JPS6254651B2 - - Google Patents

Info

Publication number
JPS6254651B2
JPS6254651B2 JP57133748A JP13374882A JPS6254651B2 JP S6254651 B2 JPS6254651 B2 JP S6254651B2 JP 57133748 A JP57133748 A JP 57133748A JP 13374882 A JP13374882 A JP 13374882A JP S6254651 B2 JPS6254651 B2 JP S6254651B2
Authority
JP
Japan
Prior art keywords
die
pipe
cooling
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57133748A
Other languages
Japanese (ja)
Other versions
JPS5924633A (en
Inventor
Toshio Kobayashi
Fukuhiro Yoshimura
Haruki Nagaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP57133748A priority Critical patent/JPS5924633A/en
Publication of JPS5924633A publication Critical patent/JPS5924633A/en
Publication of JPS6254651B2 publication Critical patent/JPS6254651B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0088Molecular weight

Description

【発明の詳細な説明】 本発明は超高分子量ポリエチレンパイプの製造
方法及びパイプ成形用ダイに関する。 分子量1000000以上の超高分子量ポリエチレン
は、耐衝撃性、耐摩耗性、自己潤滑性、耐薬品性
等に優れており、エンジニアリングプラスチツク
の一つとして広く用いられている。しかしながら
汎用の樹脂に比較して溶融粘度が極めて高く、流
動性が悪いため、通常の押出成形や射出成形によ
つて成形することは非常に難かしく、その為一般
には圧縮成形によつて成形しているが、パイプ、
ロツド等の長尺物を圧縮成形により成形すること
は殆ど不可能に近い。超高分子量ポリエチレンパ
イプを連続的に製造する装置としてマンドレルを
備えラム押出機(特開昭55―28896号)が提案さ
れているが、ラム押出機は成形速度に劣る、偏肉
精度に劣る等の欠点を有している。成形速度の向
上はスクリユー押出機を使用することにより計れ
るが、前述の如く超高分子量ポリエチレンは溶融
粘度が極めて高く、流動性に劣るため、汎用樹脂
のパイプ成形用ダイでは偏肉調整が出来ず、樹脂
の融着が不十分であり、また通常の減圧フオーマ
ーあるいは内圧によるサイジング(外径もしくは
内径規制)が出来ず、しかも急冷すると内部応力
が残り物性が低下するので、良好なパイプを製造
することは困難であつた。そこで本発明者等は、
通常のスクリユー押出機で成形可能なパイプ成形
用ダイの開発について検討した結果、加熱ダイと
冷却サイジングダイとからなる特殊なダイが超高
分子量ポリエチレンパイプの製造に好適なことが
分かり本発明を完成するに至つた。 すなわち本発明は、超高分子量ポリエチレンを
スクリユー押出機で溶融し、ブレーカープレート
で分散し、スパイダーダイと加熱ダイ入口との間
で加熱圧縮するとともに偏肉調整し、加熱ダイ中
で250ないし150℃の範囲で順次温度を下げながら
融着し、引き続きテーパー型冷却サイジングダイ
中で100℃ないし常温の範囲で順次温度を降下さ
せながら冷却固化することを特徴とする超高分子
量ポリエチレンパイプの製造方法及び押出機側か
らブレーカープレート、スパイダーダイ、スパイ
ダーダイ接続部の樹脂流路の断面積S1と加熱ダイ
接続部の樹脂流路の断面積S2との比(S1/S2)が
2ないし5及び加熱ダイ接続部に偏肉調整リング
を備えたテーパーダイ、L/Dが1ないし10の加
熱ダイ及びL/Dが1ないし10及び加熱ダイとの
接続部の樹脂流路の断面積S3とテーパー型冷却サ
イジングダイ出口の樹脂流路の断面積S4との比
(S3/S4)が1.01ないし1.5で且つ加熱ダイとのマ
ンドレルの径φとテーパー型冷却サイジングダ
イ出口のマンドレルの径φとの比(φ/φ
が1.01ないし1.5のテーパー型冷却サイジングダ
イから構成されることを特徴とするパイプ成形ダ
イを提供するものである。 本発明に用いる超高分子量ポリエチレンとは通
常デカリン溶媒中135℃で測定した極限粘度
〔η〕が10dl/g以上、好適には15dl/g以上で
且つメルトフローレート(ASTM D 1238F)
が0.01g/10min以下のエチレンの単独重合体も
しくはエチレンと他のα―オレフイン、例えばプ
ロプレン、1―ブテン、1―ヘキセン、1―オク
テン、4―メチレン―1―ペンテン等とのエチレ
ンを主体とした共重合体で結晶性のものである。 本発明の方法は前記超高分子量ポリエチレンを
スクリユー押出機で通常150ないし250℃の温度で
溶融し、ブレーカープレートを通して溶融樹脂を
分散し、スパイダーダイと加熱ダイ入口との間で
加熱圧縮、好ましくは圧縮比2.0ないし4.0の範囲
で加熱圧縮するとともに偏肉調整し、加熱ダイ中
で250ないし150℃、好ましくは220ないし170℃の
範囲で順次温度を下げながら融着し、引き続きテ
ーパー型冷却サイジングダイ中で100℃ないし常
温、好ましくは80℃ないし常温の範囲で順次温度
を降下させながら、とくに好ましくはパイプの外
側を100℃ないし常温の範囲で順次温度を降下さ
せるとともにパイプの内側を100℃ないし常温で
冷却し、且つパイプの外側と内側の冷却温度を少
なくとも10℃以上の温度差をつけて冷却固化する
方法であり、本方法により外面及び内面ともに肌
が美麗で且つ厚薄むらの少ない超高分子量ポリエ
チレンパイプが得られる。 スクリユー押出機で溶融した超高分子量ポリエ
チレンはリボン状になつており、そのままダイに
導入しても均一な厚みを有するパイプは得られ難
く、ブレーカープレートで一旦は分散させる必要
がある。超高分子量ポリエチレンの溶融物は汎用
樹脂の溶融物と異なり落がん状であり、またブレ
ーカープレート及びスパイダーダイによるスパイ
ダーマーク(ウエルドライン)を消すためにスパ
イダーダイと加熱ダイ入口との間で加熱圧縮する
必要がある。その間での加熱圧縮が不足すると溶
融物の融着が不十分となり、ウエルドラインが残
つたり、ひどい場合には全く融着もせず均質なパ
イプが得られない。パイプの偏肉調整は加熱圧縮
された溶融樹脂が加熱ダイに入る前に行う。汎用
樹脂のようにアウターダイを動かして偏肉調整を
行うことは、超高分子量ポリエチレンの溶融粘度
が極めて高いので非常に困難である。尚、加熱ダ
イは溶融樹脂の融着を完全ならしめ且つ緩やかに
降温して、冷却サイジングダイに導入させるダイ
であり、アウターダイを無理に動かして偏肉調整
を行うことは、樹脂の流れを乱すことにもなり好
ましくない。偏肉の調整を行つた溶融樹脂は加熱
ダイ中で250ないし150℃の範囲で順次温度を下げ
ながら融着を行うが、加熱ダイ入口の温度が250
℃を越えると樹脂圧力が過大となり、又冷却サイ
ジングダイとの間の温度差が極めて大きくなるこ
とから、樹脂が急冷され、内部応力が残存するの
で好ましくない。 一方、加熱ダイ入口の温度を150℃未満に下げ
ると融着不足を来たす。加熱ダイの温度を順次下
げずに急に降下させると、パイプに内部応力が残
り使用時に破壊することがある。また温度降下の
幅を必要以上に大きくすることは加熱ダイが長く
なり、ダイ内圧力が過大となること、又、経済的
にも好ましくない。 加熱ダイで融着されたパイプのサイジングはテ
ーパー型冷却サイジングダイ中で100℃ないし常
温の範囲で順次温度を降下させて冷却固化させる
が、冷却温度が100℃を越えると冷却時間が長く
なり、冷却サイジングダイ入口の温度が50℃以下
になると急冷することになり、パイプに内部応力
が残る。又パイプの外側を100℃ないし常温の範
囲で順次温度を降下させるとともに且つパイプの
内側(マンドレル内部)を100℃ないし常温で冷
却し且つパイプの外側と内側の冷却温度を少なく
とも10℃以上の温度差をつけて冷却すると、ダイ
内の樹脂を回動させることができ、極めて偏肉精
度が良いパイプを製造することができる。 又、加熱ダイ及びテーパー型冷却サイジングダ
イの樹脂流路が弗素樹脂あるいは硅素樹脂等で被
覆されたダイを用いると、樹脂圧力を低くするこ
とができるとともにパイプの内外面の肌がより滑
らかなパイプを得ることが出来る。 次に超高分子量ポリエチレンパイプの製造に好
適なパイプ成形用ダイの一実施例を図面に基づい
て説明する。 本発明のパイプ成形用ダイは押出機(図示せ
ず)側からブレーカープレート1、スパイダーダ
イ2、スパイダーダイ接続部の樹脂流路の断面積
S1と加熱ダイ接続部の樹脂流路の断面積S2との比
(S1/S2:圧縮比)が2ないし5、好ましくは2
ないし4及び加熱ダイ接続部に偏肉調整リング4
を備えたテーパーダイ3、L/Dが1ないし10の
加熱ダイ5(尚Lはダイのランドの長さ及びDは
ダイの内径(パイプの外径に相当)を表わす)及
びL/D1ないし10、好ましくは2ないし7及び
加熱ダイ5との接続部の樹脂流路の断面積S3とテ
ーパー型冷却サイジングダイ出口の樹脂流路の断
面積S4との比(S3/S4)が1.01ないし1.5、好まし
くは1.01ないし1.1で且つ加熱ダイ5との接続部
のマンドレルの径φとテーパー型冷却サイジン
グダイ出口のマンドレルの径φとの比(φ
φ)が1.01ないし1.5のテーパー型冷却サイジ
ングダイ6から構成されている。 ブレーカープレート1はスクリユー押出機でリ
ボン状に押出された超高分子量ポリエチレンの溶
融物を分散させて流れを整えるためのものであ
り、ブレーカープレート全体に万遍無く穴が開い
たものであればとくに限定はされない。しかしな
がら穴があまりに小さいものあるいは例えば同心
状に偏在しているものは樹脂圧が高くなつたり、
分散されないので好ましくない。ブレーカープレ
ート1は通常ダイボデイ21にはめて用いられ
る。 スパイダーダイ2はパイプの内径を規制するマ
ンドレル22、マンドレル8及びマンドレル10
を支えるものであり、通常三本以上のスパイダー
を有している。 テーパーダイ3はスパイダーダイ2で分けられ
た溶融樹脂を加熱ダイ5に導く前に加熱圧縮し、
スパイダーマーク(ウエルドライン)を消去する
ダイであり、圧縮比(S1/S2)が1未満ではスパ
イダーマークが消えない。又、圧縮比(S1/S2
が5を越えると樹脂圧が過大になり、パイプの押
出成形が困難となる。 偏肉調整リング4はテーパーダイ3で加熱圧縮
された溶融樹脂の偏肉調整を行う装置であり、そ
の調整はボルト41により行う。汎用樹脂の偏肉
調整はアウターダイ31を動かすことにより行う
が、超高分子量ポリエチレンの溶融物は極めて粘
度が高いので、アウターダイ31による偏肉調整
は困難であり、仮に加熱ダイ5以降に偏肉調整リ
ングを設けた場合は該リングにより均一な溶融物
の流れを阻害することになり、得られたパイプの
クラツク発生の原因になり好ましくない。又、汎
用樹脂は溶融粘度が低いので、偏肉調整を偏肉調
整リング4で行つても、加熱ダイ5中で加熱ダイ
の樹脂流路の幅になるので無意味である。 加熱ダイ5のL/Dが1未満では、超高分子量
ポリエチレンの溶融物が充分に融着されず、又、
所定の温度に下げることができず、L/Dが10越
えても物性上の問題はないが、ダイ内の樹脂圧力
が高くなり、又、長大なダイが必要となるので好
ましくない。加熱ダイ5の加熱装置51は、加熱
ダイ中の超高分子量ポリエチレンの溶融物を融点
以上の温度で押出機の温度から順次下げて融着し
ていくために、少なくとも2つ以上の温度に調節
できるようにしておく必要がある。尚アウターダ
イ7とマンドレル8の樹脂流路を弗素樹脂もしく
は硅素樹脂で被覆すると、押出されたパイプの外
観(肌)改良及び押出安定性の向上に効果があ
る。加熱ダイ5はストレートダイでもよいが、サ
イジングダイ6の側が細いテーパーダイであつて
もよい。又、前記条件を充たすのであれば、加熱
ダイ5が2つ以上のブロツクから形成されていて
もよい。 テーパー型冷却サイジングダイ6のL/Dが1
未満では超高分子量ポリエチレンの溶融物を徐冷
するのに充分でなく、一方L/Dが10を越えても
物性に与える影響はないが、ダイ内の樹脂圧力が
高くなり、又、長大なダイが必要となるので好ま
しくない。サイジングダイ6の冷却装置でパイプ
の外側すなわちアウターダイ9を冷却する装置6
1は溶融物を徐冷するために少なくとも2つ以上
に分けておく必要がある。アウターダイ9の冷却
は注水口23及び24より水もしくはエチレング
リコール等の冷却液を導入することにより行いう
る。導入された冷却液はそれぞれ排水口25及び
26より排出される。マンドレル10の内部81
をエアーノズル34を用いて冷却空気により冷却
できるようにしておくと、樹脂流路内の樹脂を回
動させることができ、より偏肉精度に優れたパイ
プを製造することができる。S3/S4が1.01未満且
つφ/φが1.01未満では冷却固化した樹脂が
マンドレル10に抱き着いて押出機のモーター負
荷が大きくなり成形できなくなる。一方S3/S4
1.5を越え且つφ/φが1.5を越えると逆にア
ウターダイ9との抵抗が大きくなり成形できなく
なる。尚アウターダイ9とマンドレル10の樹脂
流路を弗素樹脂もしくは硅素樹脂で被覆すると、
押出されたパイプの外観(肌)改良及び樹脂圧力
の低下に効果がある。尚マンドレル10の先端1
1をアウターダイ9より外部に出しておくと、押
出したパイプの先端が内側に巻き込まれないので
好ましい。 実施例 1 超高分子量ポリエチレンとして〔η〕が17dl/
g、メルトフローレートが0.01g/10min未満の
もの(商品名 ハイゼツクスミリオン240M、
三井石油化学工業(株)製)を65mmφの単軸押出機
(設定温度210℃)で溶融し、ブレーカープレート
1、ダイボデイ21、スパイダー2、テーパーダ
イ3の各設定温度を200℃とし、偏肉は偏肉調整
リング4のボルトにより調整する。こうして偏肉
調整された溶融樹脂を加熱ダイ5により、200℃
から順次温度降下させ、ダイ出口では170℃とし
た。これをテーパー型冷却サイジングダイ6によ
り、内部及び外部から順次降温し、ダイ出口では
パイプ表面温度60℃のパイプを得た。得られたパ
イプの偏肉精度は9.2+0 −0mmであり、外観とと
もに
極めて良好であり、機械的強度も表に示す如く、
参考に示したプレスシートの値と全く同等であ
り、優れた性質のパイプが得られた。 尚、得られたパイプの寸法は外径98.5mm、内径
79.2mm、平均肉厚9.2mmであつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing ultra-high molecular weight polyethylene pipes and a pipe-forming die. Ultra-high molecular weight polyethylene with a molecular weight of 1,000,000 or more has excellent impact resistance, abrasion resistance, self-lubricating properties, chemical resistance, etc., and is widely used as an engineering plastic. However, compared to general-purpose resins, the melt viscosity is extremely high and the fluidity is poor, so it is extremely difficult to mold using normal extrusion molding or injection molding. Therefore, molding is generally performed using compression molding. There is a pipe,
It is almost impossible to mold long objects such as rods by compression molding. A ram extruder equipped with a mandrel (Japanese Patent Application Laid-Open No. 1983-28896) has been proposed as a device for continuously manufacturing ultra-high molecular weight polyethylene pipes, but the ram extruder has problems such as inferior molding speed and poor thickness unevenness accuracy. It has the following disadvantages. Improving the molding speed can be achieved by using a screw extruder, but as mentioned above, ultra-high molecular weight polyethylene has an extremely high melt viscosity and poor fluidity, so it is not possible to adjust the uneven thickness with a general-purpose resin pipe molding die. , resin fusion is insufficient, and sizing (outer diameter or inner diameter regulation) cannot be done using a normal vacuum former or internal pressure.Furthermore, if it is rapidly cooled, internal stress remains and physical properties deteriorate, so it is difficult to manufacture good pipes. That was difficult. Therefore, the present inventors
