JPS6371330A - Manufacture of super high-molecular weight polyethylene pipe - Google Patents

Manufacture of super high-molecular weight polyethylene pipe

Info

Publication number
JPS6371330A
JPS6371330A JP61216758A JP21675886A JPS6371330A JP S6371330 A JPS6371330 A JP S6371330A JP 61216758 A JP61216758 A JP 61216758A JP 21675886 A JP21675886 A JP 21675886A JP S6371330 A JPS6371330 A JP S6371330A
Authority
JP
Japan
Prior art keywords
pipe
temperature
die
molecular weight
weight polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61216758A
Other languages
Japanese (ja)
Other versions
JPH0378053B2 (en
Inventor
Tadao Matsuo
松尾 唯男
Hirohide Enami
博秀 榎並
Takeshi Urabe
卜部 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP61216758A priority Critical patent/JPS6371330A/en
Publication of JPS6371330A publication Critical patent/JPS6371330A/en
Publication of JPH0378053B2 publication Critical patent/JPH0378053B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/475Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pistons, accumulators or press rams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0088Molecular weight

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To cool and solidify a pipe and form the pipe of superior mechanical strength by heat compressing molten super high-molecular weight polyethylene with a sizing die controlled at a fixed temperature, lowering the temperature gradually and adjusting the outer circumferential surface temperature of a formed pipe extruded out of the sizing die at most at a specified temperature. CONSTITUTION:Super high-molecular weight polyethylene is melted with a hydraulic plunger-type ram extruder setting, for instance, setting the temperature of heaters C1 and C2 of a cylinder 2 at 200 deg.C, the temperature of a heater D2 of a heating die at 220 deg.C, and the unevenness is adjusted by a bolt 14 of a sizing die 12. In order to lower the temperature of molten resin, whose unevenness has been adjusted, gradually from 220 deg.C, a heater D3 is set at 110 deg.C or lower, and a water-cooling jacket is used as a cooling machine 13, providing, for instance, a pipe of 95 deg.C of surface temperature at the outlet of a die. The pipe thus provided has a good external appearance and its mechanical strength is equivalent to that of a compression molded sheet.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は超高分子量ポリエチレンパイプの製造方法に
係り、例えば樹脂ライニングロールのライニング用樹脂
として使用されるパイプ材、樹脂ローラー用のパイプ材
、樹脂製軸受用のパイプ材、あるいは土砂等のスラリー
を輸送するパイプ材等に使用される超高分子量ポリエチ
レンパイプの製造方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing ultra-high molecular weight polyethylene pipes, such as pipe materials used as lining resin for resin lining rolls, pipe materials for resin rollers, The present invention relates to a method for manufacturing ultra-high molecular weight polyethylene pipes used as pipe materials for resin bearings or pipe materials for transporting slurry such as earth and sand.

(従来の技術) 分子量が百方以上の超高分子量ポリエチレンは耐衝撃性
、耐摩耗性、自己潤滑性、耐薬品性等に優れた特性を有
しているが、汎用の熱可塑性樹脂に比較して熔融粘度が
極めて高く流動性が悪いため、通常のスクリュー押出成
形や射出成形によって成形することは非常に難しい。そ
のため、一般には圧縮成形により成形されているが、パ
イプを連続的に成形する場合にはこの成形方法は適用で
きないため、従来はマンドレルを備えたラム押出機によ
り押出成形する方法が知られている。また、特殊な成形
ダイを用いたスクリュー押出機による押出成形方法も提
案されている。
(Conventional technology) Ultra-high molecular weight polyethylene with a molecular weight of 100 degrees or more has excellent properties such as impact resistance, abrasion resistance, self-lubricating properties, and chemical resistance, but compared to general-purpose thermoplastic resins Since it has an extremely high melt viscosity and poor fluidity, it is extremely difficult to mold it by conventional screw extrusion molding or injection molding. For this reason, pipes are generally formed by compression molding, but this forming method cannot be applied when continuously forming pipes, so conventionally known methods include extrusion molding using a ram extruder equipped with a mandrel. . An extrusion molding method using a screw extruder using a special molding die has also been proposed.

