダ
クト、7aは吸気口、7bは排気口、8は排煙である。
FIG. 3 is a schematic diagram showing a conventional exhaust fan drive device. In the figure, 1 is a commercial power supply, 2 is an input breaker, 3 is a variable voltage variable frequency power supply device (hereinafter abbreviated as an inverter device), and 4 is a schematic diagram showing a conventional exhaust fan drive device. 5 is an induction motor as a driving motor, 5 is an exhaust fan, 6 is a gas generation source such as a process device, 7 is an exhaust duct, 7a is an intake port, 7b is an exhaust port, and 8 is a smoke exhaust.

次に動作について説明する。ガス発生源6からガスが発
生されると、インバータ装置3の運転が開始され、誘導
電動機4が排気用ファン5を回転駆動する。これにより
、ガスは排気ロアaから排煙8となって排出される。そ
して、このときの排気ダクト7内部の風量は排気用ファ
ン5の回転数により決定されるが、この回転数はインバ
ータ装置3の周波数制御により変えることができる。
Next, the operation will be explained. When gas is generated from the gas generation source 6, the inverter device 3 starts operating, and the induction motor 4 rotates the exhaust fan 5. As a result, the gas is discharged from the exhaust lower a as flue gas 8. The air volume inside the exhaust duct 7 at this time is determined by the rotation speed of the exhaust fan 5, but this rotation speed can be changed by frequency control of the inverter device 3.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の排気用ファン駆動装置は以上のように構成されて
いるので、排気ダクト7内部の温度変化に起因する次の
ような問題点があった。
Since the conventional exhaust fan drive device is configured as described above, it has the following problems caused by temperature changes inside the exhaust duct 7.

すなわち、誘導電動機4の軸動力をP、とすると、この
軸動力P、は、 で与えられる。ここで、Kは比例定数、Noは定格回転
数、Nは運転時の回転数、T、は基準温度、T2は運転
時の温度である。この式から明らかなように、T2がT
1より小さな場合は、それに対応して軸動力P、も増加
することになる。つまり、ガス発生源6からのガスは、
発生当初、ガス温度が低いため、インバータ装置3及び
誘導電動機4の容量に余裕がない場合は、これらの機器
が過負荷状態となる。そのため、これらの機器を選定す
る際には、通常運転時に必要とされる容量よりも大きな
定格を有するものを選定しなければならず、設備が大型
化し、又、価格的にも不利なものになるという問題点が
あった。
That is, if the shaft power of the induction motor 4 is P, this shaft power P is given by: Here, K is a proportional constant, No is the rated rotation speed, N is the rotation speed during operation, T is the reference temperature, and T2 is the temperature during operation. As is clear from this equation, T2 is T
If it is smaller than 1, the shaft power P will also increase accordingly. In other words, the gas from the gas source 6 is
At the beginning of the occurrence, the gas temperature is low, so if there is not enough capacity in the inverter device 3 and induction motor 4, these devices will be in an overload state. Therefore, when selecting these devices, it is necessary to select ones with a larger capacity rating than that required during normal operation, which increases the size of the equipment and makes it disadvantageous in terms of price. There was a problem with that.

この発明は上記のような問題点を解消するためになされ
たもので、インバータ装置及び駆動電動機の容量を大型
化することなく、排気ダクト内部が低温の場合の排気を
効率的に行なうことができる排気用ファン駆動装置を提
供することを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to efficiently exhaust air when the inside of the exhaust duct is low temperature without increasing the capacity of the inverter device and drive motor. An object of the present invention is to provide an exhaust fan drive device.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る排気用ファン駆動装置は、排気ダクト内
部の温度と駆動電動機の電流を検出するようにし、これ
らの検出値と駆動電動機の軸動力特性曲線とから、その
ときに許容される上限回転数を演算し、この演算結果に
基いてインバータ装置の運転を行なうようにしたもので
ある。
The exhaust fan drive device according to the present invention detects the temperature inside the exhaust duct and the current of the drive motor, and determines the upper limit rotation allowed at that time from these detected values and the shaft power characteristic curve of the drive motor. A number is calculated and the inverter device is operated based on the result of the calculation.

〔作用〕[Effect]

この発明における上限指令演算装置は、ガス発生当初の
低温時において、駆動電動機及びインバータ装置が過負
荷にならず、且つ最も効率的な排気が行なわれるように
、インバータ装置へ運転指令を出力する。
The upper limit command calculation device in the present invention outputs an operation command to the inverter device so that the drive motor and the inverter device are not overloaded and the most efficient exhaust is performed at a low temperature when gas is first generated.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、9は吸気ロアaに取付けられた温度センサ
、10は誘導電動機4の電流を検出する電流検出手段と
しての変流器、11は温度センサ9及び変流器10から
の検出信号に基き上限回転数を演算し、この演算結果に
よる上限周波数運転指令をインバータ装置3に出力する
上限指令演算装置である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, 9 is a temperature sensor attached to the intake lower a, 10 is a current transformer as a current detection means for detecting the current of the induction motor 4, and 11 is a temperature sensor that detects the current from the temperature sensor 9 and the current transformer 10. This is an upper limit command calculation device that calculates the upper limit rotation speed and outputs an upper limit frequency operation command based on the calculation result to the inverter device 3.

次に動作について説明する。−般に、電動機を回転数制
御した場合、回転数を変化させることに起因する電動機
自体の冷却特性が変化することを考慮すれば、その電動
機の許容軸動力は、はぼ回転数の2乗に比例する。した
がって、本実施例の誘導電動機4についても、その許容
軸動力に関する特性曲線は第2図の曲線Zで示される2
次曲線的なものとなる。
Next, the operation will be explained. -Generally, when controlling the rotation speed of an electric motor, considering that the cooling characteristics of the motor itself change due to changing the rotation speed, the allowable shaft power of the motor is approximately the square of the rotation speed. is proportional to. Therefore, also for the induction motor 4 of this embodiment, the characteristic curve regarding the allowable shaft power is 2 as shown by the curve Z in FIG.
It becomes like the following curve.

一方、誘導電動機4を運転した場合の実際の軸動力P、
は、前述の式からも明らかなように回転数の3乗に比例
することから、その特性曲線は、第2図の曲線A(T3
)、 A(T、)で示される3次曲線的なものとなる。
On the other hand, the actual shaft power P when the induction motor 4 is operated,
As is clear from the above equation, it is proportional to the cube of the rotation speed, so its characteristic curve is curve A (T3
), A(T, ) is a cubic curve.

ここで、曲線A(TI)は排気プロセスが正常な状態に
立ち上がってそのガス塩T3が高い場合を示し、曲線A
(Tt)は排気プロセス立ち上がり時のガス塩T4が低
い場合を示す。そして、ガス塩が次第にT、からT4に
上昇すると、実際の軸動力P、の特性曲線も、曲線A(
T4.)から次第に曲線A(T3)へ移行することにな
る。なお、第2図の横軸、縦軸の100%の位置は、誘
導電動機4の定格状態を示す。
Here, curve A (TI) shows the case where the exhaust process has started up to a normal state and its gas salt T3 is high;
(Tt) indicates the case where the gas salt T4 at the start of the exhaust process is low. Then, as the gas salt gradually increases from T to T4, the characteristic curve of the actual shaft power P also changes from curve A (
T4. ) gradually shifts to curve A (T3). Note that the 100% position on the horizontal and vertical axes in FIG. 2 indicates the rated state of the induction motor 4.

例えば、いま、ガス塩T4の状態で誘導電動機4を回転
させようとする場合、その回転数Nは、曲線Zと曲線A
(Tt)の交点mに対応する上限回転数N、以下に制限
されなければならない。なぜなら、ガス塩T4の下で上
限回転数N5以上になった場合は、その軸動力Prが許
容軸動力を超えてしまうからである。第1図の上限指令
演算装置11は、この上限回転数N、を、ガス塩を検出
する温度センサ9と、誘導電動機4の電流を検出する変
流器10からの検出信号に基づいて演算する。そして、
この上限回転数N、に対応する上限周波数運転指令をイ
ンバータ装置3に出力する。
For example, when trying to rotate the induction motor 4 in the state of gas salt T4, the rotation speed N is determined by the curve Z and the curve A.
(Tt) must be limited to or less than the upper limit rotation speed N corresponding to the intersection m. This is because if the rotational speed exceeds the upper limit rotation speed N5 under gas salt T4, the shaft power Pr will exceed the allowable shaft power. The upper limit command calculation device 11 in FIG. . and,
An upper limit frequency operation command corresponding to this upper limit rotation speed N is output to the inverter device 3.

さらに、この状態で排気を継続してしばらく経遇すると
、ガス温T4は次第に上昇する。すると、これにつれて
交点m及び上限回転数N、の位置も次第に右方へ移動し
、ついには定格状態と一致することになる。つまり、ガ
ス温がT4からT、まで上昇するまでの運転を、過負荷
状態とならずに、且つ最も効率的な状態で行なっている
Furthermore, if the exhaust continues for a while in this state, the gas temperature T4 will gradually rise. Then, along with this, the positions of the intersection point m and the upper limit rotation speed N gradually move to the right, and finally match the rated state. In other words, the operation until the gas temperature rises from T4 to T is performed in the most efficient state without becoming overloaded.

