JPS6370076A - Heat insulator - Google Patents

Heat insulator

Info

Publication number
JPS6370076A
JPS6370076A JP21442386A JP21442386A JPS6370076A JP S6370076 A JPS6370076 A JP S6370076A JP 21442386 A JP21442386 A JP 21442386A JP 21442386 A JP21442386 A JP 21442386A JP S6370076 A JPS6370076 A JP S6370076A
Authority
JP
Japan
Prior art keywords
adsorbing material
adsorbent
moisture
carbon dioxide
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21442386A
Other languages
Japanese (ja)
Other versions
JPH0827130B2 (en
Inventor
中元 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP61214423A priority Critical patent/JPH0827130B2/en
Publication of JPS6370076A publication Critical patent/JPS6370076A/en
Publication of JPH0827130B2 publication Critical patent/JPH0827130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Refrigerator Housings (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷蔵庫、冷凍庫、冷凍プレハブ等に利用する
断熱体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat insulator for use in refrigerators, freezers, frozen prefabricated products, and the like.

従来の技術 近年、断熱箱体の断熱性能向上を図るだめ、内部を減圧
した断熱体を用いることが注目されている。この断熱体
の芯材としては、パーライトからなる粉末、ハニカム及
び発泡体を用いている。例えば、第6図で説明すると、
図において1は断熱体であり、発泡体として連続気泡を
有する硬質ウレタンフオーム2と共に、水分、炭酸ガス
等を吸着するゼオライト3を充項した通気性を有する包
装体4とを気密性薄膜から成る容器6で被い、内部をO
,O5tomHy  まで減圧し、密閉している。
BACKGROUND OF THE INVENTION In recent years, in order to improve the heat insulation performance of a heat insulating box, the use of a heat insulator with a reduced internal pressure has been attracting attention. As the core material of this heat insulator, powder made of pearlite, honeycomb, and foam are used. For example, as explained in Figure 6,
In the figure, reference numeral 1 denotes a heat insulator, which is composed of a hard urethane foam 2 having open cells as a foam, and an air-permeable packaging body 4 filled with zeolite 3 that adsorbs moisture, carbon dioxide, etc., and is made of an airtight thin film. Cover with container 6 and open the inside
, O5tomHy and sealed.

発明が解決しようとする問題点 しかしながら上記のような構成では、樹脂骨格内に膨潤
する触媒9発泡剤等の有機ガスあるいは炭酸ガス等を完
全に排気することができない場合があり、硬質ウレタン
フオーム2内の圧力を短時間の排気で均一に減圧するこ
とは困難である。例えば、30 cm X 30 cm
 X 2儒(容積1eoocrl)の大きさの硬質ウレ
タンフオームを耐熱温度に近い120℃〜140℃で1
時間程度乾燥を行なったものに関して樹脂骨格内に膨潤
する気体を分析した結果、約20〜40cJが残存する
ことがわかっている。これらが、気泡膜や樹脂骨格の拡
散抵抗を受けながら断熱体1内部に拡散することが予想
される。また、通気性を有する包装体4に充填されたゼ
オライト3は水分、炭酸ガスは吸着するが触媒のアミン
ガスや発泡剤のR−11等の有機ガスは吸着しないうえ
に、水分を吸着した後での炭酸ガス吸着能力は極めて低
い。このため硬質ウレタンフオームの様な比較的水分を
吸着しやすい芯材を用いた場合、ゼオライトを介在させ
たとしても水分量の影響を受は炭酸ガスが吸着しなかっ
たり、また、有機ガスを吸着しないため、初期の熱伝導
率が優れたものでも経時的に断熱体の内部圧力は上昇し
て、熱伝導率が大きくなってくるものである。また、ゼ
オライト3においては、品温を常温のまま容器内部に収
納し、減圧密閉した場合、吸着した空気等のガスが水分
吸着と共に脱気され拡散し断熱体1の内部圧力を上昇さ
せている。
Problems to be Solved by the Invention However, with the above configuration, it may not be possible to completely exhaust organic gas such as the catalyst 9 blowing agent or carbon dioxide gas that swells within the resin skeleton, and the hard urethane foam 2 It is difficult to uniformly reduce the internal pressure in a short time by evacuation. For example, 30 cm x 30 cm
A hard urethane foam with a size of
As a result of analyzing the gas that swells in the resin skeleton after drying for about an hour, it has been found that about 20 to 40 cJ remains. It is expected that these will diffuse into the inside of the heat insulator 1 while being affected by the diffusion resistance of the bubble membrane and resin skeleton. In addition, the zeolite 3 filled in the air-permeable package 4 adsorbs moisture and carbon dioxide gas, but does not adsorb organic gases such as amine gas as a catalyst and R-11 as a blowing agent. has extremely low carbon dioxide adsorption capacity. For this reason, when using a core material such as hard urethane foam that is relatively easy to absorb moisture, even if zeolite is used, it may not absorb carbon dioxide or organic gas due to the influence of the moisture content. Therefore, even if the insulation has excellent initial thermal conductivity, the internal pressure of the insulation increases over time and the thermal conductivity increases. In addition, in zeolite 3, when the product is stored in a container at room temperature and sealed under reduced pressure, the adsorbed gas such as air is degassed and diffused while adsorbing moisture, increasing the internal pressure of the heat insulator 1. .

これを防ぐためには、硬質ウレタンフオーム2の樹脂骨
格等に膨潤する発泡剤等の気体を完全に排気するため、
少なくとも120〜140℃に維持し、1日以上真空ポ
ンプで排気し続けることが必要であろう。また、ゼオラ
イトにおいても、吸湿をしない条件下で品温を高温に維
持し排気するなどの操作が必要となる。すなわち、この
操作により樹脂骨格内に残存する気体は排気され、また
残存する水分等もゼオライトによって吸着することが可
能である。しかしながら、この操作は生産においては、
極めて量産性にとぼしい、また、この断熱体を保温のた
め高温で使用した場合、ゼオライトよシ脱気がおこシ断
熱性能を低下させる。
In order to prevent this, in order to completely exhaust the gas such as the blowing agent that swells in the resin skeleton of the hard urethane foam 2,
It will be necessary to maintain the temperature at least at 120-140°C and continue to evacuate with a vacuum pump for one day or more. Zeolite also requires operations such as maintaining the product temperature at a high temperature and exhausting the material under conditions that do not absorb moisture. That is, by this operation, the gas remaining in the resin skeleton is exhausted, and the remaining moisture etc. can also be adsorbed by the zeolite. However, in production, this operation
It is extremely difficult to mass-produce, and when this insulating material is used at high temperatures for heat retention, zeolite degasses and deteriorates its insulating performance.

本発明は、上記問題点に鑑み短時間の排気で所定の圧力
まで減圧し、経時的に初期の圧力を維持するばかりか、
さらに、′内部圧力を低下させる効果を持つと共に、生
産性を向上させることを目的とする。
In view of the above problems, the present invention not only reduces the pressure to a predetermined pressure in a short time by evacuation and maintains the initial pressure over time, but also
Furthermore, it aims to have the effect of reducing internal pressure and improve productivity.

問題点を解決するための手段 本発明は、上記問題点を解決するために、発泡プラスチ
ックスを芯材に用い、さらに有機ガス吸着物質、炭酸ガ
ス吸着物質及び水分吸着物質のうち、少なくとも炭酸ガ
ス吸着物質と水分吸着物質を均一に混合し、バインダー
等の補強材を使用せずにペレット状、顆粒状等に一体成
型化した吸着剤を用いたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention uses foamed plastic as a core material, and furthermore, out of an organic gas adsorbing material, a carbon dioxide adsorbing material, and a moisture adsorbing material, at least carbon dioxide It uses an adsorbent in which an adsorbing substance and a moisture adsorbing substance are uniformly mixed and integrally molded into pellets, granules, etc. without using a reinforcing material such as a binder.

作  用 上記構成によって連続気泡を有する硬質ウレタンフオー
ムと共に、吸着剤として有機ガス吸着物質、炭酸ガス吸
着物質及び水分吸着物質のうち、少なくとも炭酸ガス吸
着物質と水分吸着物質を均一に混合し、バインダー等の
補強材を使用せずにペレット状、顆粒状等に一体成型化
した吸着剤を介在させることにより、短時間の排気によ
って樹脂骨格内に膨潤する残存ガスが経時的に発生して
も、アミンガス、R−11等の有機ガスは活性炭等の有
機ガス吸着物質に吸着され、CO2は水酸化ナトリウム
等の炭酸ガス吸着物質に吸着され、残存水分は塩化カル
シウム、硫化カルシウム、酸化カルシウム等の水分吸着
物質に吸着される。また、Co2 と金属水酸化物の反
応によって生じる水分は、吸着剤が均一に混合され、ペ
レット状。
Function: With the above structure, at least a carbon dioxide adsorbing material and a moisture adsorbing material among an organic gas adsorbing material, a carbon dioxide adsorbing material, and a moisture adsorbing material are uniformly mixed together with a hard urethane foam having open cells as an adsorbent, and a binder, etc. By interposing an adsorbent integrally molded in the form of pellets, granules, etc. without using reinforcing materials, amine gas can be removed even if residual gas that swells in the resin skeleton is generated over time due to short-term evacuation. , R-11, etc. are adsorbed by organic gas adsorbing substances such as activated carbon, CO2 is adsorbed by carbon dioxide adsorbing substances such as sodium hydroxide, and residual moisture is absorbed by moisture adsorbing substances such as calcium chloride, calcium sulfide, and calcium oxide. Adsorbed by substances. In addition, the moisture generated by the reaction between Co2 and metal hydroxide is uniformly mixed with the adsorbent and formed into pellets.

顆粒状等に一体成型化されているため、その隣接する水
分吸着物質にすべて吸着される。これによって、長期間
にわたって内部圧力の上昇がなく、初期の断熱性能を維
持向上させるものである。また、吸着剤においても、バ
インダー等の補強材を使用しないため吸着面積が広まり
、吸着能力が増大すると共に、加熱処理等の必要がなく
、常温で容器内部に収納でき、作業性を向上させるもの
である。
Since it is integrally molded into granules, it is all adsorbed by the adjacent moisture adsorption material. As a result, the internal pressure does not increase over a long period of time, and the initial heat insulation performance is maintained and improved. In addition, since the adsorbent does not use reinforcing materials such as binders, the adsorption area is expanded and adsorption capacity is increased, and there is no need for heat treatment, etc., and it can be stored inside a container at room temperature, improving workability. It is.

実施例 以下、本発明の一実施例について、図面を参照しながら
説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図において、6は表1に示す原料及び配合部数を用
いてウレタン高圧発泡機で発泡し、硬化させた硬質ウレ
タンフオームで常温でエージングした後、スキン層を除
いて所定の大きさに切断したものである。
In Figure 1, 6 is a hard urethane foam that is foamed in a high-pressure urethane foaming machine using the raw materials and blended parts shown in Table 1, cured, aged at room temperature, and then cut into a predetermined size with the skin layer removed. This is what I did.

表1において、ポリオールは芳香族ジアミンを開始剤と
してプロピオンオキサイドを付加重合させて得た水酸基
価442 mgKOH/9のポリエーテルポリオールで
ある。また、整泡剤は、信越化学(株)製のシリコーン
界面活性剤F−318、発泡剤は、昭和電工(株)製フ
ロンR−11である。触媒は、ジブチルチンジラウレー
トである。また、気泡連通化剤は日本油脂(株)製ステ
アリン酸カルシウムである。有機ポリイソシアネートは
トルイレンジイソシアネートとトリメチルプロパン及び
ジエチレングリコールを反応させて得たアミン当量15
0のポリイソシアネートである。これらの原料を表記の
配合部数で配合し、ウレタン高圧発泡機で発泡を行った
硬質ウレタンフオームを20αX 20 cm X 2
 cmの寸法に切断し、この後、140℃で約1時間加
熱し、吸着水分を蒸発させると共に樹脂骨格内に膨潤す
る気体の一部を蒸発させ、硬質ウレタンフオームeを形
成する。また、吸着剤7として、水酸化カルシウム、塩
化カルシウム及び活性炭の各粉末を表2に示す配合重量
で均一に混合し、顆粒状に一体成型化したものを通気性
を有する包装体8に充填した。
In Table 1, the polyol is a polyether polyol with a hydroxyl value of 442 mgKOH/9 obtained by addition polymerizing propion oxide using an aromatic diamine as an initiator. The foam stabilizer was silicone surfactant F-318 manufactured by Shin-Etsu Chemical Co., Ltd., and the foaming agent was Freon R-11 manufactured by Showa Denko KK. The catalyst is dibutyltin dilaurate. The cell communication agent is calcium stearate manufactured by Nippon Oil & Fats Co., Ltd. The organic polyisocyanate is obtained by reacting toluylene diisocyanate with trimethylpropane and diethylene glycol and has an amine equivalent weight of 15.
0 polyisocyanate. These raw materials were blended in the indicated proportions and foamed in a urethane high-pressure foaming machine to form a hard urethane foam of 20α x 20 cm x 2.
The resin is cut into pieces with a size of cm, and then heated at 140° C. for about 1 hour to evaporate the adsorbed moisture and evaporate part of the gas that swells within the resin skeleton, forming a hard urethane foam e. Further, as the adsorbent 7, powders of calcium hydroxide, calcium chloride, and activated carbon were uniformly mixed at the blending weights shown in Table 2, and the mixture was integrally molded into granules and filled into a breathable package 8. .

前記硬質ウレタンフオーム6と、吸着剤7として、水酸
化カルシウム、塩化カルシウム及び活性炭の各粉末を均
一に混合し、顆粒状に一体成型化したものを充填した包
装体8を金属−プラスチックスラミネートフィルムから
成る容器9に入れ、内部をO,O6mmIQ まで減圧
し、密閉して断熱体10を得ている。得られた断熱体1
oの初期の熱伝導率と、30日後の熱伝導率を真空理工
(株)製K −Ma t i cで平均温度24℃で測
定し、表3に示した。なお、参考例として、実施例と同
じ硬質ウレタンフオームを用いて、吸着剤を表4に示す
配合重量で包装体に充填し介在させたものである。
A package 8 filled with the hard urethane foam 6 and adsorbent 7 made by uniformly mixing powders of calcium hydroxide, calcium chloride, and activated carbon and integrally molded into granules is wrapped in a metal-plastic laminate film. The inside of the container 9 is evacuated to O.O6mmIQ and sealed to obtain a heat insulator 10. Obtained heat insulator 1
The initial thermal conductivity and the thermal conductivity after 30 days were measured at an average temperature of 24° C. by K-Matic manufactured by Shinku Riko Co., Ltd., and are shown in Table 3. As a reference example, the same rigid urethane foam as in the example was used, and the adsorbent was filled and interposed in a package at the blending weight shown in Table 4.

以下余白 表4 表3から明らかになるように、水酸化カルシウム、塩化
カルシウム及び活性炭の各粉末を均一に混合し、顆粒状
に一体成型化した吸着剤7を用いることにより、硬質ウ
レタンフオーム6の樹脂骨格内に膨潤する残存ガスを吸
着することがわかった。これは、20〜40cdの膨潤
ガスの80チがCo2 であり、残りが触媒のアミンガ
スや発泡剤のR−11等の有機ガスと水分である。この
ため、以下のような反応のプロセスでガス吸着が行なわ
れるものである。まず、容器9内部に残存する水分が塩
化カルシウムによって吸着される。この吸着水分を開始
剤としてその隣接する水酸化カルシウムが下式のように
Co2 と反応し吸着する。
Margin Table 4 below As is clear from Table 3, by using the adsorbent 7 which is made by uniformly mixing calcium hydroxide, calcium chloride, and activated carbon powders and integrally molding them into granules, the hard urethane foam 6 is It was found that the residual gas that swells within the resin skeleton is adsorbed. This means that 80% of the 20 to 40 cd swelling gas is Co2, and the rest is organic gas such as amine gas as a catalyst and R-11 as a blowing agent, and moisture. Therefore, gas adsorption is performed through the following reaction process. First, moisture remaining inside the container 9 is adsorbed by calcium chloride. Using this adsorbed moisture as an initiator, the adjacent calcium hydroxide reacts with Co2 and adsorbs it as shown in the following equation.

Ca (OH)2 + CO24CaCO3+ H2O
この反応によって発生する水分は再び塩化カルシウムの
結晶水として吸着される。まだ、触媒のアミンガスや発
泡剤のR−11等の有機ガスは活性炭によって吸着され
る。
Ca (OH)2 + CO24CaCO3+ H2O
The water generated by this reaction is adsorbed again as water of crystallization of calcium chloride. Organic gases such as amine gas as a catalyst and R-11 as a blowing agent are still adsorbed by activated carbon.

一方、参考例1の場合、ゼオライトが水分及び炭酸ガス
を吸着し、活性炭が有機ガスを吸着するが、ゼオライト
f、0.06mmHyの低圧下では、空気等を脱気する
ため、経時後の熱伝導率は著しく大きなものとなってい
る。参考例2の場合、水分吸着物質がないため水酸化カ
ルシウムと002の反応が起こりにくく、また、反応後
発生する水分が蒸発し容器内部に拡散することが予想さ
れる。
On the other hand, in the case of Reference Example 1, zeolite adsorbs moisture and carbon dioxide gas, and activated carbon adsorbs organic gas, but with zeolite f and under a low pressure of 0.06 mmHy, air etc. The conductivity is significantly large. In the case of Reference Example 2, since there is no water-adsorbing material, the reaction between calcium hydroxide and 002 is unlikely to occur, and it is expected that the water generated after the reaction will evaporate and diffuse into the interior of the container.

また、参考例3においては炭酸ガス吸着物質がないため
、経時的に発生するCo2 が容器内部に拡散し、熱伝
導率を大きくしているものと考えられる0 以上のように、連続気泡構造の硬質ウレタンフオームと
共に、有機ガス吸着物質、炭酸ガス吸着物質及び水分吸
着物質のうち少なくとも炭酸ガス吸着物質と水分吸着物
質を均一に混合し、バインダー等の補強材を使用せずに
ペレット状、顆粒状等に一体成型化した吸着剤を介在さ
せることにより、短時間の排気で所定の圧力まで減圧し
、経時的に初期の圧力を維持するばかりか、さらに、内
部圧力を低下させる効果を持つ断熱体を得るものである
In addition, since there is no carbon dioxide adsorbing material in Reference Example 3, it is thought that the CO2 generated over time diffuses into the inside of the container and increases the thermal conductivity. Hard urethane foam is uniformly mixed with at least a carbon dioxide adsorbing material and a water adsorbing material among an organic gas adsorbing material, a carbon dioxide adsorbing material, and a water adsorbing material, and is formed into pellets or granules without using a reinforcing material such as a binder. By interposing an adsorbent integrally molded into a heat insulator, etc., it is possible to reduce the pressure to a predetermined pressure in a short time by evacuation, maintain the initial pressure over time, and further reduce the internal pressure. This is what you get.

また、吸着剤においては、バインダー等の補強材を使用
していないため、吸着面積が広まり、吸着能力が増大す
るものである。
Furthermore, since no reinforcing material such as a binder is used in the adsorbent, the adsorption area is expanded and the adsorption capacity is increased.