(発明が解決しようとする問題点) しかし、マンドレルを備えたラム押出機による成形はパ
イプの偏肉精度が悪く、また中心方向の直線性も悪い。
(Problems to be Solved by the Invention) However, when molding is performed using a ram extruder equipped with a mandrel, the accuracy of pipe thickness deviation is poor, and the linearity in the center direction is also poor.

更に、内径がφ10w以下のパイプ成形が難しい等の欠
点を有していた。
Furthermore, it has the disadvantage that it is difficult to form a pipe with an inner diameter of φ10w or less.

一方、スクリュー押出機による成形は熔融した超高分子
量ポリエチレンがスクリューによって剪断応力を受けて
分子鎖が切断し、分子量が低下するので押出成形パイプ
は機械的強度が低下する欠点があった。
On the other hand, molding using a screw extruder has the disadvantage that the extruded pipe has a reduced mechanical strength because the molten ultra-high molecular weight polyethylene is subjected to shear stress by the screw, causing molecular chains to break and the molecular weight to decrease.

本発明はこのような点を改善するもので偏肉精度がよく
、機械的強度に優れたパイプを成形する方法を提供する
ことを目的とする。
The present invention aims to improve these points and provide a method for forming a pipe with good thickness unevenness accuracy and excellent mechanical strength.

(問題点を解決するための手段) 加熱グイにスパイダーグイを介して偏肉開裂可能なサイ
ジングダイとこの中に挿入固定したマンドレルから構成
されるパイプ成形用グイを具備するラム押出機を用いて
超高分子量ポリエチレンバイブを製造する方法において
、ラム押出機で加熱熔融した超高分子量ポリエチレンを
所定温度に温調したサイジンググイで加熱圧縮すると共
に偏肉関整を行い、続いて上記サイジングダイの先端に
向かって順次温度を降下せしめてサイジングダイから押
出された成形パイプの外周表面温度を100℃以下に関
整して該パイプを冷却固化せしめた超高分子量ポリエチ
レンパイプの製造方法にある。
(Means for solving the problem) Using a ram extruder equipped with a pipe-forming gou consisting of a sizing die capable of uneven thickness cleavage via a spider gou and a mandrel inserted and fixed into the heating gou. In a method for manufacturing an ultra-high molecular weight polyethylene vibrator, ultra-high molecular weight polyethylene heated and melted in a ram extruder is heated and compressed using a sizing die whose temperature is controlled to a predetermined temperature, and thickness unevenness is adjusted. The present invention provides a method for producing an ultra-high molecular weight polyethylene pipe, in which the temperature is gradually lowered toward 100° C. or less, and the temperature of the outer circumferential surface of the formed pipe extruded from a sizing die is adjusted to 100° C. or less, and the pipe is cooled and solidified.

次に、本発明の製造方法に使用するラム押出機について
説明する。まず第1図に示されるラム押出機(1)は一
般に知られたブランジャークイブのものであり、これは
加熱装置(C1)、(C2)を具備したシリンダー(2
)、該シリンダー(2)内を往復運動するラム(3)、
原料供給部(4)そしてグイ取付フランジ(5)から構
成されている。このラム押出機(1)に取付けられるパ
イプ成形用ダイ(6)は、第2図に示されるようにラム
押出機+1)にパイプ成形グイ(6)を接続固定するた
めの取付フランジ(7)、ラム押出機で加熱熔融された
超高分子量ポリエチレン樹脂をヒーター(Dl)で温度
調節するための加熱グイ(8)、パイプの内径を規則し
マンドレル011を支持するためのスパイダーダイ(9
)、そしてスパイダーαので分離された熔融樹脂を圧縮
し融着させてパイプ状に成形するためのサイジングダイ
■により構成されている。
Next, a ram extruder used in the production method of the present invention will be explained. First, the ram extruder (1) shown in FIG.
), a ram (3) reciprocating within the cylinder (2);
It consists of a raw material supply section (4) and a gooey attachment flange (5). The pipe forming die (6) attached to this ram extruder (1) has a mounting flange (7) for connecting and fixing the pipe forming guide (6) to the ram extruder +1) as shown in Fig. 2. , a heating die (8) for controlling the temperature of the ultra-high molecular weight polyethylene resin heated and melted in the ram extruder using a heater (Dl), and a spider die (9) for regulating the inner diameter of the pipe and supporting the mandrel 011.
), and a sizing die (2) for compressing and fusing the molten resin separated by the spider α and forming it into a pipe shape.

上記サイジングダイ■はスパイダーダイ(9)側にヒー
ター(D3)と樹脂出口側に冷却器(pを具備し、ボル
ト(14)によってサイジングダイ(+2)を微動して
偏肉調整を可能にしている。
The above sizing die (■) is equipped with a heater (D3) on the spider die (9) side and a cooler (p) on the resin outlet side, and allows for uneven thickness adjustment by slightly moving the sizing die (+2) with the bolt (14). There is.

次に、上記パイプ成形用ダイ(6)を取付けたラム押出
機(1)により、超高分子量ポリエチレンバイブの製造
方法について説明するが、ここで使用する超高分子量ポ
リエチレンは分子量が光散乱法で300万以上、粘度法
で100万以上のものをいい、例えばヘキスト社のHo
5talen  GUR。
Next, we will explain a method for manufacturing ultra-high molecular weight polyethylene vibes using the ram extruder (1) equipped with the pipe-forming die (6). 3 million or more, or 1 million or more according to the viscosity method, such as Hoechst's Ho
5talen GUR.

三井石油化学工業−のハイゼックスミリオン(Hize
x  Million)等が挙げられ、各種配合剤を添
加した配合物も使用できる。
Mitsui Petrochemical Industries - Hize Million
x Million), and formulations containing various additives can also be used.

まず、超高分子量ポリエチレンの粉末は原料供給部(4
)へ投入され、シリンダー(2)の温度が150〜25
0℃の温度範囲に調節された後、ラム(3)によりパイ
プ成形用ダイ(6)側へ加熱熔融された状態で押出され
る。
First, ultra-high molecular weight polyethylene powder is supplied to the raw material supply section (4
) and the temperature of cylinder (2) is 150-25
After the temperature is adjusted to a temperature range of 0° C., the heated and molten state is extruded by the ram (3) toward the pipe-forming die (6).

このように加熱、熔融された樹脂はヒーター(DI)よ
り150℃から250℃の温度に加熱された加熱グイ(
8)中を通過してスパイダーダイ(9)のスパイダーa
eへ導入され、このスパイダーαので分離した樹脂はサ
イジングダイ■の入口で径を小さくしつつパイプ状に圧
縮成形される。この場合、超高分子量ポリエチレンは汎
用樹脂の熔融物と異なり、熔融粘度が高(スパイダーダ
イ(9)によるスパイダーマークを消すためにスパイダ
ーダイ(9)とサイジングダイ■の間で加熱圧縮する必
要がある。
The resin heated and melted in this way is heated to a temperature of 150°C to 250°C by a heater (DI).
8) Pass through the spider die (9) spider a
The resin separated by the spider α is compressed into a pipe shape while reducing its diameter at the entrance of the sizing die (2). In this case, unlike melts of general-purpose resins, ultra-high molecular weight polyethylene has a high melt viscosity (it must be heated and compressed between the spider die (9) and the sizing die (■) to erase the spider marks caused by the spider die (9). be.

この加熱温度はヒーター(D2)で調節し、通常150
〜250℃で、圧縮比は1.1〜5.0、好ましくは1
.3〜3.0の範囲である。もし圧縮が不足すると熔融
物の融着が不十分となり、スパイダーマークが残ったり
極端な場合はパイプ状に成形されず、また圧縮が過剰に
なると押出成形不能になる。パイプの偏肉a製はサイジ
ングダイ■の位置をボルト供)により行う。
This heating temperature is adjusted with a heater (D2) and is usually 150
~250°C, the compression ratio is 1.1 to 5.0, preferably 1
.. It is in the range of 3 to 3.0. If compression is insufficient, the melt will not be sufficiently fused, leaving spider marks or, in extreme cases, not being formed into a pipe shape, and if compression is excessive, extrusion will not be possible. The uneven wall thickness of the pipe is made by adjusting the position of the sizing die ① (by adjusting the position of the bolt).

尚、上記圧縮比とはスパイダー〇の接続部の樹脂流路の
断面積Slとサイジングダイ(■内の樹脂流の比、即ち
31/S2である。
The above compression ratio is the ratio of the cross-sectional area Sl of the resin flow path at the connection part of the spider ○ to the resin flow in the sizing die (■), that is, 31/S2.

また、サイジングダイ■の入口でパイプ状に圧縮成形さ
れた樹脂は、スパイダー側が150〜250℃に温調さ
れたサイジングダイ■に入るが、この温度が250℃を
超えると樹脂の熱劣化が起こり、また冷却されている出
口側との温度差が極めて大きくなり、樹脂が急冷され内
部応力が残存するので好ましくない。
In addition, the resin compressed into a pipe shape at the entrance of the sizing die ■ enters the sizing die ■ whose temperature is controlled at 150 to 250℃ on the spider side, but if this temperature exceeds 250℃, thermal deterioration of the resin will occur. Moreover, the temperature difference between the outlet side and the cooled outlet side becomes extremely large, which is not preferable because the resin is rapidly cooled and internal stress remains.

一方、スパイダー側のサイジングダイ温度を150℃未
満に下げると融着不足を来す。
On the other hand, if the sizing die temperature on the spider side is lowered to less than 150°C, insufficient fusion will occur.

そして、このようにパイプ状に成形された樹脂は一定の
径を有するサイジングダイ■を通過してダイ外へ押出さ
れるが、この場合サイジングダイ■の一定径を有する長
さしとサイジングダイ[F]の内径りの比、即ち、L/
Dが5以上であることが好ましく、5未満では樹脂が融
着不足となり、また20を超えるとダイ内圧力が過大に
なり好ましくない。
The resin thus formed into a pipe shape passes through a sizing die (2) having a constant diameter and is extruded out of the die. The ratio of the inner diameter of F], that is, L/
It is preferable that D is 5 or more; if it is less than 5, the resin will be insufficiently fused, and if it exceeds 20, the pressure inside the die will be undesirably excessive.

ヒーター(D3)、冷却器(1mはサイジングダイ中の
超高分子量ポリエチレンの融着物を融着させ、次に順次
温度を降下させダイ出口のパイプ表面温度を110℃以
下にするためのものである。
Heater (D3), cooler (1 m is for fusing the ultra-high molecular weight polyethylene in the sizing die, and then sequentially lowering the temperature to bring the pipe surface temperature at the die outlet to 110°C or less. .

マンドレルα1)はパイプの内径を規制するもので、サ
イジングダイより長くして先端をダイの外部に出してお
くと押出したパイプの先端が内側に巻き込まれず、また
パイプの押出方向がサイジングダイ■の中心線上に沿っ
て押されるので好ましい。
The mandrel α1) is used to regulate the inner diameter of the pipe, and if it is made longer than the sizing die and its tip extends outside the die, the tip of the extruded pipe will not get caught inside, and the extrusion direction of the pipe will be adjusted to the sizing die. This is preferable because it is pressed along the center line.

(実施例) 超高分子量ポリエチレン(商品名:)(ostaten
  GUR412、ヘキスト社製)をシリンダー(2)
のヒーター(C+、C2)温度を200℃、加熱ダイの
ヒーター(D2)温度を220℃に設定した油圧ブラン
ジャークイブのラム押出機で熔融し、偏肉はサイジング
ダイ■のボルト(4)によって調節する。偏肉調製され
た熔融樹脂は220°Cより順次温度降下させるため、
ヒーター(D3)は130℃に設定し、冷却機(至)と
して水冷ジャケットを用いてダイ出口で、表面温度95
℃のパイプを得た。得られたパイプ寸法は、外径φ22
゜Ofl、内径φ8.6鶴、偏肉精度は6.7±0゜1
mであり、外観も良好であり、機械的強度も表の如く、
圧縮成形板と同等であった。
(Example) Ultra-high molecular weight polyethylene (trade name: ) (ostaten
GUR412, manufactured by Hoechst) in the cylinder (2)
The temperature of the heaters (C+, C2) of the heating die is set to 200℃, and the temperature of the heater (D2) of the heating die is set to 220℃. Adjust. The temperature of the molten resin with uneven thickness is gradually lowered from 220°C.
The heater (D3) is set at 130°C, and a water cooling jacket is used as a cooler (total) to keep the surface temperature at the die outlet to 95°C.
C pipe was obtained. The obtained pipe dimensions are outer diameter φ22
゜Ofl, inner diameter φ8.6, thickness deviation accuracy is 6.7±0゜1
m, the appearance is good, and the mechanical strength is as shown in the table.
It was equivalent to a compression molded plate.

(発明の効果) このように本発明の方法は、超高分子量ポリエチレンを
ラム押出機で150〜250℃の温度範囲に加熱熔融し
、スパイダーとスパイダー側を150〜250℃に温調
したサイジングダイで加熱圧縮すると共に偏肉調整を行
い、次に順次温度を降下し、パイプの外周表面温度を1
10℃以下に冷却固化するもので、これにより偏肉精度
が良く、機械的強度に優れたパイプが成形でき、また内
径φlOn以下のものも成形可能であり、ライニング用
樹脂として使用されるパイプ材、あるいは土砂スラリー
を輸送するパイプ材に通した超高分子量ポリエチレンパ
イプを製造することが出来る効果がある。
(Effects of the Invention) As described above, the method of the present invention involves heating and melting ultra-high molecular weight polyethylene in a ram extruder to a temperature range of 150 to 250°C, and then melting the ultra-high molecular weight polyethylene using a sizing die in which the temperature of the spider and the spider side is controlled at 150 to 250°C. The pipe is heated and compressed at the same time as the uneven thickness is adjusted, and then the temperature is gradually lowered to bring the outer surface temperature of the pipe to 1.
It is a material that solidifies by cooling to 10 degrees Celsius or below, which allows pipes with good thickness unevenness and excellent mechanical strength to be formed.It is also possible to form pipes with an inner diameter of φlOn or less, and is a pipe material used as a lining resin. Alternatively, it is possible to manufacture an ultra-high molecular weight polyethylene pipe that is passed through a pipe material for transporting earth and sand slurry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法において使用するラム押出機
の概略図、第2図はパイプ成形用ダイの断面図、そして
第3図は第2図のA−A断面図である。 (11・・・ラム押出機 (6)・・・パイプ成形用ダイ (8)・・・加熱ダイ  (9)・・・スパイダーダイ
aΦ・・・スパイダ−(10・・・マンドレル■・・・
サイジングダイ 特許出願人   三ツ星ベルト株式会社第3図 手続補正書(自発) 昭和62年 5月5日
FIG. 1 is a schematic diagram of a ram extruder used in the manufacturing method of the present invention, FIG. 2 is a sectional view of a pipe-forming die, and FIG. 3 is a sectional view taken along line AA in FIG. (11... Ram extruder (6)... Pipe forming die (8)... Heating die (9)... Spider die aΦ... Spider (10... Mandrel ■...
Sizing die patent applicant Mitsuboshi Belting Co., Ltd. Figure 3 procedural amendment (voluntary) May 5, 1988

Claims (1)

【特許請求の範囲】[Claims] 1、加熱ダイにスパイダーダイを介して偏肉調整可能な
サイジングダイとこの中に挿入固定されたマンドレルか
ら構成されるパイプ成形用ダイを具備するラム押出機を
用いて超高分子量ポリエチレンパイプを製造する方法に
おいて、ラム押出機で加熱熔融した超高分子量ポリエチ
レンを所定温度に温調したサイジングダイで加熱圧縮す
ると共に偏肉調整を行い、続いて上記サイジングダイの
先端に向かって順次温度を降下せしめてサイジングダイ
から押出された成形パイプの外周表面を110℃以下に
調整して該パイプを冷却固化せしめたことを特徴とする
超高分子量ポリエチレンパイプの製造方法。
1. Manufacture ultra-high molecular weight polyethylene pipes using a ram extruder equipped with a pipe-forming die consisting of a sizing die that can adjust thickness unevenness through a spider die and a mandrel inserted and fixed into the heating die. In this method, ultra-high molecular weight polyethylene heated and melted in a ram extruder is heated and compressed in a sizing die controlled to a predetermined temperature, and uneven thickness is adjusted, and then the temperature is gradually lowered toward the tip of the sizing die. 1. A method for producing an ultra-high molecular weight polyethylene pipe, characterized in that the outer peripheral surface of a molded pipe extruded from a sizing die is adjusted to 110° C. or lower, and the pipe is cooled and solidified.
JP61216758A 1986-09-12 1986-09-12 Manufacture of super high-molecular weight polyethylene pipe Granted JPS6371330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61216758A JPS6371330A (en) 1986-09-12 1986-09-12 Manufacture of super high-molecular weight polyethylene pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61216758A JPS6371330A (en) 1986-09-12 1986-09-12 Manufacture of super high-molecular weight polyethylene pipe