なお、上限指令演算装置11は、インバータ装置3に対
して上限周波数で制限しているが、誘導電動機4の電流
に余裕がある場合は、電流値で補正を行なうことができ
る。
Note that although the upper limit command calculation device 11 limits the inverter device 3 using the upper limit frequency, if there is sufficient current in the induction motor 4, correction can be made using the current value.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、駆動電動機の運転を
、その軸動力特性曲線により定まる上限回転数で運転す
るように構成したので、インバータ装置及び駆動電動機
の容量を大型化することなく、排気ダクト内部が低温の
場合の排気を最も効率的に行なうことができるという効
果がある。
As described above, according to the present invention, the drive motor is configured to operate at the upper limit rotation speed determined by its shaft power characteristic curve, so that the inverter device and the drive motor capacity are not increased. This has the effect that exhaust can be carried out most efficiently when the inside of the exhaust duct is at a low temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による排気用ファン駆動装
置を示す概略構成図、第2図は第1図の誘導電動機の軸
動力及び回転数の関係を示す特性図、第3図は従来の排
気用ファン駆動装置を示す概略構成図である。 3はインバータ装置、4は誘導電動機(駆動電動機)、
5は排気用ファン、6はガス発生源、7は排気ダクト、
9は温度センサ、10は変流器(電流検出手段)、11
は上限指令演算装置である。 なお、図中、同一符号は同一、又は相当部分を示す。 n寸]0■
Fig. 1 is a schematic configuration diagram showing an exhaust fan drive device according to an embodiment of the present invention, Fig. 2 is a characteristic diagram showing the relationship between shaft power and rotation speed of the induction motor of Fig. 1, and Fig. 3 is a conventional 1 is a schematic configuration diagram showing an exhaust fan drive device of FIG. 3 is an inverter device, 4 is an induction motor (drive motor),
5 is an exhaust fan, 6 is a gas generation source, 7 is an exhaust duct,
9 is a temperature sensor, 10 is a current transformer (current detection means), 11
is an upper limit command calculation device. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. n dimension] 0■

Claims (1)

【特許請求の範囲】[Claims] 排気ダクト内部に配設された排気用ファンの駆動を行な
う駆動電動機と、上記駆動電動機のインバータ運転を行
なうインバータ装置とを有する排気用ファン駆動装置に
おいて、上記排気ダクト内部に取付けられた温度センサ
と、上記インバータ装置の出力側に取付けられ、上記駆
動電動機へ流れる電流を検出する電流検出手段と、上記
温度センサ及び電流検出手段からの検出信号に基づいて
、上記駆動電動機の軸動力特性曲線により定まる上限回
転数を演算し、該演算結果による上限周波数運転指令を
上記インバータ装置に出力する上限指令演算装置とを備
えたことを特徴とする排気用ファン駆動装置。
An exhaust fan drive device including a drive motor for driving an exhaust fan disposed inside the exhaust duct, and an inverter device for inverter operation of the drive motor, comprising: a temperature sensor installed inside the exhaust duct; , is determined by a shaft power characteristic curve of the drive motor based on a current detection means attached to the output side of the inverter device and detects the current flowing to the drive motor, and detection signals from the temperature sensor and the current detection means. An exhaust fan drive device comprising: an upper limit command calculation device that calculates an upper limit rotation speed and outputs an upper limit frequency operation command based on the calculation result to the inverter device.
JP61148109A 1986-06-26 1986-06-26 Exhaust fan driver Pending JPS637193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61148109A JPS637193A (en) 1986-06-26 1986-06-26 Exhaust fan driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61148109A JPS637193A (en) 1986-06-26 1986-06-26 Exhaust fan driver

Publications (1)

Publication Number Publication Date
JPS637193A true JPS637193A (en) 1988-01-13

Family

ID=15445448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61148109A Pending JPS637193A (en) 1986-06-26 1986-06-26 Exhaust fan driver

Country Status (1)

Country Link
JP (1) JPS637193A (en)

Similar Documents

Publication Publication Date Title
US5557182A (en) System and methods for controlling a draft inducer to provide a desired operating area
JPH0965689A (en) Driver of induction motor
JPH09250485A (en) Inverter drive rotary type compressor
JPS637193A (en) Exhaust fan driver
JP3585728B2 (en) Compressor control device
JP2007285307A (en) Inverter-drive rotary compressor
JPS623178A (en) Air conditioner
JP2521042B2 (en) Speed control system
JPS5983555A (en) Controlling method for air flow rate of motor cooling fan
JPH0154935B2 (en)
JPS586077B2 (en) How to operate loads such as fans driven by electric motors
KR200380870Y1 (en) Fan driving circuit for positive pressure-to-output characteristic
JPH06319264A (en) Inverter controller
JP2000184787A (en) Variable speed capacity control device for plurality of motors
JP2000166286A (en) Fan motor and electric equipment using the same
JPS61157790A (en) Control method of pump
JPH05227792A (en) Air-conditioner
JP2680352B2 (en) Furnace draft control method
JPS6218986A (en) Motor controller
JPH0884495A (en) Method for dealing with instantaneous power interruption of voltage inverter
JPS6179943A (en) Air conditioner
JPH01174845A (en) Inverter device for air conditioner
JP2543153B2 (en) Air conditioner
JPS5813187A (en) Capacity controller of screw compressor
JP2519354Y2 (en) Refrigerator control device