JPH0717466Y2 - Screw cylinder for ultra high molecular weight polyethylene - Google Patents

Screw cylinder for ultra high molecular weight polyethylene

Info

Publication number
JPH0717466Y2
JPH0717466Y2 JP11520189U JP11520189U JPH0717466Y2 JP H0717466 Y2 JPH0717466 Y2 JP H0717466Y2 JP 11520189 U JP11520189 U JP 11520189U JP 11520189 U JP11520189 U JP 11520189U JP H0717466 Y2 JPH0717466 Y2 JP H0717466Y2
Authority
JP
Japan
Prior art keywords
cooling
cylinder
jacket
heater
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11520189U
Other languages
Japanese (ja)
Other versions
JPH0352130U (en
Inventor
明 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP11520189U priority Critical patent/JPH0717466Y2/en
Publication of JPH0352130U publication Critical patent/JPH0352130U/ja
Application granted granted Critical
Publication of JPH0717466Y2 publication Critical patent/JPH0717466Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は超高分子量ポリエチレンを原料とし、射出成形
を行うための射出成形機に係り、特に超高分子量ポリエ
チレン用スクリューシリンダに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to an injection molding machine for injection molding using ultrahigh molecular weight polyethylene as a raw material, and more particularly to a screw cylinder for ultrahigh molecular weight polyethylene.

(従来の技術) 分子量が極めて高い超高分子量ポリエチレンは、耐衝撃
性や耐寒性に優れており、また自己潤滑性を有するた
め、工業用小型部品の材料等にも適している。
(Prior Art) Ultra-high molecular weight polyethylene having an extremely high molecular weight has excellent impact resistance and cold resistance, and also has self-lubricating properties, and is therefore suitable as a material for small industrial parts.

このような超高分子量ポリエチレンにより、小型部品等
を形成する手段として、射出成形や押出成形が行われて
いる。
Injection molding and extrusion molding are performed as means for forming small parts and the like with such ultra-high molecular weight polyethylene.

しかしながら、射出成形機を用いて成形する場合、超高
分子量ポリエチレン原料は粉末粒子状であり、また、成
形品自体摺動部材に使用されるように滑り特性が良好で
あるため、通常のスクリューシリンダでは材料とシリン
ダ間でスリップし材料がスクリュー前方に輸送されない
と云う問題がある。
However, when molding using an injection molding machine, the ultra-high molecular weight polyethylene raw material is in the form of powder particles, and because the molded product itself has good sliding characteristics as used for sliding members, it is not possible to use ordinary screw cylinders. Then, there is a problem that the material slips between the cylinder and the material is not transported forward of the screw.

超高分子量ポリエチレン原料は、このように従来の一般
スクリューシリンダでは可塑計量が不可能であるため、
特開昭60−250931号公報や特開昭60−9723号公報に開示
されているようにスクリューシリンダの供給部内周面に
放射状の溝を設け、強制フィード力を増したり、供給ゾ
ーンを冷却ジャケットや冷却フィンで冷却し、スクリュ
ーシリンダ内の樹脂溶融開始点を遅らせ固体輸送領域長
さを延ばすことによりフィード力を増すことで対処して
いる。
Since ultra-high-molecular-weight polyethylene raw materials cannot be plastic-metered by conventional conventional screw cylinders,
As disclosed in JP-A-60-250931 and JP-A-60-9723, radial grooves are provided on the inner peripheral surface of the screw cylinder supply portion to increase the forced feed force or to cool the supply zone with a cooling jacket. This is dealt with by increasing the feed force by delaying the resin melting start point in the screw cylinder and extending the length of the solid transport region by cooling with a cooling fin or a cooling fin.

(考案が解決しようとする課題) しかしながらスクリューシリンダの上記の溝加工は一般
材料のスクリューシリンダに追加の加工を必要とするた
め、シリンダが高価となるのみならず、溝加工したシリ
ンダを一般材料に用いると、固体フィード力が大きくな
り過ぎてしまい、材料が固体のままスクリュー圧縮ゾー
ン部へ圧密化されてしまい、スクリュー回転が不可能と
なったり、スクリュー圧縮ゾーン部での圧力急増のため
樹脂剪断発熱が大きくなり樹脂焼けの原因となったりす
るため、一般材料用としては使用できないと云う問題が
あった。すなわち溝付きシリンダは超高分子量ポリエチ
レン等の滑り特性の良い材料対応の特殊シリンダとなっ
てしまう。
(Problems to be solved by the invention) However, since the above groove machining of the screw cylinder requires additional machining to the screw cylinder made of a general material, not only the cylinder becomes expensive, but also the grooved cylinder is made into a general material. If it is used, the solid feed force will become too large, and the material will be consolidated into the screw compression zone as it is a solid, making it impossible to rotate the screw or causing resin shearing due to a sudden increase in pressure in the screw compression zone. There is a problem that it cannot be used as a general material because it generates a large amount of heat and causes resin burning. That is, the grooved cylinder becomes a special cylinder corresponding to a material having good sliding characteristics such as ultra-high molecular weight polyethylene.

また、スクリューシリンダフィード部のヒータ加熱を完
全に取りやめ冷却水ジャケットで冷却したり、フィンで
冷却したりする場合は、超高分子量ポリエチレン以外の
一般の材料の成形時には、冷却水ジャケットや冷却フィ
ンを取り外して通常のヒータ加熱に交換しなければなら
ないと云う面倒さがあった。
In addition, when the heater heating of the screw cylinder feed section is completely stopped and cooling is performed with the cooling water jacket or cooling with fins, when molding general materials other than ultra high molecular weight polyethylene, use the cooling water jacket and cooling fins. There was the trouble that it had to be removed and replaced with normal heater heating.

さらに、フィン冷却や冷却水ジャケットのみでは外気温
や冷却水温および冷却水量に温度が影響されるため冷却
温調が不安定であり、長期連続成形には不向きであっ
た。
Further, the cooling temperature control is unstable because the temperature is affected by the outside air temperature, the cooling water temperature, and the cooling water amount only with the fin cooling and the cooling water jacket, and it is not suitable for long-term continuous molding.

こうした従来の一般材料用の構造としては、第5図に示
すように、ホッパ11の下部に設けられたスクリューシリ
ンダ12の熱電対位置で、図ではH1,H2,H3の3ケ所のう
ち、H3の位置に設けたヒータ15は熱電対H3での温度検出
で、そのON,OFFを調整し所定温度になるように制御しな
ければならなかった。図中、13はスクリュー、14はノズ
ル部、15はヒータ、16は冷却水ジャケットである。
As shown in FIG. 5, the structure for such a conventional general material is the thermocouple position of the screw cylinder 12 provided in the lower part of the hopper 11, and in the figure, H3, The heater 15 provided at the position was detected by the thermocouple H3, and it was necessary to adjust ON / OFF to control the heater 15 to reach a predetermined temperature. In the figure, 13 is a screw, 14 is a nozzle part, 15 is a heater, and 16 is a cooling water jacket.

本考案はこれに鑑み、超高分子量ポリエチレンのみなら
ず一般の樹脂材料も可塑計量可能で、しかも超高分子量
ポリエチレン等の滑り特性の良好な材料を安定して可塑
計量を行うことのできる超高分子量ポリエチレン用スク
リューシリンダを提供することを目的としてなされたも
のである。
In view of this, the present invention is capable of plastic weighing not only ultrahigh molecular weight polyethylene but also general resin materials, and is capable of performing stable plastic weighing of materials with good sliding characteristics such as ultrahigh molecular weight polyethylene. The purpose of the present invention is to provide a screw cylinder for molecular weight polyethylene.

(課題を解決するための手段) 上記目的を達成するため本考案は、ホッパ内の原料を受
入れ、回転可能に設けたスクリューにより、溶融した原
料を先端のノズル部から金型のキャビティ内に注入する
ようにした射出成形機のスクリューシリンダにおいて、
ホッパ下方に位置する冷却水ジャケットと、前記ノズル
部に至る熱電対挿入各位置の間に複数の加熱ヒータを配
設すると共に、シリンダ熱電対を挟んで加熱ヒータの間
にはシリンダ熱電対H3部温度を調節する水冷ジャケット
を配設したことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention receives a raw material in a hopper and injects the molten raw material into a cavity of a mold from a nozzle portion at a tip by a screw rotatably provided. In the screw cylinder of the injection molding machine,
A plurality of heaters are installed between the cooling water jacket located below the hopper and each position where the thermocouple is inserted to reach the nozzle portion, and the cylinder thermocouple H3 part is placed between the heaters with the cylinder thermocouple interposed therebetween. It is characterized in that a water cooling jacket for adjusting the temperature is provided.

(作用) 上記構成によりシリンダ熱電対を高温設定する場合に
は、水冷ジャケットの流水を止め、加熱ヒータで加熱
し、また、逆に冷却する場合には、水冷ジャケットに流
水し、加熱ヒータで所定の温度に温度調整するものであ
る。
(Operation) When the cylinder thermocouple is set to a high temperature by the above configuration, stop the flowing water of the water cooling jacket and heat it by the heating heater. Conversely, when cooling it in the opposite direction, flow it to the water cooling jacket and set it by the heating heater. The temperature is adjusted to the temperature of.

(実施例) 以下、本考案を第1図乃至第2図に示す実施例を参照し
て説明する。
(Embodiment) Hereinafter, the present invention will be described with reference to an embodiment shown in FIGS.

本考案にかかる超高分子量ポリエチレン用スクリューシ
リンダは、第1図に示すようにホッパ1内の原料を下部
のシリンダ2内に受入れ、該シリンダ2内で回転可能に
設けたスクリュー3により、溶融した原料を先端のノズ
ル部4から金型のキャビティ5内に注入するようにした
射出成形機のスクリューシリンダにおいて、ホッパ1下
方に位置する冷却水ジャケット6と、前記ノズル部4に
至るシリンダ熱電対(実施例ではH1,H2,H3)の挿入各位
置の間に複数(実施例では3個)の加熱ヒータ7,8,9を
ノズル部4側から順に配設すると共に、加熱ヒータ8と
加熱ヒータ9の間にはシリンダ熱電対H3部温度を調節す
る水冷ジャケット10を配設したしたもので構成されてい
る。
The screw cylinder for ultra high molecular weight polyethylene according to the present invention, as shown in FIG. 1, receives the raw material in the hopper 1 in the lower cylinder 2 and melts it by the screw 3 rotatably provided in the cylinder 2. In a screw cylinder of an injection molding machine in which a raw material is injected into a cavity 5 of a mold from a nozzle portion 4 at a tip, a cooling water jacket 6 located below a hopper 1 and a cylinder thermocouple (a cylinder thermocouple reaching the nozzle portion 4) A plurality of (three in the embodiment) heaters 7, 8, 9 are arranged in order from the nozzle portion 4 side between the respective insertion positions (H1, H2, H3) in the embodiment, and the heater 8 and the heater A water cooling jacket 10 for adjusting the temperature of the cylinder thermocouple H3 portion is arranged between the parts 9.

したがって加熱ヒータ9は、熱電対H3の位置からホッパ
1の冷却水ジャケット6寄りにのみ配設され、熱電対3H
での温度検出で所定の温度となるように制御されるよう
になっている。
Therefore, the heater 9 is provided only near the cooling water jacket 6 of the hopper 1 from the position of the thermocouple H3, and the thermocouple 3H
The temperature is detected so that the temperature is controlled to a predetermined temperature.

そして熱電対H3からノズル部4寄りの部分には水冷ジャ
ケット10が配設されている。
A water cooling jacket 10 is arranged in the portion near the nozzle portion 4 from the thermocouple H3.

つぎに作用を説明する。Next, the operation will be described.

第2図に示すようにシリンダ2は熱的に連続体であり、
温度分布は不連続とはならず必ず連続した温度分布をも
っている。
As shown in FIG. 2, the cylinder 2 is a thermally continuous body,
The temperature distribution does not become discontinuous but always has a continuous temperature distribution.

これを例えば、第5図に示した従来方式で熱電対の各ゾ
ーンH1,H2,H3部を200℃に設定しホッパ11の冷却水ジャ
ケット16に冷却水を流水して、このときの冷却水温度を
25℃程度とすると第2図ではの如き分布になる。
For example, according to the conventional method shown in FIG. 5, each zone H1, H2, H3 of the thermocouple is set to 200 ° C., and the cooling water is flown into the cooling water jacket 16 of the hopper 11, and the cooling water at this time is set. Temperature
When the temperature is about 25 ° C, the distribution is as shown in Fig. 2.

この状態ではH3部を50℃としても、温度分布はの如き
状態となり、H3部は130℃以下にはならない。
In this state, even if the H3 part is set to 50 ° C, the temperature distribution is as shown below, and the H3 part does not fall below 130 ° C.

つぎにH2部を100℃と設定しても温度分布はの如くな
り、H2部は170℃以下にはならない。
Next, even if the H2 part is set to 100 ° C, the temperature distribution becomes as follows, and the H2 part does not fall below 170 ° C.

これをやの温度分布以下にしょうとすると、第3図
に示すように冷却水ジャケット16をノズル部14方向に延
長して、従来のH3部に設けたり、第4図に示すように従
来のH3部に冷却フィン17を設けなければならない。
If this is to be kept below the temperature distribution of Y, as shown in FIG. 3, the cooling water jacket 16 is extended in the direction of the nozzle portion 14 and provided in the conventional H3 portion, or as shown in FIG. The cooling fin 17 must be provided in the H3 part.

したがって第3図のように水冷ジャケット16を用いた場
合には第2図の如く温度分布も可能になり、第4図の
ように冷却フィン17を用いた場合には、第2図の如く
温度分布も可能となり、超高分子量ポリエチレンの可塑
計量が可能となる。しかしながら逆に第3図、第4図の
例では、第2図より高い温度分布は不可能であり、一
般の樹脂材料の可塑計量が不可能であった。
Therefore, when the water cooling jacket 16 is used as shown in FIG. 3, temperature distribution becomes possible as shown in FIG. 2, and when the cooling fins 17 are used as shown in FIG. Distribution is also possible, and plastic weighing of ultra high molecular weight polyethylene is possible. However, conversely, in the examples of FIGS. 3 and 4, higher temperature distribution than that of FIG. 2 is impossible, and plastic measurement of general resin materials is impossible.

なお、第3図および第4図において、第5図に示すもの
と共通する部品については同一符号を付して説明を省略
してある。
In FIGS. 3 and 4, parts common to those shown in FIG. 5 are designated by the same reference numerals and description thereof is omitted.

これに対して第1図(本考案)は、熱電対位置H3部とH2
部の間に水冷ジャケット10を設けているので、第2図の
やよりもH2部とH3部の中間の温度を下げることがで
きる。
On the other hand, Fig. 1 (present invention) shows the thermocouple positions H3 and H2.
Since the water cooling jacket 10 is provided between the parts, it is possible to lower the intermediate temperature between the H2 part and the H3 part as compared with FIG.

このとき加熱ヒータ9がONしない設定条件とすれば、加
熱ヒータ9は冷却フィンのない放熱部となり、第2図
やの設定が可能となる。
At this time, if the setting condition that the heater 9 is not turned on is set, the heater 9 serves as a heat radiating portion having no cooling fin, and the settings shown in FIG.

例えば、H3部の設定を50℃とすれば、温度分布は第2図
のように調整される。
For example, if the H3 part is set to 50 ° C., the temperature distribution is adjusted as shown in FIG.

また、水冷ジャケット6の流水を停止すれば、水冷ジャ
ケット6が放熱部となり、H3部は加熱ヒータ9により加
熱温度調整することもでき、H1,H2,H3を200℃と設定す
れば、第2図′の如き温度分布となり、通常一般の樹
脂材料の可塑計量も可能となる。
Moreover, if the water cooling jacket 6 is stopped, the water cooling jacket 6 becomes a heat radiating part, and the heating temperature of the H3 part can be adjusted by the heater 9. If H1, H2, and H3 are set to 200 ° C., the second The temperature distribution is as shown in the figure, and it is also possible to measure plasticity of ordinary general resin materials.

なお、本実施例はシリンダ2後部の冷却水ジャケット6
寄りの加熱ヒータ9とその前部の加熱ヒータ8との間に
水冷ジャケット10を配列した場合について説明したが、
これに限定したものではないことは云うまでもない。
In this embodiment, the cooling water jacket 6 at the rear of the cylinder 2 is used.
The case where the water cooling jacket 10 is arranged between the heater 9 near the heater and the heater 8 in front of the heater has been described.
It goes without saying that the present invention is not limited to this.

(考案の効果) 本考案は以上説明したように構成したから、従来H3部の
加熱ヒータの一部を水冷ジャケットと交換するのみでよ
く、安価に製作することができる。すなわち、水冷ジャ
ケットに流水すれば、第3図,第4図の如きフィード部
冷却を行った効果が得られる。また、第3図,第4図の
方法ではフィード部の冷却は冷却水温や外気温により安
定性に欠けるが、本考案を用いた場合ではH3部の温度調
整も可能であり、所定の値に制御されるため、安定性も
良好である。
(Effects of the Invention) Since the present invention is configured as described above, it is sufficient to replace part of the heater of the conventional H3 part with the water cooling jacket, and it can be manufactured at low cost. That is, if the water cooling jacket is run, the effect of cooling the feed portion as shown in FIGS. 3 and 4 can be obtained. Further, in the method of FIGS. 3 and 4, the cooling of the feed part lacks stability depending on the cooling water temperature and the outside air temperature, but when the present invention is used, the temperature of the H3 part can be adjusted to a predetermined value. Since it is controlled, stability is also good.

さらに、水冷ジャケットへの流水を停止すれば、H3部を
高く設定することも可能となり、容易に一般樹脂材料可
塑計量も可能となるので水冷ジャケットや冷却フィンの
交換も不要となる。
Furthermore, by stopping the flow of water to the water cooling jacket, it is possible to set the H3 portion to a high value, and it is also possible to easily measure the plasticity of general resin materials, so there is no need to replace the water cooling jacket or cooling fins.

すなわち、超高分子量ポリエチレンも通常樹脂材料も同
じスクリューシリンダで可塑計量が可能であり、改造も
容易であるから製作も安価になる優れた効果を得ること
ができる。
That is, both ultra-high-molecular-weight polyethylene and ordinary resin materials can be plastically measured with the same screw cylinder, and can be easily remodeled, so that an excellent effect that manufacturing is inexpensive can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案にかかる超高分子量ポリエチレン用スク
リューシリンダの一実施例を示す断面図、第2図は第1
図のスクリューシリンダの熱電対各位置とシりンダ温度
分布の関係を示すグラフ、第3図乃至第5図は従来のス
クリューシリンダの断面図で、第3図はシリンダの外周
に2個のヒータと延長した冷却水ジャケットを設けた場
合、第4図は第3図の冷却水ジャケットの長さを縮小し
ヒータとの間に冷却フィンを設けた場合、第5図は第4
図の冷却フィンの代わりにヒータをもう1個設けた場合
を示す。 1……ホッパ、2……シリンダ(スクリュー)、3……
スクリュー、4……ノズル部、5……金型のキャビテ
ィ、6……冷却水ジャケット、7,8,9……加熱ヒータ、1
0……水冷ジャケット、H1,H2,H3……シリンダ熱電対。
FIG. 1 is a sectional view showing an embodiment of a screw cylinder for ultra high molecular weight polyethylene according to the present invention, and FIG.
FIG. 3 is a graph showing the relationship between each position of the thermocouple of the screw cylinder and the Cinder temperature distribution, FIGS. 3 to 5 are sectional views of a conventional screw cylinder, and FIG. 3 shows two heaters on the outer circumference of the cylinder. When the cooling water jacket is extended, the length of the cooling water jacket of FIG. 3 is reduced and cooling fins are provided between the heater and the heater of FIG.
The case where another heater is provided instead of the cooling fins in the figure is shown. 1 ... Hopper, 2 ... Cylinder (screw), 3 ...
Screw, 4 Nozzle, 5 Mold cavity, 6 Cooling water jacket, 7,8,9 Heater, 1
0 …… Water cooling jacket, H1, H2, H3 …… Cylinder thermocouple.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】ホッパ(1)内の原料を受入れ、回転可能
に設けたスクリュー(3)により、溶融した原料を先端
のノズル部(4)から金型のキャビティ(5)内に注入
するようにした射出成形機のスクリューシリンダ(2)
において、ホッパ(1)の下方に位置する冷却水ジャケ
ット(6)と前記ノズル部(4)の間に、複数の熱電対
H1、H2、H3、複数の加熱ヒータ(7、8、9)及び水冷
ジャケット(10)を配設し、冷却水ジャケット(6)に
最も近い加熱ヒータ(9)は冷却水ジャケット(6)と
水冷ジャケット(10)に挟まれ、かつ水冷ジャケット
(10)と加熱ヒータ(9)の間に熱電対H3を挿入したこ
とを特徴とする超高分子量ポリエチレン用スクリューシ
リンダ。
1. A raw material in a hopper (1) is received, and a molten raw material is injected into a cavity (5) of a mold from a nozzle portion (4) at a tip end by a rotatably provided screw (3). Cylinder for injection molding machine (2)
A plurality of thermocouples between the cooling water jacket (6) located below the hopper (1) and the nozzle portion (4).
H1, H2, H3, a plurality of heaters (7, 8, 9) and a water cooling jacket (10) are arranged, and the heater (9) closest to the cooling water jacket (6) is the cooling water jacket (6). A screw cylinder for ultra high molecular weight polyethylene, characterized in that it is sandwiched between water cooling jackets (10) and a thermocouple H3 is inserted between the water cooling jacket (10) and the heater (9).
JP11520189U 1989-09-29 1989-09-29 Screw cylinder for ultra high molecular weight polyethylene Expired - Lifetime JPH0717466Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11520189U JPH0717466Y2 (en) 1989-09-29 1989-09-29 Screw cylinder for ultra high molecular weight polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11520189U JPH0717466Y2 (en) 1989-09-29 1989-09-29 Screw cylinder for ultra high molecular weight polyethylene

Publications (2)

Publication Number Publication Date
JPH0352130U JPH0352130U (en) 1991-05-21
JPH0717466Y2 true JPH0717466Y2 (en) 1995-04-26

Family

ID=31663539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11520189U Expired - Lifetime JPH0717466Y2 (en) 1989-09-29 1989-09-29 Screw cylinder for ultra high molecular weight polyethylene

Country Status (1)

Country Link
JP (1) JPH0717466Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175805A (en) * 2004-12-24 2006-07-06 Auto Network Gijutsu Kenkyusho:Kk Plasticizing apparatus of resin material
JP2008213400A (en) * 2007-03-07 2008-09-18 Niigata Machine Techno Co Ltd Cooling mechanism of heating tube of injection molding machine

Also Published As

Publication number Publication date
JPH0352130U (en) 1991-05-21

Similar Documents

Publication Publication Date Title
US5871786A (en) Tip heated hot runner nozzle
US3751014A (en) Apparatus for extruding synthetic plastic resins at low temperatures
JPH0717466Y2 (en) Screw cylinder for ultra high molecular weight polyethylene
JP2571523B2 (en) Injection screw
JPH0433616B2 (en)
JPH025932Y2 (en)
EP3433645A1 (en) System and method for conformal cooling during a lens manufacturing process
US3226766A (en) Plasticizing and conveying device
CN108859007A (en) Hot flow path heats mouth structure and the injection mold with it
JPH0199825A (en) Injection molder wherein charged resin is preheated
JP6488120B2 (en) Injection molding machine
JP2998923B2 (en) Injection nozzle
JP3553270B2 (en) Injection screw
JPH054207B2 (en)
JP2004314399A (en) Temperature adjusting device of molding machine
JPS6371330A (en) Manufacture of super high-molecular weight polyethylene pipe
JPS63296912A (en) Injection molding device
CA2064329A1 (en) Molding machine
JPS5925634Y2 (en) Injection molding machine
JP3104850B2 (en) Injection screw
JPH02202418A (en) Plasticizing device of injection molding machine
JPS6161809A (en) Resin blow molding machine
JP2000006221A (en) Injection molding device
CN207578784U (en) Dismountable heat-insulated die head
US6412543B1 (en) Method for controlling solidification rate of a mold-cast structure