Publications (2)

Publication Number Publication Date
JPS6371330A true JPS6371330A (en) 1988-03-31
JPH0378053B2 JPH0378053B2 (en) 1991-12-12

Family

ID=16693451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61216758A Granted JPS6371330A (en) 1986-09-12 1986-09-12 Manufacture of super high-molecular weight polyethylene pipe

Country Status (1)

Country Link
JP (1) JPS6371330A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523793A (en) * 1991-07-22 1993-02-02 Nissan Motor Co Ltd Core making machine
US5527179A (en) * 1994-02-24 1996-06-18 Meiji Seika Kaisha, Ltd. Molding nozzle assembly for producing hollow cylindrical snack foods
CN109776982A (en) * 2018-12-29 2019-05-21 北京安通塑料制品有限公司 A kind of modified polymer material and preparation method thereof
KR102376770B1 (en) * 2021-04-28 2022-03-21 주식회사 뉴보텍 Method and apparatus for manufacturing a pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523793A (en) * 1991-07-22 1993-02-02 Nissan Motor Co Ltd Core making machine
US5527179A (en) * 1994-02-24 1996-06-18 Meiji Seika Kaisha, Ltd. Molding nozzle assembly for producing hollow cylindrical snack foods
CN109776982A (en) * 2018-12-29 2019-05-21 北京安通塑料制品有限公司 A kind of modified polymer material and preparation method thereof
KR102376770B1 (en) * 2021-04-28 2022-03-21 주식회사 뉴보텍 Method and apparatus for manufacturing a pipe

Also Published As

Publication number Publication date
JPH0378053B2 (en) 1991-12-12

Similar Documents

Publication Publication Date Title
US4867928A (en) Apparatus and a method for the production of ribbed pipes
US20200086561A1 (en) Apparatus and methods for additive manufacturing at ambient temperature
AU664309B2 (en) Process and device for producing extrudates from ultra-high molecular weight polyethylene
JPS6371330A (en) Manufacture of super high-molecular weight polyethylene pipe
JPS6254651B2 (en)
EP0489534B1 (en) Extrusion method and extruder for obtaining phenolic resin pipe
US4439390A (en) Process for injection molding of thermoplastics and split mold for effecting same
CN111716672A (en) Special process method for producing PBT plastic plate
CN114523644B (en) Polyethylene large-caliber solid wall pipe forming die
CN101249719B (en) Extrusion method of super high molecular weight polyethylene nearby melting point
CA2060899C (en) Apparatus for manufacturing ribbed pipes
Bigg et al. Continuous extrusion of high‐modulus semicrystalline polymers
JPS59114027A (en) Extrusion molding die
US3308506A (en) Process and apparatus for the continuous production of profiles from thermoplastics
JPH05200859A (en) Slip sheet made of ultrahigh molecular weight polyethylene and production thereof
US11865788B2 (en) Methods and systems for increasing print speed during additive manufacturing
CN117644636A (en) Extrusion molding method and molding equipment for ultrahigh molecular weight polymer
JP3529396B2 (en) Method for manufacturing fluororesin tube
JPS63159030A (en) Manufacture of polyamide pipe containing lubricant
EP0485409A1 (en) Finishing process for extruded profiles
JPH03281214A (en) Extrusion device of thermosetting resin pipe and molding method
JPS6163429A (en) Extrusion molding method of thermosetting resin and device thereof
JPH0667602B2 (en) Method and apparatus for manufacturing ultra high molecular weight polyethylene lining roll
JPS59212234A (en) Extrusion molding of thermoplastic resin
JPH02175125A (en) Hollow molding method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees