JPS6370420A - Semiconductor printing device - Google Patents
Semiconductor printing deviceInfo
- Publication number
- JPS6370420A JPS6370420A JP61212750A JP21275086A JPS6370420A JP S6370420 A JPS6370420 A JP S6370420A JP 61212750 A JP61212750 A JP 61212750A JP 21275086 A JP21275086 A JP 21275086A JP S6370420 A JPS6370420 A JP S6370420A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- wafer
- magnification
- amount
- deviation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 20
- 238000000034 method Methods 0.000 claims abstract description 20
- 230000008602 contraction Effects 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 101100269850 Caenorhabditis elegans mask-1 gene Proteins 0.000 abstract description 4
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 241000257465 Echinoidea Species 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の分野]
本発明は、半導体製造工程において、マスク等の原板の
パターンを半導体ウェハ等の被露光体上に露光転写する
ための半導体焼付装置に関し、特に光学レンズ系を介し
てパターン露光を行なう投影露光型半導体焼付装置に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a semiconductor printing apparatus for exposing and transferring a pattern of an original plate such as a mask onto an exposed object such as a semiconductor wafer in a semiconductor manufacturing process, and particularly relates to a semiconductor printing apparatus for exposing and transferring a pattern of an original plate such as a mask onto an exposed object such as a semiconductor wafer. The present invention relates to a projection exposure type semiconductor printing apparatus that performs pattern exposure through a system.
[発明の背景コ
半導体パターン転写工程においては、コンタクト方式、
プロキシミティ方式、反射型投影方式、縮小投影方式等
の露光方式を用いた焼付装置(露光装置)によりマスク
のパターンをウェハ上に転写している。投影露光型の焼
付装置においては、光学レンズ系を介してマスクパター
ンを等倍でまたは縮小してウェハ上に焼付ける。このよ
うな半導体焼付装置においては、高精度の微細パターン
転写を良好に行なうために光学レンズ系の焦点、倍率等
は高精度に設定されなければならず、またマスクとウェ
ハとの位置合せも正確に行なわれなければならない。[Background of the Invention] In the semiconductor pattern transfer process, contact method,
The pattern of the mask is transferred onto the wafer by a printing device (exposure device) using an exposure method such as a proximity method, a reflective projection method, or a reduction projection method. In a projection exposure type printing apparatus, a mask pattern is printed on a wafer at the same size or reduced in size through an optical lens system. In such semiconductor printing equipment, the focus, magnification, etc. of the optical lens system must be set with high precision in order to successfully transfer fine patterns with high precision, and the alignment between the mask and the wafer must also be accurate. must be carried out.
[従来の技術]
従来の半導体焼付装置においては、マスクおよびウニへ
のアライメントマークのずれ量を計測して位置合せを行
なうマークアライメント手段が用いられていた。このア
ライメント方式においては、第1図に示すように、マス
クおよびウェハの左右2ケ所のアライメントマーク)A
L、M、l。[Prior Art] In a conventional semiconductor printing apparatus, a mark alignment means is used to perform positioning by measuring the amount of deviation of an alignment mark from a mask to a sea urchin. In this alignment method, as shown in FIG.
L, M, l.
WL、W、を検出し、これに基づいてずれ量を算出して
マスクまたはウェハをX方向、Y方向およびθ方向(回
転方向)に駆動して位置合せを行なりていた。WL and W are detected, the amount of deviation is calculated based on this, and the mask or wafer is driven in the X direction, the Y direction, and the θ direction (rotation direction) to perform alignment.
マスクおよびウニへの左右のアライメントマークのずれ
量を各々(ΔxL、ΔyL)、(ΔXR。The deviation amounts of the left and right alignment marks on the mask and the sea urchin are respectively (ΔxL, ΔyL) and (ΔXR).
Δ3/R)とすると(第2図(b)参照)、x、y。Δ3/R) (see Fig. 2(b)), then x, y.
θ方向の駆動量は、 ΔX=(ΔxL+ΔXR)/2 ΔY=(ΔyL+Δy R) / 2 Δθ=(ΔyR+Δy L ) / Lで与えられる。The amount of drive in the θ direction is ΔX=(ΔxL+ΔXR)/2 ΔY=(ΔyL+Δy R) /2 It is given by Δθ=(ΔyR+Δy L)/L.
