JPH0378053B2 - - Google Patents

Info

Publication number
JPH0378053B2
JPH0378053B2 JP61216758A JP21675886A JPH0378053B2 JP H0378053 B2 JPH0378053 B2 JP H0378053B2 JP 61216758 A JP61216758 A JP 61216758A JP 21675886 A JP21675886 A JP 21675886A JP H0378053 B2 JPH0378053 B2 JP H0378053B2
Authority
JP
Japan
Prior art keywords
die
pipe
temperature
molecular weight
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61216758A
Other languages
Japanese (ja)
Other versions
JPS6371330A (en
Inventor
Tadao Matsuo
Hirohide Enami
Takeshi Urabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP61216758A priority Critical patent/JPS6371330A/en
Publication of JPS6371330A publication Critical patent/JPS6371330A/en
Publication of JPH0378053B2 publication Critical patent/JPH0378053B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/475Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pistons, accumulators or press rams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0088Molecular weight

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は超高分子量ポリエチレンパイプの製
造方法に係り、例えば樹脂ライニングロールのラ
イニング用樹脂として使用されるパイプ材、樹脂
ローラー用のパイプ材、樹脂製軸受用のパイプ
材、あるいは土砂等のスラリーを輸送するパイプ
材等に使用される超高分子量ポリエチレンパイプ
の製造方法に関するものである。 (従来の技術) 分子量が百万以上の超高分子量ポリエチレンは
耐衝撃性、耐摩耗性、自己潤滑性、耐薬品性等に
優れた特性を有しているが、汎用の熱可塑性樹脂
に比較して溶融粘度が極めて高く流動性が悪いた
め、通常のスクリユー押出成形や射出成形によつ
て成形することは非常に難しい。そのため、一般
には圧縮成形により成形されているが、パイプを
連続的に成形する場合にはこの成形方法は適用で
きないため、従来はマンドレルを備えたラム押出
機により押出成形する方法が知られている。ま
た、特殊な成形ダイを用いたスクリユー押出機に
よる押出成形方法も提案されている。 (発明が解決しようとする問題点) しかし、マンドレルを備えたラム押出機による
成形はパイプの偏肉精度が悪く、また中心方向の
直線性も悪い。更に、内径がφ10mm以下のパイプ
成形が難しい等の欠点を有していた。 一方、スクリユー押出機による成形は溶融した
超高分子量ポリエチレンがスクリユーによつて剪
断応力を受けて分子鎖が切断し、分子量が低下す
るので押出成形パイプは機械的強度が低下する欠
点があつた。 本発明はこのような点を改善するもので偏肉精
度がよく、機械的強度に優れたパイプを成形する
方法を提供することを目的とする。 (問題点を解決するための手段) 加熱ダイスにスパイダーダイを介して偏肉調製
可能なサイジングダイとこの中に挿入固定したマ
ンドレルから構成されるパイプ成形用ダイを具備
するラム押出機を用いて超高分子量ポリエチレン
パイプを製造する方法において、ラム押出機で加
熱溶融した超高分子量ポリエチレンを所定温度に
温調したサイジングダイで加熱圧縮すると共に偏
肉調整を行い、続いて上記サイジングダイの先端
に向かつて順次温度を降下せしめてサイジングダ
イから押出された成形パイプの外周表面温度を
110℃以下に調整して該パイプを冷却固化せしめ
た超高分子量ポリエチレンパイプの製造方法にあ
る。 次に、本発明の製造方法に使用するラム押出機
について説明する。まず第1図に示されるラム押
出機1は一般に知られたプランジヤータイプのも
のであり、これは加熱装置C1,C2を具備したシ
リンダー2、該シリンダー2内を往復運動するラ
ム3、原料供給部4そしてダイ取付フランジ5か
ら構成されている。このラム押出機1に取付けら
れるパイプ成形用ダイ6は、第2図に示されるよ
うにラム押出機1にパイプ成形ダイ6を接続固定
するための取付フランジ7、ラム押出機で加熱溶
融された超高分子量ポリエチレン樹脂をヒーター
D1で温度調節するための加熱ダイ8、パイプの
内径を規則しマンドレル11を支持するためのス
パイダーダイ9、そしてスパイダー10で分離さ
れた溶融樹脂を圧縮して融着させてパイプ状に成
形するためのサイジングダイ12により構成され
ている。 上記サイジングダイ12はスパイダーダイ9側
にヒーターD3と樹脂出口側に冷却器13を具備
し、ボルト14によつてサイジングダイ12を微
動して偏肉調整を可能にしている。 次に、上記パイプ成形用ダイ6を取付けたラム
押出機1により、超高分子量ポリエチレンパイプ
の製造方法について説明するが、ここで使用する
超高分子量ポリエチレンは分子量が光散乱法で
300万以上、粘度法で100万以上のものをいい、例
えばヘキスト社のHostalen GUR、三井石油化
学工業(株)のハイゼツクスミリオン(Hizex
Million)等が挙げられ、各種配合剤を添加した
配合物も使用できる。 まず、超高分子量ポリエチレンの粉末は原料供
給部4へ投入され、シリンダー2の温度が150〜
250℃の温度範囲に調節された後、ラム3により
パイプ成形用ダイ6側へ加熱溶融された状態で押
出される。 このように加熱、溶融された樹脂はヒーター
D1より150℃から250℃の温度に加熱された加熱
ダイ8中を通過してスパイダーダイ9のスパイダ
ー10へ導入され、このスパイダー10で分離し
た樹脂はサイジングダイ12の入口で径を小さく
しつつパイプ状に圧縮成形される。この場合、超
高分子量ポリエチレンは汎用樹脂の溶融物と異な
り、溶融粘度が高くスパイダーダイ9によるスパ
イダーマークを消すためにスパイダーダイ9とサ
イジングダイ12の間で加熱圧縮する必要があ
る。この加熱温度はヒーターD2で調節し、通常
150〜250℃で、圧縮比は1.1〜5.0、好ましくは1.3
〜3.0の範囲である。もし圧縮が不足すると溶融
物の融着が不十分となり、スパイダーマークが残
つたり極端な場合はパイプ状に成形されず、また
圧縮が過剰になると押出成形不能になる。パイプ
の偏肉調製はサイジングダイ12の位置をボルト
14により行う。 尚、上記圧縮比とはスパイダー10接続部の樹
脂流路の断面積S1とサイジングダイ12内の樹脂
流の比、即ちS1/S2である。 また、サイジングダイ12の入口でパイプ状に
圧縮成形された樹脂は、スパイダー側が150〜250
℃に温調されたサイジングダイ12に入るが、こ
の温度が250℃を超えると樹脂の熱劣化が起こり、
また冷却されている出口側との温度差が極めて大
きくなり、樹脂が急冷され内部応力が残存するの
で好ましくない。 一方、スパイダー側のサイジングダイ温度を
150℃未満に下げると融着不足を来す。 そして、このようにパイプ状に成形された樹脂
は一定の径を有するサイジングダイ12を通過し
てダイ外へ押出されるが、この場合サイジングダ
イ12の一定径を有する長さLとサイジングダイ
12の内径Dの比、即ち、L/Dが5以上である
ことが好ましく、5未満では樹脂が融着不足とな
り、また20を超えるとダイ内圧力が過大になり好
ましくない。 ヒーターD3、冷却器13はサイジングダイ中
の超高分子量ポリエチレンの融着物を融着させ、
次に順次温度を降下させダイ出口のパイプ表面温
度を110℃以下にするためのものである。 マンドレル11はパイプの内径を規制するもの
で、サイジングダイより長くして先端をダイの外
部に出しておくと押出したパイプの先端が内側に
巻き込まれず、またパイプの押出方向がサイジン
グダイ12の中心線上に沿つて押されるので好ま
しい。 (実施例) 超高分子量ポリエチレン(商品名:Hostalen
GUR412、ヘキスト社製)をシリンダー2のヒー
ターC1,C2温度を200℃、加熱ダイのヒーターD2
温度を220℃に設定した油圧プランジヤータイプ
のラム押出機で溶融し、偏肉はサイジングダイ1
2のボルト14によつて調節する。偏肉調製され
た溶融樹脂は220℃より順次温度降下させるため、
ヒーターD3は130℃に設定し、冷却機13として
水冷ジヤケツトを用いてダイ出口で、表面温度95
℃のパイプを得た。得られたパイプ寸法は、外径
φ22.0mm、内径φ8.6mm、偏肉精度は6.7±0.1mmであ
り、外観も良好であり、機械的強度も表の如く、
圧縮成形板と同等であつた。
(Industrial Application Field) The present invention relates to a method for manufacturing ultra-high molecular weight polyethylene pipes, such as pipe materials used as lining resin for resin lining rolls, pipe materials for resin rollers, and pipe materials for resin bearings. The present invention also relates to a method for manufacturing ultra-high molecular weight polyethylene pipes used as pipe materials for transporting slurry such as earth and sand. (Conventional technology) Ultra-high molecular weight polyethylene with a molecular weight of 1 million or more has excellent properties such as impact resistance, abrasion resistance, self-lubricating properties, and chemical resistance, but compared to general-purpose thermoplastic resins Since it has an extremely high melt viscosity and poor fluidity, it is extremely difficult to mold it by conventional screw extrusion molding or injection molding. For this reason, pipes are generally formed by compression molding, but this forming method cannot be applied when continuously forming pipes, so conventionally known methods include extrusion molding using a ram extruder equipped with a mandrel. . Furthermore, an extrusion molding method using a screw extruder using a special molding die has also been proposed. (Problems to be Solved by the Invention) However, when molding is performed using a ram extruder equipped with a mandrel, the accuracy of pipe thickness deviation is poor, and the linearity in the center direction is also poor. Furthermore, it has the disadvantage that it is difficult to form a pipe with an inner diameter of φ10 mm or less. On the other hand, molding using a screw extruder has the disadvantage that the molten ultra-high molecular weight polyethylene is subjected to shear stress by the screw, causing the molecular chains to break and the molecular weight to decrease, resulting in a decrease in the mechanical strength of the extruded pipe. The present invention aims to improve these points and provide a method for forming a pipe with good thickness unevenness accuracy and excellent mechanical strength. (Means for solving the problem) Using a ram extruder equipped with a heating die, a sizing die that can produce uneven thickness through a spider die, and a pipe forming die consisting of a mandrel inserted and fixed into the sizing die. In a method for manufacturing ultra-high molecular weight polyethylene pipes, ultra-high molecular weight polyethylene that has been heated and melted in a ram extruder is heated and compressed using a sizing die that is controlled to a predetermined temperature, and thickness unevenness is adjusted. The outer surface temperature of the formed pipe extruded from the sizing die is
The present invention provides a method for producing an ultra-high molecular weight polyethylene pipe in which the pipe is cooled and solidified at a temperature of 110°C or lower. Next, a ram extruder used in the production method of the present invention will be explained. First, the ram extruder 1 shown in FIG. 1 is of a generally known plunger type, and consists of a cylinder 2 equipped with heating devices C 1 and C 2 , a ram 3 reciprocating within the cylinder 2, It consists of a raw material supply section 4 and a die mounting flange 5. The pipe forming die 6 attached to this ram extruder 1 has a mounting flange 7 for connecting and fixing the pipe forming die 6 to the ram extruder 1, as shown in FIG. Heater for ultra high molecular weight polyethylene resin
A heating die 8 is used to adjust the temperature at D1 , a spider die 9 is used to regulate the inner diameter of the pipe and support the mandrel 11, and a spider 10 compresses and fuses the separated molten resin to form a pipe shape. It is composed of a sizing die 12 for sizing. The sizing die 12 is equipped with a heater D 3 on the spider die 9 side and a cooler 13 on the resin outlet side, and the sizing die 12 is slightly moved by bolts 14 to enable adjustment of uneven thickness. Next, a method for manufacturing an ultra-high molecular weight polyethylene pipe using the ram extruder 1 equipped with the pipe-forming die 6 will be explained.
3 million or more, or 1 million or more according to the viscosity method, such as Hoechst's Hostalen GUR, Mitsui Petrochemical Industries, Ltd.'s Hizex Million (Hizex
Million), etc., and formulations with various additives added can also be used. First, ultra-high molecular weight polyethylene powder is introduced into the raw material supply section 4, and the temperature of the cylinder 2 is set to 150 -
After the temperature is adjusted to a temperature range of 250° C., the ram 3 extrudes the heated and molten state to the pipe forming die 6 side. The heated and melted resin is heated in a heater
D 1 passes through a heating die 8 heated to a temperature of 150°C to 250°C and is introduced into a spider 10 of a spider die 9. The resin separated by this spider 10 is reduced in diameter at the entrance of a sizing die 12. It is then compression molded into a pipe shape. In this case, unlike a melt of a general-purpose resin, ultra-high molecular weight polyethylene has a high melt viscosity and needs to be heated and compressed between the spider die 9 and the sizing die 12 in order to erase the spider marks made by the spider die 9. This heating temperature is regulated by heater D 2 and is normally
150-250℃, compression ratio 1.1-5.0, preferably 1.3
~3.0 range. If compression is insufficient, the fusion of the melt will be insufficient, leaving spider marks or, in extreme cases, failing to be formed into a pipe shape, and if compression is excessive, extrusion will not be possible. The uneven thickness of the pipe is adjusted by adjusting the position of the sizing die 12 using bolts 14. Note that the compression ratio is the ratio of the cross-sectional area S 1 of the resin flow path at the connection portion of the spider 10 to the resin flow inside the sizing die 12, that is, S 1 /S 2 . In addition, the resin compressed into a pipe shape at the entrance of the sizing die 12 has a diameter of 150 to 250 on the spider side.
It enters the sizing die 12 whose temperature is controlled at ℃, but if this temperature exceeds 250℃, thermal deterioration of the resin will occur.
Further, the temperature difference between the outlet side and the cooled outlet side becomes extremely large, which is not preferable because the resin is rapidly cooled and internal stress remains. On the other hand, the sizing die temperature on the spider side is
If the temperature is lowered to less than 150℃, insufficient fusion will occur. The resin thus formed into a pipe shape passes through a sizing die 12 having a constant diameter and is extruded out of the die. The ratio of the inner diameter D, that is, L/D, is preferably 5 or more; if it is less than 5, the resin will be insufficiently fused, and if it exceeds 20, the pressure inside the die will be undesirably excessive. The heater D 3 and the cooler 13 fuse the ultra-high molecular weight polyethylene in the sizing die,
Next, the temperature is sequentially lowered to bring the pipe surface temperature at the die outlet to 110°C or less. The mandrel 11 regulates the inner diameter of the pipe, and if it is made longer than the sizing die and its tip is exposed outside the die, the tip of the extruded pipe will not get caught inside, and the extrusion direction of the pipe will be aligned with the center of the sizing die 12. This is preferable because it is pressed along the line. (Example) Ultra-high molecular weight polyethylene (product name: Hostalen
GUR412, manufactured by Hoechst), the temperature of cylinder 2's heaters C 1 and C 2 is 200℃, and the heating die's heater D 2
It is melted using a hydraulic plunger type ram extruder set at a temperature of 220℃, and uneven thickness is removed using sizing die 1.
It is adjusted by the bolt 14 of No.2. The temperature of the molten resin prepared with uneven thickness is lowered sequentially from 220℃.
Heater D 3 is set at 130°C, and a water cooling jacket is used as cooler 13 to reduce the surface temperature to 95°C at the die outlet.
C pipe was obtained. The obtained pipe dimensions were an outer diameter of 22.0 mm, an inner diameter of 8.6 mm, and a wall thickness deviation accuracy of 6.7 ± 0.1 mm.The appearance was good, and the mechanical strength was as shown in the table.
It was equivalent to a compression molded plate.

【表】【table】

【表】 (発明の効果) このように本発明の方法は、超高分子量ポリエ
チレンをラム押出機で150〜250℃の温度範囲に加
熱溶融し、スパイダーとスパイダー側を150〜250
℃に温調したサイジングダイで加熱圧縮すると共
に偏肉調整を行い、次に順次温度を降下し、パイ
プの外周表面温度を110℃以下に冷却固化するも
ので、これにより偏肉精度が良く、機械的強度に
優れたパイプが成形でき、また内径φ10mm以下の
ものも成形可能であり、ライニング用樹脂として
使用されるパイプ材、あるいは土砂スラリーを輸
送するパイプ材に適した超高分子量ポリエチレン
パイプを製造することが出来る効果がある。
[Table] (Effects of the invention) As described above, in the method of the present invention, ultra-high molecular weight polyethylene is heated and melted in a ram extruder to a temperature range of 150 to 250°C, and the spider and spider side are heated to a temperature range of 150 to 250°C.
The pipe is heated and compressed using a sizing die whose temperature is controlled at ℃, and the uneven thickness is adjusted.Then, the temperature is gradually lowered, and the outer surface temperature of the pipe is cooled and solidified to below 110℃.This allows for good thickness unevenness accuracy. We can mold pipes with excellent mechanical strength, and we can also mold pipes with an inner diameter of less than φ10 mm, making ultra-high molecular weight polyethylene pipes suitable for pipe materials used as lining resin or pipe materials for transporting earth and sand slurry. It has the effect of being able to be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法において使用するラ
ム押出機の概略図、第2図はパイプ成形用ダイの
断面図、そして第3図は第2図のA−A断面図で
ある。 1…ラム押出機、6…パイプ成形用ダイ、8…
加熱ダイ、9…スパイダーダイ、10…スパイダ
ー、11…マンドレル、12…サイジングダイ。
FIG. 1 is a schematic diagram of a ram extruder used in the manufacturing method of the present invention, FIG. 2 is a sectional view of a pipe-forming die, and FIG. 3 is a sectional view taken along line AA in FIG. 1... Ram extruder, 6... Pipe forming die, 8...
Heating die, 9... Spider die, 10... Spider, 11... Mandrel, 12... Sizing die.

Claims (1)

【特許請求の範囲】[Claims] 1 加熱ダイにスパイダーダイを介して偏肉調整
可能なサイジングダイとこの中に挿入固定された
マンドレルから構成されるパイプ成形用ダイを具
備するラム押出機を用いて超高分子量ポリエチレ
ンパイプを製造する方法において、ラム押出機で
加熱溶融した超高分子量ポリエチレンを所定温度
に温調したサイジングダイで加熱圧縮すると共に
偏肉調整を行い、続いて上記サイジングダイの先
端に向かつて順次温度を降下せしめてサイジング
ダイから押出された成形パイプの外周表面を110
℃以下に調整して該パイプを冷却固化せしめたこ
とを特徴とする超高分子量ポリエチレンパイプの
製造方法。
1. An ultra-high molecular weight polyethylene pipe is manufactured using a ram extruder equipped with a pipe-forming die consisting of a heating die, a sizing die that can adjust thickness unevenness via a spider die, and a mandrel inserted and fixed into the sizing die. In the method, ultra-high molecular weight polyethylene heated and melted in a ram extruder is heated and compressed in a sizing die whose temperature is controlled to a predetermined temperature, and uneven thickness is adjusted, and then the temperature is gradually lowered toward the tip of the sizing die. The outer peripheral surface of the formed pipe extruded from the sizing die is 110
A method for producing an ultra-high molecular weight polyethylene pipe, characterized in that the pipe is cooled and solidified by adjusting the temperature to below °C.
JP61216758A 1986-09-12 1986-09-12 Manufacture of super high-molecular weight polyethylene pipe Granted JPS6371330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61216758A JPS6371330A (en) 1986-09-12 1986-09-12 Manufacture of super high-molecular weight polyethylene pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61216758A JPS6371330A (en) 1986-09-12 1986-09-12 Manufacture of super high-molecular weight polyethylene pipe

Publications (2)

Publication Number Publication Date
JPS6371330A JPS6371330A (en) 1988-03-31
JPH0378053B2 true JPH0378053B2 (en) 1991-12-12

Family

ID=16693451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61216758A Granted JPS6371330A (en) 1986-09-12 1986-09-12 Manufacture of super high-molecular weight polyethylene pipe

Country Status (1)

Country Link
JP (1) JPS6371330A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523793A (en) * 1991-07-22 1993-02-02 Nissan Motor Co Ltd Core making machine
JP2945263B2 (en) * 1994-02-24 1999-09-06 明治製菓株式会社 Mold nozzle device for producing cylindrical hollow snacks
CN109776982A (en) * 2018-12-29 2019-05-21 北京安通塑料制品有限公司 A kind of modified polymer material and preparation method thereof
KR102376770B1 (en) * 2021-04-28 2022-03-21 주식회사 뉴보텍 Method and apparatus for manufacturing a pipe

Also Published As

Publication number Publication date
JPS6371330A (en) 1988-03-31

Similar Documents

Publication Publication Date Title
US4154893A (en) Production of thermoplastic billets and preforms
CN206357607U (en) Double-layer composite pipe extruded mould
CN201120715Y (en) Extrusion equipment for fire resistant polymer rod bar
US3402427A (en) Apparatus for extruding plastics
JPH0378053B2 (en)
CN113043571B (en) Ultra-high molecular weight polyethylene pipe co-extrusion die and method
JPS5924633A (en) Manufacture of ultra-high-molecular-weight polyethylene pipe and pipe molding die
US5139730A (en) Method and apparatus for manufacturing ribbed pipe
EP0489534B1 (en) Extrusion method and extruder for obtaining phenolic resin pipe
US4501549A (en) Injection mold with replacable insert in mold cavity outlet opening
CN101249719B (en) Extrusion method of super high molecular weight polyethylene nearby melting point
JPS6226296B2 (en)
JPH0259330A (en) Manufacture of peek resin pipe
KR101693329B1 (en) mold and method for manufacturing sash using it
CN107186993A (en) A kind of tube forming equipment extrusion die
US3308506A (en) Process and apparatus for the continuous production of profiles from thermoplastics
CN117644636A (en) Extrusion molding method and molding equipment for ultrahigh molecular weight polymer
CN107471572A (en) A kind of hot-working plastic mould for possessing cooling device
CN205416229U (en) Mold
CN1326684C (en) Internal hole shaping method for extruded plastic product
JPH05131526A (en) Manufacture of resin pipe and molding die device for the pipe
CN113105680B (en) Ultrahigh molecular weight polyethylene pipe and production process thereof
JPH0324349Y2 (en)
JPH0717466Y2 (en) Screw cylinder for ultra high molecular weight polyethylene
CN206780959U (en) A kind of mould of hollow type bar spices product

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees