JPS6370552A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS6370552A
JPS6370552A JP21385186A JP21385186A JPS6370552A JP S6370552 A JPS6370552 A JP S6370552A JP 21385186 A JP21385186 A JP 21385186A JP 21385186 A JP21385186 A JP 21385186A JP S6370552 A JPS6370552 A JP S6370552A
Authority
JP
Japan
Prior art keywords
resistor
layer
insulating film
region
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21385186A
Other languages
Japanese (ja)
Inventor
Shinichi Yamaguchi
眞一 山口
Takahiko Takahashi
高橋 貴彦
Hirotaka Nishizawa
裕孝 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21385186A priority Critical patent/JPS6370552A/en
Publication of JPS6370552A publication Critical patent/JPS6370552A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Abstract

PURPOSE:To reduce the occupying area of a resistance element, and to scale down chip size by forming a thin-film resistor to the upper section of a diffusion region consisting of a diffusion layer shaped onto the main surface of a semiconductor substrate through an insulating film and changing a resistance region into three dimensions. CONSTITUTION:A thin film resistor composed of a polysilicon layer 7 is formed onto a P-type semiconductor region 3 as a diffusion resistor through a first layer insulating film 6 as an silicon oxide film so as to be positioned between electrodes 5a, 5b. Aluminum electrodes 5c, 5d are brought into contact with both ends of the polysilicon layer 7, and used as terminals for the thin-film resistor. The aluminum electrodes 5a-5d are shaped in such a manner that a second layer insulating film 8 as a PSG film is formed onto the polysilicon layer 7, contact holes 9a-9d are shaped to the insulating film 8 and the first layer insulating film 6, and an aluminum layer is evaporated, and patterned.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、半導体集積回路技術さらには半導体集積回
路装置における抵抗素子の形成に適用して特に有効な技
術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to semiconductor integrated circuit technology and to a technology that is particularly effective when applied to the formation of resistive elements in semiconductor integrated circuit devices.

[従来の技術] 従来、半導体集積回路における抵抗素子は、一般に半導
体基板の主面に形成された拡散層、もしくは半導体基板
の表面に形成された酸化膜上に形成されたニクロムやタ
ンタルのような金属層もしくはポリシリコンのような半
導体層からなる薄膜抵抗によって構成されていた([株
コオーム社が昭和56年6月に発行した「半導体ハンド
ブック(第2版)」第335〜第337頁、第582頁
参照)。
[Prior Art] Conventionally, resistive elements in semiconductor integrated circuits have generally been made of a diffusion layer formed on the main surface of a semiconductor substrate, or a material such as nichrome or tantalum formed on an oxide film formed on the surface of a semiconductor substrate. It was composed of a thin film resistor consisting of a metal layer or a semiconductor layer such as polysilicon ([``Semiconductor Handbook (2nd edition)'' published by Coohm Co., Ltd. in June 1981, pp. 335-337). (See page 582).

[発明が解決しよう偕する問題点コ 半導体集積回路装置において形成される抵抗素子は、シ
ート抵抗が数百Ω/口程度であるため、トランジスタに
比べて大きな面積を必要とする。
[Problems to be Solved by the Invention] A resistance element formed in a semiconductor integrated circuit device has a sheet resistance of approximately several hundred Ω/unit, and thus requires a larger area than a transistor.

しかも、半導体集積回路におけるトランジスタはますま
す微細化される傾向にあるが、チップ上の抵抗素子はト
ランジスタの微細化と同じ割合で縮小することができな
い。しかるに、従来の半導体集積回路装置においては、
各抵抗素子が基板上の別個の位置に形成されていた。
Moreover, although transistors in semiconductor integrated circuits are becoming increasingly miniaturized, resistive elements on chips cannot be reduced at the same rate as transistors are miniaturized. However, in conventional semiconductor integrated circuit devices,
Each resistive element was formed at a separate location on the substrate.

そのため、半導体基板上での抵抗素子の占有面積の比率
が、高集積化に伴ってますます大きくなり、チップサイ
ズの低減が困難になるという問題点があった。
Therefore, the ratio of the area occupied by the resistive element on the semiconductor substrate becomes larger and larger as the degree of integration increases, making it difficult to reduce the chip size.

この発明の目的は、半導体集積回路装置における抵抗素
子の占有面積を低減させ、もってチップサイズの縮小を
図ることにある。
An object of the present invention is to reduce the area occupied by a resistance element in a semiconductor integrated circuit device, thereby reducing the chip size.

この発明の前記ならびにそのほかの目的と新規な特徴に
ついては、本明細書の記述および添附図面から明らかに
なるであろう。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

[問題点を解決するための手段] 本願において開示される発明のうち代表的なものの概要
を説明すれば、下記のとおりである。
[Means for Solving the Problems] Representative inventions disclosed in this application will be summarized as follows.

すなわち、半導体基板の主面に形成された拡散層からな
る拡散領域の上方に、絶縁膜を介して薄膜抵抗を形成し
て、抵抗領域を三次元化するというものである。
That is, a thin film resistor is formed above a diffusion region made of a diffusion layer formed on the main surface of a semiconductor substrate with an insulating film interposed therebetween, thereby making the resistance region three-dimensional.

[作用コ 上記した手段によれば、同一面積に対する抵抗値の大き
さを、拡散抵抗または薄膜抵抗のみとした場合に比べて
約2倍にすることができ、これによって、抵抗素子の占
有面積を低減させ、もってチップサイズの縮小を図ると
いう上記目的を達成することができる。
[Operation] According to the above-mentioned means, the resistance value for the same area can be approximately doubled compared to the case where only a diffused resistance or a thin film resistance is used, thereby reducing the area occupied by the resistance element. This makes it possible to achieve the above objective of reducing the chip size.

[実施例コ 第1図及び第2図には1本発明をバイポーラ集積回路装
置に適用した場合の素子の断面構造とレイアウトの一実
施例が示されている。
Embodiment FIGS. 1 and 2 show an embodiment of the cross-sectional structure and layout of an element when the present invention is applied to a bipolar integrated circuit device.

この実施例では、単結晶シリコンのような半導体基板1
の主面に気相成長法によりN−型エピタキシャル層2が
形成され、このN−型エピタキシャル層2の表面には、
拡散抵抗となるP型半導体領域3が形成されている。こ
の半導体領域3は例えば、図示しないバイポーラトラン
ジスタのベース領域と同時もしくは単独に形成される。
In this embodiment, a semiconductor substrate 1 such as single crystal silicon is used.
An N-type epitaxial layer 2 is formed on the main surface of the N-type epitaxial layer 2 by a vapor phase growth method, and on the surface of this N-type epitaxial layer 2,
A P-type semiconductor region 3 serving as a diffused resistance is formed. This semiconductor region 3 is formed, for example, simultaneously or independently with a base region of a bipolar transistor (not shown).

半導体領域3の周囲はフィールド酸化膜と呼ばれる比較
的厚い素子分離用の酸化シリコン膜4によって囲繞され
ている。P型半導体領域3の両端部には、アルミ電極5
a、5bが接触され、このアルミ電極5a、5bは拡散
抵抗の端子とされる。
The semiconductor region 3 is surrounded by a relatively thick silicon oxide film 4 for element isolation called a field oxide film. Aluminum electrodes 5 are provided at both ends of the P-type semiconductor region 3.
a and 5b are in contact with each other, and these aluminum electrodes 5a and 5b are used as terminals of a diffused resistor.

そして、この実施例では、上記拡散抵抗としてのP型半
導体領域3の上に酸化シリコン膜のような第1層間絶縁
膜6を介して、ポリシリコン(多結晶シリコン)層7か
らなる薄膜抵抗が電極5a。
In this embodiment, a thin film resistor made of a polysilicon (polycrystalline silicon) layer 7 is installed on the P-type semiconductor region 3 as the diffused resistor via a first interlayer insulating film 6 such as a silicon oxide film. Electrode 5a.

5b間に位置するように形成されている。このポリシリ
コン層7の両端には、アルミ電極5C95dが接触され
、薄膜抵抗の端子とされている。
5b. Aluminum electrodes 5C95d are in contact with both ends of this polysilicon layer 7, and serve as terminals of a thin film resistor.

なお、アルミ電極58〜5dは、上記ポリシリコン層7
の上にPSG (リン・シリケート・ガラス)膜のよう
な第2層間絶縁膜8を形成してから、この絶縁膜8及び
第1層間絶縁膜6にコンタクトホール9a〜9dを形成
し、それからアルミニウム層を蒸着した後、パターニン
グを行なうことによって形成される。
Note that the aluminum electrodes 58 to 5d are connected to the polysilicon layer 7.
A second interlayer insulating film 8 such as a PSG (phosphorus silicate glass) film is formed thereon, contact holes 9a to 9d are formed in this insulating film 8 and the first interlayer insulating film 6, and then aluminum is formed. It is formed by depositing a layer and then patterning it.

第2図には、上記のような構造の抵抗素子をバイポーラ
集積回路に適用した場合のトランジスタ領域と抵抗領域
のレイアウトの一例が示されている。
FIG. 2 shows an example of the layout of a transistor region and a resistor region when a resistor element having the above structure is applied to a bipolar integrated circuit.

第2図において、符号10で示す部分がトランジスタ形
成領域、符号3で示す部分が拡散抵抗となるP型半導体
領域である。また、符号7で示すのがポジシリコン層か
らなる薄膜抵抗、符号9a〜9dで示すのが、各抵抗の
接続端子としてのアルミ電極58〜5dのコンタクトホ
ールである。
In FIG. 2, a portion designated by numeral 10 is a transistor forming region, and a portion designated by numeral 3 is a P-type semiconductor region serving as a diffused resistance. Further, reference numeral 7 indicates a thin film resistor made of a positive silicon layer, and reference numerals 9a to 9d indicate contact holes for aluminum electrodes 58 to 5d as connecting terminals of each resistor.

第2図から明らかなように本実施例に従うと。As is clear from FIG. 2, according to this embodiment.

半導体基板上の同一の領域内にそれぞれ2つの抵抗素子
が上下に重なりあうように形成することができるため、
抵抗の占有面積が低減される。
Two resistive elements can be formed in the same area on the semiconductor substrate so that they overlap vertically.
The area occupied by the resistor is reduced.

つまり、半導体基板上に形成された抵抗素子が、拡散抵
抗もしくは薄膜抵抗のみの場合、第2図と同じ数の抵抗
とトランジスタを形成するには、第4図に示すように抵
抗を別々の領域に形成しなければならなかった。これに
対し、上記実施例に従うと、抵抗領域が三次元化される
ため抵抗領域全体の占有面積が第4図のレイアウト方式
に比べておよそ2分の1に減少される。
In other words, if the resistor elements formed on the semiconductor substrate are only diffused resistors or thin film resistors, in order to form the same number of resistors and transistors as shown in Figure 2, the resistors must be placed in separate areas as shown in Figure 4. had to be formed. On the other hand, according to the embodiment described above, the resistance area is made three-dimensional, so that the area occupied by the entire resistance area is reduced to about half that of the layout method shown in FIG.

なお、上記実施例(第2図)に示されている拡散抵抗3
及び薄膜抵抗7は各々別個の抵抗素子として使用しても
良いが、拡散層(3)とポリシリコンM(7)とを一方
の端部において、短絡させて、一つの抵抗として使用す
るようにしてもよい。
Note that the diffused resistor 3 shown in the above embodiment (Fig. 2)
Although the thin film resistor 7 and the thin film resistor 7 may be used as separate resistance elements, it is preferable to short-circuit the diffusion layer (3) and the polysilicon M (7) at one end and use them as one resistor. You can.

つまり、折り返し抵抗として使用するものである。In other words, it is used as a folding resistor.

また、上記実施例では、拡散抵抗3と薄膜抵抗7を完全
に重合させているが、各々の抵抗領域の長手方向を第3
図に示すように直交させ、もしくは斜めに交叉させるよ
うにしてもよい、このようにすれば、第2図のレイアウ
ト方式に比べると多少面積効率は劣るが、第4図のレイ
アウト方式に比べるとかなり抵抗の占有面積を減少させ
ることができる。また、レイアウトの自由度が大きくな
る。
Further, in the above embodiment, the diffused resistor 3 and the thin film resistor 7 are completely overlapped, but the longitudinal direction of each resistor region is
They may be crossed at right angles or diagonally as shown in the figure. If this is done, the area efficiency will be somewhat lower than the layout method shown in Figure 2, but compared to the layout method shown in Figure 4. The area occupied by the resistor can be significantly reduced. Furthermore, the degree of freedom in layout is increased.

しかも、第2図の実施例ではアルミ電極5a。Moreover, in the embodiment shown in FIG. 2, the aluminum electrode 5a.

50間及び5b、5d間の短絡を防止するためポリシリ
コン層7の長さを拡散層3の長さよりも一定以上短くし
なければならないという制約があったが、第3図の実施
例ではそのような制約がない。
In order to prevent short circuits between 50 and 5b and 5d, there was a restriction that the length of the polysilicon layer 7 had to be shorter than the length of the diffusion layer 3 by a certain amount, but in the embodiment shown in FIG. There are no such restrictions.

これとともに、第2図の実施例ではアルミ電極5aおよ
び5dの形成部の絶縁膜の段差が大きいが、第3図の実
施例では電極部の絶縁膜の段差が小さいのでコンタクト
ホールの形成も容易となる。
In addition, in the embodiment shown in FIG. 2, the step of the insulating film in the area where the aluminum electrodes 5a and 5d are formed is large, but in the embodiment of FIG. becomes.

なお、上記実施例では、薄膜抵抗7がポリシリコン層に
よって構成されていると説明したが、それに限定されず
、ニクロムやタンタルのような金riA層を用いるよう
にしてもよい、ただし、近年、半導体集積回路ではバイ
ポーラトランジスタのエミッタ電極やMOSFETのゲ
ート電極にポリシリコン層が使用されることが多いので
、そのような場合にポリシリコンを使用するようにすれ
ば、ポリシリコン電極とポリシリコン抵抗とを同時に形
成することができる。
In the above embodiment, it was explained that the thin film resistor 7 is constituted by a polysilicon layer, but it is not limited thereto, and a gold RIA layer such as nichrome or tantalum may be used. However, in recent years, In semiconductor integrated circuits, polysilicon layers are often used for the emitter electrode of bipolar transistors and the gate electrode of MOSFETs, so if polysilicon is used in such cases, the polysilicon electrode and polysilicon resistor can be separated. can be formed simultaneously.

以上説明したように上記実施例では、半導体基板の主面
に形成された拡散層からなる抵抗領域の上方に、絶縁膜
を介して薄膜抵抗を形成するようにしたので、同一面積
に対する抵抗値の大きさを、拡散抵抗または薄膜抵抗の
みとした場合に比べて約2倍にすることができるという
作用により、抵抗素子の占有面積が低減され、これによ
ってチップサイズが縮小されるという効果がある。
As explained above, in the above embodiment, the thin film resistor is formed above the resistance region made of the diffusion layer formed on the main surface of the semiconductor substrate via the insulating film, so that the resistance value for the same area is reduced. Since the size can be approximately doubled compared to the case where only a diffused resistor or a thin film resistor is used, the area occupied by the resistive element is reduced, which has the effect of reducing the chip size.

以上本発明者によってなされた発明を実施例に基づき具
体的に説明したが、本発明は上記実施例に限定されるも
のではなく、その要旨を逸脱しない範囲で種々変更可能
であることはいうまでもない。例えば、上記実施例では
抵抗領域が拡散抵抗と薄膜抵抗の2段構造とされている
が、ポリシリコン層7の上に、絶縁膜8を介してさらに
ポリシリコン層等からなる第2の薄膜抵抗を形成するよ
うしてもよい。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the above Examples and can be modified in various ways without departing from the gist thereof. Nor. For example, in the above embodiment, the resistance region has a two-stage structure of a diffused resistor and a thin film resistor, but a second thin film resistor made of a polysilicon layer or the like is placed on top of the polysilicon layer 7 with an insulating film 8 interposed therebetween. may be formed.

以上の説明では主として本発明者によってなされた発明
をその背景となった利用分野であるバイポーラ集積回路
に適用したものについて説明したがこの発明はそれに限
定されず、MOS集積回路その他生導体集積回路装置一
般に利用することができる。
In the above explanation, the invention made by the present inventor was mainly applied to bipolar integrated circuits, which is the background field of application. Can be used generally.

[発明の効果] 本願において開示される発明のうち代表的なものによっ
て得られる効果を簡単に説明すれば下記のとおりである
[Effects of the Invention] The effects obtained by typical inventions disclosed in this application are briefly explained below.

すなわち、半導体基板上に抵抗を形成する場合に、抵抗
素子の占有面積を低減させ、もってチップサイズの縮小
を図ることができる9
In other words, when forming a resistor on a semiconductor substrate, the area occupied by the resistor element can be reduced, thereby reducing the chip size9.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る半導体集積回路装置における抵
抗領域の構造の一実施例を示すもので、第2図における
I−■’線に沿った断面図。 第2図は本発明に係る抵抗構造を適用した場合の素子の
レイアウトの一例を示す平面説明図、第3図は本発明の
他の実施例を示す平面説明図、第4図は従来の抵抗を用
いた場合の第2図に対応するレイアウトを示す平面説明
図である。 1・・・・半導体基板、3・・・・拡散抵抗(P型半導
体領域)、5a〜5d・・・・アルミ電極、6,8・・
・・絶縁膜、7・・・・ポリシリコン層(薄膜抵抗)9
8〜9d・・・・コンタクトホール、10・・・・トラ
ンジスタ形成領域。 第   1  図 第  2  図 第  3  図 yル 第  74  図
FIG. 1 shows an embodiment of the structure of a resistance region in a semiconductor integrated circuit device according to the present invention, and is a sectional view taken along the line I-■' in FIG. FIG. 2 is an explanatory plan view showing an example of the layout of an element when the resistor structure according to the present invention is applied, FIG. 3 is an explanatory plan view showing another embodiment of the present invention, and FIG. FIG. 2 is an explanatory plan view showing a layout corresponding to FIG. 2 in the case of using . 1... Semiconductor substrate, 3... Diffused resistance (P-type semiconductor region), 5a to 5d... Aluminum electrode, 6, 8...
...Insulating film, 7...Polysilicon layer (thin film resistor) 9
8 to 9d...contact hole, 10...transistor formation region. Figure 1 Figure 2 Figure 3 Figure 74

Claims (1)

【特許請求の範囲】 1、半導体基板の一主面に形成された抵抗領域としての
半導体領域の上には、絶縁膜を介して薄膜抵抗素子が形
成されてなることを特徴とする半導体集積回路装置。 2、上記薄膜抵抗素子は、上記抵抗領域上においてその
長手方向が抵抗領域の長手方向と直交するように配設さ
れてなることを特徴とする特許請求の範囲第1項記載の
半導体集積回路装置。 3、上記薄膜抵抗素子は、多結晶シリコン層により構成
されてなることを特徴とする特許請求の範囲第1項もし
くは第2項記載の半導体集積回路装置。
[Claims] 1. A semiconductor integrated circuit characterized in that a thin film resistance element is formed on a semiconductor region as a resistance region formed on one main surface of a semiconductor substrate with an insulating film interposed therebetween. Device. 2. The semiconductor integrated circuit device according to claim 1, wherein the thin film resistive element is arranged on the resistive region so that its longitudinal direction is orthogonal to the longitudinal direction of the resistive region. . 3. The semiconductor integrated circuit device according to claim 1 or 2, wherein the thin film resistive element is formed of a polycrystalline silicon layer.
JP21385186A 1986-09-12 1986-09-12 Semiconductor integrated circuit device Pending JPS6370552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21385186A JPS6370552A (en) 1986-09-12 1986-09-12 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21385186A JPS6370552A (en) 1986-09-12 1986-09-12 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS6370552A true JPS6370552A (en) 1988-03-30

Family

ID=16646070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21385186A Pending JPS6370552A (en) 1986-09-12 1986-09-12 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6370552A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101262A (en) * 1989-09-14 1991-04-26 Fuji Electric Co Ltd Built-in resistance for integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101262A (en) * 1989-09-14 1991-04-26 Fuji Electric Co Ltd Built-in resistance for integrated circuit device

Similar Documents

Publication Publication Date Title
EP0544364A2 (en) Monolithic semi-conductor device having a vertical structure with a deep-base and finger-emitter power transistor having a ballast resistance
JP2605030B2 (en) Quadrature bipolar transistor
JPS6370552A (en) Semiconductor integrated circuit device
US5068702A (en) Programmable transistor
JPS59144171A (en) Semiconductor integrated circuit device
JP3013628B2 (en) Semiconductor device
JPH08195479A (en) Semiconductor device and its manufacture
JP2504498B2 (en) Semiconductor device
JPH0290668A (en) Semiconductor device
JP2687469B2 (en) Semiconductor device
JP2526536Y2 (en) Semiconductor device
JPH04361566A (en) Semiconductor integrated circuit
JPS6313352B2 (en)
JP2869978B2 (en) Semiconductor device
JPS60244058A (en) Semiconductor integrated circuit device
JPS62232965A (en) Semiconductor device
JPH0482220A (en) Manufacture of semiconductor device
JPH04343261A (en) Semiconductor device
JPH07221190A (en) Semiconductor integrated circuit device
JPH04313265A (en) Semiconductor device
JPH0569312B2 (en)
JPH01150336A (en) Semiconductor device
JPH01143260A (en) Semiconductor device and manufacture of the same
JPH05299587A (en) Semiconductor integrated circuit and manufacture thereof
JPH0436576B2 (en)