ただしLは左右のアライメントマーク間の距離である。However, L is the distance between the left and right alignment marks.
このような位置合せ方式においては、露光プロセス毎に
ウェハの伸縮が起こりマスクとウェハの比が変化した場
合、ショット中心が重なるように位置合せが行なわれて
いた。In such an alignment method, when the wafer expands and contracts during each exposure process and the ratio of the mask to the wafer changes, alignment is performed so that the shot centers overlap.
しかしながら、このような方法によりウェハの伸縮に対
処して位置合せを行なっても、ウェハの伸縮量が大きい
場合には光学レンズ系の倍率が適正とならず、焼付性能
が低下する場合があった。However, even if alignment is performed by taking into account the expansion and contraction of the wafer using this method, if the amount of expansion and contraction of the wafer is large, the magnification of the optical lens system may not be appropriate, and printing performance may deteriorate. .
[発明の目的コ
本発明は、前記従来技術における問題点に鑑みなされた
ものであって、位置合せ用のマークアライメント手段を
利用して被露光体、例えばウェハの伸縮を検出し、これ
に基いて投影レンズの倍率を補正し、各露光プロセス毎
にウェハ状態に対応して最適なレンズ倍率でパターン焼
付を可能とする半導体焼付装置の提供を目的としている
。[Object of the Invention] The present invention has been made in view of the problems in the prior art described above, and the present invention detects the expansion and contraction of an exposed object, such as a wafer, using a mark alignment means for positioning, and It is an object of the present invention to provide a semiconductor printing apparatus that corrects the magnification of a projection lens by adjusting the magnification of the projection lens and makes it possible to print a pattern at an optimal lens magnification depending on the wafer condition for each exposure process.
[実施例コ 以下、図面を用いて本発明の詳細な説明する。[Example code] Hereinafter, the present invention will be explained in detail using the drawings.
第3図は本発明の一実31例に係る投影露光装置の構成
を示す。同図において、1は転写すべきパターンが描か
れているマスク、2はマスク1を保持するマスクステー
ジ、3a、3bおよび3cは投影レンズを構成するガラ
ス部材である。4a。FIG. 3 shows the configuration of a projection exposure apparatus according to a 31st example of the present invention. In the figure, 1 is a mask on which a pattern to be transferred is drawn, 2 is a mask stage that holds the mask 1, and 3a, 3b, and 3c are glass members forming projection lenses. 4a.
4bおよび4cはそれぞれガラス部材3a、3bおよび
3cを保持する鏡筒である。また、5は鏡筒4bを案内
するエアベアリングガイド、6はエアベアリングガイド
5に静圧を与える静圧管路、7は鏡筒4bを駆動する圧
力を供給する駆動圧管路、8は駆動圧供給源、9は鏡筒
4bを支えるバネである。10は投影レンズ全体を駆動
するピエゾ素子、11はピエゾ素子駆動回路、12は投
影レンズ下端に固定されウェハとの間隔を測定するエア
センサノズル、13はニアセンサ用空圧管路、14はエ
アセンサの背圧を電気信号に変換する変換器である。ま
た、15は投影レンズを支持する投影レンズ用定盤、1
6は投影レンズ用定盤を支持する支柱、17はマスク1
のパターンが転写されるウェハ、18はウェハを支持し
水平面内で平行移動や回転等の8動が可能なウェハステ
ージ、19は装置全体の基礎となる定盤である。さらに
20はマスクとウェハのアライメントマークのずれ量検
出器、2工は演算器、22は露光用の光を発する照明系
、23はマスク1とウェハ17との相対ずれ量を検出す
るアライメントスコープである。4b and 4c are lens barrels that hold glass members 3a, 3b and 3c, respectively. Further, 5 is an air bearing guide that guides the lens barrel 4b, 6 is a static pressure pipe that applies static pressure to the air bearing guide 5, 7 is a driving pressure pipe that supplies pressure that drives the lens barrel 4b, and 8 is a driving pressure supply. Reference numeral 9 denotes a spring that supports the lens barrel 4b. 10 is a piezo element that drives the entire projection lens, 11 is a piezo element drive circuit, 12 is an air sensor nozzle that is fixed to the lower end of the projection lens and measures the distance from the wafer, 13 is a pneumatic pipe line for the near sensor, and 14 is the back of the air sensor. A converter that converts pressure into an electrical signal. Further, 15 is a projection lens surface plate that supports the projection lens;
6 is a support supporting the projection lens surface plate, 17 is a mask 1
18 is a wafer stage that supports the wafer and is capable of eight movements such as translation and rotation in a horizontal plane; 19 is a surface plate that is the basis of the entire apparatus. Furthermore, 20 is a deviation amount detector between the mask and wafer alignment marks, 2 is a computing unit, 22 is an illumination system that emits light for exposure, and 23 is an alignment scope that detects the relative deviation amount between the mask 1 and the wafer 17. be.
このような構成の半導体焼付装置において、マスクとウ
ェハとの位置合せを行なう場合、まず第2図(a)
に示すように、アライメントスコープ23にマスクとウ
ェハとの画像を重ね合せて現出させる。この画像からず
れ量検出器20により、第2図(b)に示すような、位
置合せのためのXY方向の左右のすれit(ΔxL、Δ
yL)、(ΔxR。In a semiconductor printing apparatus having such a configuration, when aligning the mask and the wafer, first, as shown in FIG. 2(a).
As shown in FIG. 2, images of the mask and the wafer are superimposed and displayed on the alignment scope 23. From this image, the deviation amount detector 20 detects the left and right deviations in the X and Y directions (ΔxL, Δ
yL), (ΔxR.
Δy R’)が算出される。さらにこの値を用いて、ウ
ェハの左右のアライメントマークWL、WR間の距離L
wが次式より算出される。Δy R') is calculated. Furthermore, using this value, the distance L between the left and right alignment marks WL and WR of the wafer is determined.
w is calculated from the following equation.
Lw= (LH十ΔxL−ΔXq 4 Δ yL
−ΔyRLMはマスクの左右アライメントマークML。Lw= (LH+ΔxL−ΔXq 4 ΔyL
-ΔyRLM is the left and right alignment mark ML of the mask.
M8間の距離である。This is the distance between M8.
マスクとウェハとの前記距離の比Δ、はΔ L=L、/
LM
で与えられる。ΔL=1でない場合は、Lwがウェハの
伸縮により変化したものと考えられる。この場合には、
このウェハの伸縮情報に基き、投影レンズの倍率調整用
の駆動圧(気圧)供給源8を駆動して駆動圧管路7を介
して鏡筒4bを駆動し、レンズ倍率の補正を行なう。The ratio Δ of the distance between the mask and the wafer is ΔL=L,/
It is given by LM. If ΔL is not 1, it is considered that Lw has changed due to expansion and contraction of the wafer. In this case,
Based on this wafer expansion/contraction information, a driving pressure (atmospheric pressure) supply source 8 for adjusting the magnification of the projection lens is driven to drive the lens barrel 4b via the driving pressure conduit 7, thereby correcting the lens magnification.
ずれ量検出位置をアライメントスコープ内の上下左右に
おいて増加することにより、−次元的レンズ倍率補正を
2次元的にすることができ、ずれ量の検出精度が高まり
信頼性の高いレンズ倍率補正を行なうことができる。By increasing the deviation amount detection position in the top, bottom, left and right of the alignment scope, -dimensional lens magnification correction can be made two-dimensional, increasing the detection accuracy of the deviation amount and performing highly reliable lens magnification correction. Can be done.
また、ずれ量検出に際し、画像ではなく、レーザスキャ
ン、スリットスキャン等の方式を用いても同様に有効で
ある。Furthermore, when detecting the amount of deviation, it is equally effective to use a method such as a laser scan or a slit scan instead of an image.
ウェハの伸縮は各露光プロセス毎に起こり、露光プロセ
ス内の各露光ショット毎には起こらないものと考えられ
る。したがって、スループット向上の面から各露光プロ
セスの開始時にのみこのレンズ倍率補正を行なうことが
望ましい。It is considered that expansion and contraction of the wafer occurs for each exposure process and does not occur for each exposure shot within the exposure process. Therefore, in order to improve throughput, it is desirable to perform this lens magnification correction only at the start of each exposure process.
[発明の効果コ
以上説明したように、本発明に係る半導体焼付装置にお
いては、位置合せ用のマークアライメント手段を用いて
ウェハ等の被露光体の伸縮量を検出しこれに基づいて投
影レンズの倍率補正を行なっている。したがって、各露
光プロセス毎に生ずるウェハの伸縮に対応して最適なレ
ンズ倍率で焼付けを行なうことができ、高精度で信頼性
の高いパターン焼付けが達成される。[Effects of the Invention] As explained above, in the semiconductor printing apparatus according to the present invention, the amount of expansion and contraction of the object to be exposed such as a wafer is detected using the mark alignment means for positioning, and the projection lens is adjusted based on this. Magnification correction is being performed. Therefore, printing can be performed at an optimal lens magnification in response to the expansion and contraction of the wafer that occurs in each exposure process, and highly accurate and reliable pattern printing can be achieved.
第1図はマスクとウェハのアライメントマークの位置を
示す説明図、第2図はマスクとウエノ\とのずれ量の説
明図、第3図は本発明に係る投影露光型半導体焼付装置
の構成図である。
1:マスク
3a、3b、3c:投影レンズ構成部材7:駆動圧管路
8・駆動圧供給源
17°ウエハ
18:ウェハステージ
Ml、、 MR,WL 、Wn :アライメントマー
ク特許出願人 キャノン株式会社
代理人 弁理士 伊 東 辰 雄
代理人 弁理士 伊 東 哲 也
イスク ウニ八
(a)
(b)
第2図
第3図Fig. 1 is an explanatory diagram showing the positions of alignment marks between the mask and the wafer, Fig. 2 is an explanatory diagram of the amount of misalignment between the mask and the wafer, and Fig. 3 is a configuration diagram of the projection exposure type semiconductor printing apparatus according to the present invention. It is. 1: Masks 3a, 3b, 3c: Projection lens component 7: Driving pressure conduit 8/driving pressure supply source 17° Wafer 18: Wafer stage Ml, MR, WL, Wn: Alignment mark patent applicant Canon Co., Ltd. agent Patent Attorney Tatsuo Ito Agent Patent Attorney Tetsuya Isuku Unihachi (a) (b) Figure 2 Figure 3
Claims (1)
上に形成された位置合せ用マークを検出して原板と被露
光体とのずれ量を計測しこれに基づいて原板と被露光体
を相対的に駆動し位置合せするマークアライメント手段
、被露光体上への原板像の投影倍率を調整する手段、お
よび被露光体上の位置合せ用マークの所定位置からのず
れ量を計測しこのずれ量に基づいて上記倍率調整手段を
駆動してレンズの倍率補正を行なう制御手段を具備する
ことを特徴とする半導体焼付装置。 2、前記マークアライメント手段が、前記原板および被
露光体の各々の対応位置のマークを検出してそのずれ量
を計測する特許請求の範囲第1項記載の半導体焼付装置
。 3、前記制御手段が、前記マークアライメント手段によ
る前記ずれ量の計測結果より被露光体の伸縮量を検出し
、この伸縮量が最小となるように上記倍率補正を行なう
特許請求の範囲第1項または第2項記載の半導体焼付装
置。 4、前記レンズ倍率補正動作を、各露光プロセスに対し
1回だけ行ない露光プロセス内の露光ショット毎には行
なわないように構成した特許請求の範囲第1項から第3
項までのいずれか1項に記載の半導体焼付装置。 5、前記マークアライメント手段が、原板および被露光
体の画像を重ね合せて現出するアライメントスコープを
有し、該スコープの画像に基づいて原板と被露光体との
ずれ量を検出する特許請求の範囲第1項から第4項まで
のいずれか1項に記載の半導体焼付装置。 6、前記レンズの倍率調整手段が、レンズを保持する鏡
筒に対し圧力を印加して移動するための駆動圧管路、お
よび該圧力を供給するための駆動圧供給源を含む特許請
求の範囲第1項から第5項までのいずれか1項に記載の
半導体焼付装置。[Claims] 1. A lens that projects the image of the original plate onto the exposed object, and a lens that detects alignment marks formed on the exposed object and measures the amount of deviation between the original plate and the exposed object. mark alignment means for relatively driving and positioning the original plate and the exposed object based on the exposure object, means for adjusting the projection magnification of the original image onto the exposed object, and a predetermined position of the alignment mark on the exposed object. 1. A semiconductor printing apparatus comprising: a control means for measuring the amount of deviation from the lens and driving the magnification adjustment means based on the amount of deviation to correct the magnification of the lens. 2. The semiconductor printing apparatus according to claim 1, wherein the mark alignment means detects marks at corresponding positions on each of the original plate and the object to be exposed, and measures the amount of deviation thereof. 3. The control means detects the amount of expansion and contraction of the exposed object from the measurement result of the amount of deviation by the mark alignment means, and performs the magnification correction so that the amount of expansion and contraction is minimized. Or the semiconductor printing apparatus according to item 2. 4. Claims 1 to 3, wherein the lens magnification correction operation is performed only once for each exposure process and not for each exposure shot within the exposure process.
The semiconductor printing apparatus according to any one of the preceding paragraphs. 5. The mark alignment means has an alignment scope that superimposes images of the original plate and the exposed object, and detects the amount of deviation between the original plate and the exposed object based on the image of the scope. The semiconductor printing apparatus according to any one of the ranges 1 to 4. 6. The lens magnification adjusting means includes a driving pressure conduit for applying pressure to and moving the lens barrel holding the lens, and a driving pressure supply source for supplying the pressure. The semiconductor printing apparatus according to any one of items 1 to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61212750A JPS6370420A (en) | 1986-09-11 | 1986-09-11 | Semiconductor printing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61212750A JPS6370420A (en) | 1986-09-11 | 1986-09-11 | Semiconductor printing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6370420A true JPS6370420A (en) | 1988-03-30 |
Family
ID=16627798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61212750A Pending JPS6370420A (en) | 1986-09-11 | 1986-09-11 | Semiconductor printing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6370420A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0562880A (en) * | 1991-09-04 | 1993-03-12 | Canon Inc | Aligner |
-
1986
- 1986-09-11 JP JP61212750A patent/JPS6370420A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0562880A (en) * | 1991-09-04 | 1993-03-12 | Canon Inc | Aligner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4748477A (en) | Exposure apparatus | |
US4676630A (en) | Exposure apparatus | |
US4538914A (en) | Transfer apparatus for compensating for a transfer error | |
US20110027542A1 (en) | Exposure apparatus and exposure method | |
JP2005252246A (en) | Exposure device and exposure method, method of controlling position and method of fabricating the device | |
JPS62200726A (en) | Exposure device | |
US5850291A (en) | Projection exposure apparatus and method for controlling a stage on the basis of a value corrected by ABBE error | |
JPH1154407A (en) | Method of registration | |
JP2646412B2 (en) | Exposure equipment | |
US5150152A (en) | Exposure apparatus including device for determining movement of an object | |
KR19990045161A (en) | Positioning and Projection Exposure Equipment | |
JP2005331542A (en) | Exposure apparatus, exposure method and method for manufacturing substrate | |
JPS6370420A (en) | Semiconductor printing device | |
JPH11219999A (en) | Delivery method for substrate and aligner using the same | |
JP2006100590A (en) | Proximity aligner | |
JPH0774084A (en) | Substrate processor | |
JP4487688B2 (en) | Step-type proximity exposure system | |
JP2008209632A (en) | Mask attaching method and exposure apparatus unit | |
US6646715B1 (en) | Scanning exposure apparatus and method with run-up distance control | |
KR102320394B1 (en) | Exposure apparatus | |
JP7004041B2 (en) | Exposure device | |
JP3413947B2 (en) | Peripheral exposure equipment | |
JP4487700B2 (en) | Proximity exposure equipment | |
JPS61247026A (en) | Exposure equipment | |
KR102333943B1 (en) | Exposure apparatus, stage calibration system, and stage calibration method |