As a result of studying the development of a pipe-forming die that can be molded using a normal screw extruder, it was discovered that a special die consisting of a heating die and a cooling sizing die was suitable for manufacturing ultra-high molecular weight polyethylene pipes, and the present invention was completed. I came to the conclusion. That is, in the present invention, ultra-high molecular weight polyethylene is melted in a screw extruder, dispersed in a breaker plate, heated and compressed between a spider die and a heating die inlet, and adjusted for uneven thickness, and heated at 250 to 150°C in a heating die. A method for producing an ultra-high molecular weight polyethylene pipe, characterized in that the pipe is fused while gradually lowering the temperature in the range of 100°C to room temperature, and then cooled and solidified in a tapered cooling sizing die while gradually lowering the temperature in the range of 100°C to room temperature. From the extruder side, the ratio (S 1 /S 2 ) of the cross-sectional area S 1 of the resin flow path at the breaker plate, spider die, and spider die connection area to the cross-sectional area S 2 of the resin flow path at the heating die connection area is 2 or more. 5 and a tapered die equipped with a thickness unevenness adjustment ring at the heating die connection part, a heating die with L/D of 1 to 10, and L/D of 1 to 10, and a cross-sectional area S of the resin flow path at the connection part with the heating die. 3 and the cross-sectional area S 4 of the resin flow path at the exit of the tapered cooling sizing die (S 3 /S 4 ) is 1.01 to 1.5, and the diameter of the mandrel with the heating die φ 3 and the cross-sectional area S 4 of the exit of the tapered cooling sizing die are 1.01 to 1.5. Ratio to mandrel diameter φ (φ 34 )
The present invention provides a pipe forming die characterized in that it is composed of a tapered cooling sizing die with a diameter of 1.01 to 1.5. The ultra-high molecular weight polyethylene used in the present invention usually has an intrinsic viscosity [η] of 10 dl/g or more, preferably 15 dl/g or more, as measured in a decalin solvent at 135°C, and has a melt flow rate (ASTM D 1238F).
0.01g/10min or less of ethylene homopolymer or ethylene with other α-olefins such as propene, 1-butene, 1-hexene, 1-octene, 4-methylene-1-pentene, etc. It is a crystalline copolymer. The method of the present invention involves melting the ultra-high molecular weight polyethylene in a screw extruder at a temperature of usually 150 to 250°C, dispersing the molten resin through a breaker plate, and heating and compressing it between a spider die and a heated die inlet, preferably Heat compression is performed at a compression ratio of 2.0 to 4.0 to adjust the uneven thickness, and the temperature is successively lowered in a heating die to 250 to 150°C, preferably 220 to 170°C, followed by melting in a tapered cooling sizing die. While gradually lowering the temperature inside the pipe from 100°C to room temperature, preferably from 80°C to room temperature, it is particularly preferable to sequentially lower the temperature on the outside of the pipe from 100°C to room temperature, and at the same time, lower the temperature on the inside of the pipe to 100°C to room temperature. This is a method of cooling and solidifying pipes at room temperature, with a temperature difference of at least 10°C between the outside and inside of the pipe.This method produces ultra-high quality pipes with beautiful skin on both the outside and inside, and with little unevenness in thickness or thinness. A molecular weight polyethylene pipe is obtained. The ultra-high molecular weight polyethylene melted in a screw extruder is in the form of a ribbon, and even if it is introduced directly into a die, it is difficult to obtain a pipe with a uniform thickness, and it is necessary to disperse it using a breaker plate. Unlike the melt of general-purpose resin, the melt of ultra-high molecular weight polyethylene is in the form of drops, and it is heated between the spider die and the heating die inlet to erase spider marks (weld lines) caused by the breaker plate and spider die. Needs to be compressed. If heating and compression between the pipes is insufficient, the fusion of the molten material will be insufficient, leaving weld lines, or in severe cases, no fusion will occur at all, making it impossible to obtain a homogeneous pipe. The uneven thickness of the pipe is adjusted before the heated and compressed molten resin enters the heating die. It is very difficult to adjust thickness unevenness by moving the outer die as with general-purpose resins because the melt viscosity of ultra-high molecular weight polyethylene is extremely high. Note that the heating die is a die that completely fuses the molten resin and slowly lowers the temperature before introducing it into the cooling sizing die. Forcibly moving the outer die to adjust the uneven thickness will affect the flow of the resin. This is not desirable as it may cause disturbance. The molten resin that has been adjusted for uneven thickness is fused in a heating die while gradually lowering the temperature in the range of 250 to 150℃, but when the temperature at the entrance of the heating die is 250℃.
If it exceeds .degree. C., the resin pressure will become excessive and the temperature difference between the resin and the cooling sizing die will become extremely large, so the resin will be rapidly cooled and internal stress will remain, which is not preferable. On the other hand, if the temperature at the heating die inlet is lowered to less than 150°C, insufficient fusion will occur. If the temperature of the heating die is lowered suddenly instead of gradually, internal stress may remain in the pipe and cause it to break during use. Furthermore, if the width of the temperature drop is made larger than necessary, the heating die becomes longer and the pressure inside the die becomes excessive, which is also economically undesirable. Sizing of pipes fused with a heating die is done by cooling and solidifying the pipes in a tapered cooling sizing die by sequentially lowering the temperature from 100℃ to room temperature, but if the cooling temperature exceeds 100℃, the cooling time becomes longer. If the temperature at the cooling sizing die inlet falls below 50°C, the pipe will cool rapidly and internal stress will remain in the pipe. In addition, the temperature on the outside of the pipe is gradually lowered from 100°C to room temperature, and the inside of the pipe (inside the mandrel) is cooled at 100°C to room temperature, and the cooling temperature on the outside and inside of the pipe is at least 10°C or higher. Differential cooling allows the resin inside the die to rotate, making it possible to manufacture pipes with extremely high thickness unevenness accuracy. In addition, by using a heating die and a tapered cooling sizing die whose resin passages are coated with fluororesin or silicone resin, it is possible to lower the resin pressure and create a pipe with smoother skin on the inner and outer surfaces of the pipe. can be obtained. Next, an embodiment of a pipe-forming die suitable for manufacturing ultra-high molecular weight polyethylene pipes will be described based on the drawings. The pipe forming die of the present invention includes, from the extruder (not shown) side, a breaker plate 1, a spider die 2, and a cross-sectional area of the resin flow path at the spider die connection part.
The ratio of S 1 to the cross-sectional area S 2 of the resin flow path at the heating die connection portion (S 1 /S 2 : compression ratio) is 2 to 5, preferably 2.
4 and heating die connection part with uneven thickness adjustment ring 4
, a heating die 5 with L/D of 1 to 10 (L represents the length of the land of the die, and D represents the inner diameter of the die (corresponding to the outer diameter of the pipe)), and L/D of 1 to 10. 10, preferably the ratio of the cross-sectional area S 3 of the resin flow path at the connection part with 2 to 7 and the heating die 5 to the cross-sectional area S 4 of the resin flow path at the outlet of the tapered cooling sizing die (S 3 /S 4 ) is 1.01 to 1.5, preferably 1.01 to 1.1, and the ratio of the diameter φ 3 of the mandrel at the connection part with the heating die 5 to the diameter φ 4 of the mandrel at the outlet of the tapered cooling sizing die (φ 3 /
It consists of a tapered cooling sizing die 6 with a diameter of 1.01 to 1.5 (φ 4 ). The breaker plate 1 is for dispersing and regulating the flow of the melted ultra-high molecular weight polyethylene extruded into a ribbon shape by a screw extruder, and it is especially useful if the breaker plate has holes uniformly throughout. There are no limitations. However, if the holes are too small or unevenly distributed concentrically, the resin pressure may become high.
This is not desirable because it is not dispersed. The breaker plate 1 is normally used by being fitted into a die body 21. The spider die 2 includes a mandrel 22, a mandrel 8, and a mandrel 10 that regulate the inner diameter of the pipe.
It supports the spider and usually has three or more spiders. The taper die 3 heats and compresses the molten resin separated by the spider die 2 before guiding it to the heating die 5.
This is a die that erases spider marks (weld lines), and if the compression ratio (S 1 /S 2 ) is less than 1, the spider marks will not disappear. Also, compression ratio (S 1 /S 2 )
If it exceeds 5, the resin pressure becomes excessive and extrusion molding of the pipe becomes difficult. The thickness unevenness adjustment ring 4 is a device that adjusts the thickness unevenness of the molten resin heated and compressed by the taper die 3, and the adjustment is performed using bolts 41. Adjustment of uneven thickness of general-purpose resin is performed by moving the outer die 31, but since the viscosity of the molten ultra-high molecular weight polyethylene is extremely high, it is difficult to adjust the uneven thickness using the outer die 31. If a thickness adjustment ring is provided, the ring will obstruct the uniform flow of the molten material, which is undesirable as it will cause cracks in the resulting pipe. Furthermore, since the general-purpose resin has a low melt viscosity, even if thickness unevenness adjustment is performed using the thickness unevenness adjusting ring 4, it is meaningless because the width of the resin flow path in the heating die 5 becomes the same. If the L/D of the heating die 5 is less than 1, the molten ultra-high molecular weight polyethylene will not be sufficiently fused, and
If the temperature cannot be lowered to a predetermined level and L/D exceeds 10, there will be no problem in terms of physical properties, but this is not preferable because the resin pressure in the die will increase and a long die will be required. The heating device 51 of the heating die 5 adjusts to at least two or more temperatures in order to sequentially lower the temperature of the extruder and fuse the ultra-high molecular weight polyethylene melt in the heating die at a temperature higher than the melting point. You need to be able to do it. It should be noted that coating the resin channels of the outer die 7 and the mandrel 8 with a fluororesin or a silicone resin is effective in improving the appearance (skin) of the extruded pipe and improving the extrusion stability. The heating die 5 may be a straight die, but may also be a tapered die with a narrow side on the sizing die 6 side. Further, the heating die 5 may be formed from two or more blocks as long as the above conditions are satisfied. L/D of tapered cooling sizing die 6 is 1
If L/D is less than 10, it is not sufficient to slowly cool the molten ultra-high molecular weight polyethylene.On the other hand, if L/D exceeds 10, it will not affect the physical properties, but the resin pressure in the die will increase, and This is not preferable because it requires a die. A device 6 that cools the outside of the pipe, that is, the outer die 9 with the cooling device of the sizing die 6
1, it is necessary to divide the melt into at least two parts in order to slowly cool the melt. The outer die 9 can be cooled by introducing a cooling liquid such as water or ethylene glycol through the water inlets 23 and 24. The introduced coolant is discharged from drain ports 25 and 26, respectively. Inside 81 of mandrel 10
By allowing the resin to be cooled by cooling air using the air nozzle 34, the resin in the resin flow path can be rotated, and a pipe with better thickness unevenness accuracy can be manufactured. If S 3 /S 4 is less than 1.01 and φ 34 is less than 1.01, the cooled and solidified resin clings to the mandrel 10, increasing the motor load of the extruder and making it impossible to mold. On the other hand, S 3 /S 4
If it exceeds 1.5 and φ 34 exceeds 1.5, the resistance with the outer die 9 will increase and molding will not be possible. In addition, if the resin channels of the outer die 9 and the mandrel 10 are coated with fluororesin or silicone resin,
It is effective in improving the appearance (skin) of extruded pipes and reducing resin pressure. In addition, the tip 1 of the mandrel 10
It is preferable to let the pipe 1 out from the outer die 9 so that the tip of the extruded pipe does not get caught inside. Example 1 [η] is 17 dl/ as ultra-high molecular weight polyethylene
g, with a melt flow rate of less than 0.01 g/10 min (product name Hi-Zex Million 240M,
Mitsui Petrochemical Industries, Ltd.) was melted in a 65mmφ single-screw extruder (temperature set at 210°C), and the temperature of each of the breaker plate 1, die body 21, spider 2, and taper die 3 was set at 200°C to prevent uneven thickness. is adjusted by the bolt of the thickness unevenness adjustment ring 4. The molten resin with uneven thickness adjusted in this way is heated to 200°C by heating die 5.
The temperature was gradually lowered from then on until it reached 170°C at the die exit. The temperature of this was sequentially lowered from the inside and outside using a tapered cooling sizing die 6, and a pipe with a pipe surface temperature of 60° C. was obtained at the die exit. The thickness deviation accuracy of the obtained pipe was 9.2 +0 . 3-0 mm , the appearance is very good, and the mechanical strength is also as shown in the table.
The values were exactly the same as those of the press sheet shown for reference, and a pipe with excellent properties was obtained. The dimensions of the obtained pipe are 98.5 mm in outer diameter and 98.5 mm in inner diameter.
The average wall thickness was 79.2 mm and 9.2 mm. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明のパイプ成形用ダイの側面断面図で
ある。 1……ブレーカープレート、2……スパイダー
ダイ、3……テーパーダイ、5……加熱ダイ、6
……テーパー型冷却サイジングダイ。
The figure is a side sectional view of the pipe-forming die of the present invention. 1... Breaker plate, 2... Spider die, 3... Taper die, 5... Heating die, 6
...Taper type cooling sizing die.

Claims (1)

【特許請求の範囲】 1 超高分子量ポリエチレンをスクリユー押出機
で溶融し、ブレーカープレートで分散し、スパイ
ダーと加熱ダイ入口との間で加熱圧縮するととも
に偏肉調整し、加熱ダイ中で250ないし150℃の範
囲で順次温度を降下させながら融着し、引き続き
テーパー型冷却サイジングダイ中で100℃ないし
常温の範囲で順次温度を降下させながら冷却固化
することを特徴とする超高分子量ポリエチレンパ
イプの製造方法。 2 前記テーパー型冷却サイジングダイ中での冷
却固化を、パイプの外側から100℃ないし常温の
範囲で順次温度を降下させるとともに、パイプの
内側を100℃ないし常温で冷却し且つパイプの外
側と内側の冷却温度を少なくとも10℃以上の温度
差をつけて行うことを特徴とする特許請求の範囲
1項記載の方法。 3 押出機側から、ブレーカープレート、スパイ
ダーダイ、スパイダーダイ接続部の樹脂流路の断
面積S1と加熱ダイ接続部の樹脂流路の断面積S2
の比(S1/S2)が2〜5及び加熱ダイ接続部に偏
肉調整リングを備えたテーパーダイ、L/Dが1
〜10の加熱ダイ、L/Dが1〜10及び加熱ダイと
の接続部の樹脂流路の断面積S3とテーパー型冷却
サイジングダイ出口の樹脂流路の断面積S4との比
(S3/S4)が1.01〜1.5で且つ加熱ダイとの接続部
のマンドレルの径φとテーパー型冷却サイジン
グダイ出口のマンドレル径φとの比(φ/φ
)が1.01〜1.5のテーパー型冷却サイジングダ
イから構成されることを特徴とするパイプ成形用
ダイ。 4 前記冷却サイジングダイのマンドレルがアウ
ターダイより長いことを特徴とする特許請求の範
囲3記載のダイ。
[Scope of Claims] 1. Ultra-high molecular weight polyethylene is melted in a screw extruder, dispersed in a breaker plate, heated and compressed between a spider and the inlet of a heating die, and adjusted for thickness deviation, and then heated to a thickness of 250 to 150 in the heating die. Production of ultra-high molecular weight polyethylene pipe characterized by fusing while lowering the temperature sequentially in the range of 100°C to room temperature, followed by cooling and solidifying in a tapered cooling sizing die while lowering the temperature sequentially in the range of 100°C to room temperature. Method. 2. Cooling and solidification in the taper-type cooling sizing die is performed by sequentially lowering the temperature from the outside of the pipe in the range of 100°C to room temperature, cooling the inside of the pipe to 100°C to room temperature, and cooling the inside of the pipe between the outside and inside of the pipe. 2. The method according to claim 1, wherein the cooling is performed with a temperature difference of at least 10°C. 3 From the extruder side, the ratio (S 1 /S 2 ) of the cross-sectional area S 1 of the resin flow path at the breaker plate, spider die, and spider die connection portion to the cross-sectional area S 2 of the resin flow path at the heating die connection portion is 2 to 5 and a tapered die equipped with a thickness unevenness adjustment ring at the heating die connection part, L/D is 1
~10 heating dies, L/D is 1 to 10, and the ratio of the cross-sectional area S3 of the resin flow path at the connection part with the heating die to the cross-sectional area S4 of the resin flow path at the exit of the tapered cooling sizing die (S 3 /S 4 ) is 1.01 to 1.5, and the ratio of the mandrel diameter φ 3 at the connection part with the heating die to the mandrel diameter φ 4 at the outlet of the tapered cooling sizing die (φ 3
4 ) A pipe forming die comprising a tapered cooling sizing die having a diameter of 1.01 to 1.5. 4. The die according to claim 3, wherein the mandrel of the cooling sizing die is longer than the outer die.
JP57133748A 1982-08-02 1982-08-02 Manufacture of ultra-high-molecular-weight polyethylene pipe and pipe molding die Granted JPS5924633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57133748A JPS5924633A (en) 1982-08-02 1982-08-02 Manufacture of ultra-high-molecular-weight polyethylene pipe and pipe molding die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57133748A JPS5924633A (en) 1982-08-02 1982-08-02 Manufacture of ultra-high-molecular-weight polyethylene pipe and pipe molding die

Publications (2)

Publication Number Publication Date
JPS5924633A JPS5924633A (en) 1984-02-08
JPS6254651B2 true JPS6254651B2 (en) 1987-11-16

Family

ID=15112004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57133748A Granted JPS5924633A (en) 1982-08-02 1982-08-02 Manufacture of ultra-high-molecular-weight polyethylene pipe and pipe molding die

Country Status (1)

Country Link
JP (1) JPS5924633A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD230826A1 (en) * 1984-03-05 1985-12-11 Univ Dresden Tech METHOD AND EXTRUSION DEVICE FOR FORMING FLOW-PROOF MASSES
JPS60245898A (en) * 1984-05-22 1985-12-05 Mitsui Petrochem Ind Ltd Method and device for manufacturing superhigh molecular weight polyethylene made flexible tube and bad melting fluidity thermoplastic resin made tube
JPS612524A (en) * 1984-06-15 1986-01-08 Sekisui Chem Co Ltd Manufacture of thermoplastic resin pipe
JPH06297548A (en) * 1993-04-19 1994-10-25 Mitsuboshi Belting Ltd Manufacture and molding die device for resin pipe
CA2412066A1 (en) * 2002-11-18 2004-05-18 Manfred A. A. Lupke Pipe molding apparatus with mold tunnel air turbulence
JP2008126523A (en) * 2006-11-21 2008-06-05 Polyplastics Co Method of manufacturing profile extrusion molding of polyoxymethylene resin
US8074596B2 (en) * 2007-04-30 2011-12-13 Corning Cable Systems Llc Apparatus for forming a sheath over an elongate member, extruder system and method of manufacturing a fiber optic cable
CN102729447B (en) * 2012-06-02 2014-07-02 安徽国通高新管业股份有限公司 Polyethylene feed tube production line processing control method
JP6365177B2 (en) * 2014-09-24 2018-08-01 富士ゼロックス株式会社 Extrusion mold, extrusion molding apparatus, and extrusion molding method
KR102376770B1 (en) * 2021-04-28 2022-03-21 주식회사 뉴보텍 Method and apparatus for manufacturing a pipe

Also Published As

Publication number Publication date
JPS5924633A (en) 1984-02-08

Similar Documents

Publication Publication Date Title
US3103409A (en) Method for making thermoplastic pipes
KR840001700B1 (en) Method for cooling film bubble of low
US6863729B2 (en) Nozzle insert for long fiber compounding
CN103724758B (en) The melt extruding of ultrahigh molecular weight polyethylene(UHMWPE) film, be drawn into film production process and production equipment thereof
JPS6254651B2 (en)
JPS6040225A (en) Method of extruding polymer
KR100936729B1 (en) Longitudinal orientation of a tubular themoplastic film
US3320637A (en) Apparatus for manufacturing thermoplastic pipes
AU664309B2 (en) Process and device for producing extrudates from ultra-high molecular weight polyethylene
US3507939A (en) Plastic extrusion
US3393427A (en) Extrusion die
KR102264236B1 (en) Apparatus for manufacturing large diameter synthetic resin pipe and large diameter synthetic resin pipe prepared by using the same
US20100035064A1 (en) Method for preparation of extruded objects with brilliant gloss
KR910005206B1 (en) Method of manufacturing polybutylene telephthalate resin films
DE19525603A1 (en) Die ring for plastics forming machine
US4683094A (en) Process for producing oriented polyolefin films with enhanced physical properties
JPS6226296B2 (en)
JPS6371330A (en) Manufacture of super high-molecular weight polyethylene pipe
US4671918A (en) Apparatus and process for producing polyolefin film
JP3602568B2 (en) Polyethylene resin for blown film molding and method for producing film
JP2871807B2 (en) Molten resin extrusion equipment
JPH0633084B2 (en) Hollow molded product
CN100396470C (en) Longitudinal orientation of a tubular thermoplastic film
JP3856660B2 (en) Extrusion die equipment for synthetic resin hollow extrusion material
JPS5889328A (en) Forming method for polypropylene hollow extruded body