発明の効果 以上の様に、連続気泡構造の硬質ウレタンフオームと共
に、有機ガス吸着物質、炭酸ガス吸着物質及び水分吸着
物質のうち少なくとも炭酸ガス吸着物質と水分吸着物質
を均一に混合し、バインダー等の補強材を使用せずにペ
レット状、顆粒状等に一体成型化した吸着剤を充填した
包装体を介在させることにより、減圧密閉後も樹脂骨格
内に残存する膨潤ガスが経時的に容器内部へ拡散してき
た場合でも、すべてのガスが吸着剤によって吸着される
ため長期にわたって初期の断熱性能を維持するばかりか
、さらに断熱性能を向上させるものである。
As described above, the hard urethane foam having an open cell structure is uniformly mixed with at least a carbon dioxide adsorbing material and a water adsorbing material among an organic gas adsorbing material, a carbon dioxide adsorbing material, and a water adsorbing material, and a binder, etc. By interposing a package filled with adsorbent integrally molded into pellets, granules, etc. without using reinforcing materials, the swelling gas remaining in the resin framework even after vacuum sealing is released into the container over time. Even when the gas is diffused, all of the gas is adsorbed by the adsorbent, which not only maintains the initial insulation performance over a long period of time, but also improves the insulation performance.

また、前記吸着剤は、バインダー等の補強材を使用しな
いため、吸着面積が広まりミ吸着能力が増大すると共に
、ゼオライトのように低圧下での脱気がなく、取り扱い
も容易で量産時の年産性を確保することが可能となる。
In addition, since the above-mentioned adsorbent does not use reinforcing materials such as binders, the adsorption area is expanded and the adsorption capacity is increased. Unlike zeolite, there is no degassing under low pressure, and it is easy to handle. This makes it possible to ensure the quality of the product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の断熱体に用いる硬質ウレタン
フオームの外観斜視図、第2図は同断熱体の断面図、第
3図は従来の断熱体の断面図である0 6・・・・・・硬質ウレタンフオーム、7・・・・・・
吸着剤、8・・・・・・包装体、9・・・・・・容器、
10・・・・・・断熱体。
Fig. 1 is an external perspective view of the hard urethane foam used in the heat insulating body of the embodiment of the present invention, Fig. 2 is a sectional view of the same heat insulating body, and Fig. 3 is a sectional view of a conventional heat insulating body. ...Hard urethane foam, 7...
Adsorbent, 8... Packaging body, 9... Container,
10...Insulator.

Claims (3)

【特許請求の範囲】[Claims] (1)発泡プラスチックスと共に、有機ガス吸着物質、
炭酸ガス吸着物質及び水分吸着物質のうち少なくとも、
炭酸ガス吸着物質と水分吸着物質を均一に混合し、ペレ
ット状、顆粒状等に一体成型化した吸着剤とを金属−プ
ラスチックスラミネートフィルムから成る容器で被い、
この容器の内部を減圧し密閉した断熱体。
(1) Along with foamed plastics, organic gas adsorbing materials,
At least among carbon dioxide adsorbing substances and moisture adsorbing substances,
A carbon dioxide adsorbing material and a moisture adsorbing material are uniformly mixed, and the adsorbent is integrally molded into pellets, granules, etc., and the adsorbent is covered with a container made of a metal-plastic laminate film.
This is an insulator that reduces the pressure inside the container and seals it.
(2)有機ガス吸着物質として活性炭、炭酸ガス吸着物
質として金属水酸化物、水分吸着物質として金属塩化物
、金属硫化物または金属酸化物を用いたことを特徴とす
る特許請求の範囲第1項記載の断熱体。
(2) Claim 1, characterized in that activated carbon is used as the organic gas adsorbing material, metal hydroxide is used as the carbon dioxide gas adsorbing material, and metal chloride, metal sulfide or metal oxide is used as the moisture adsorbing material. Insulation as described.
(3)ペレット状、顆粒状等に一体成型化した吸着剤は
、バインダー等の補強材を用いないことを特徴とする特
許請求の範囲第1項記載の断熱体。
(3) The heat insulator according to claim 1, wherein the adsorbent integrally molded into pellets, granules, etc. does not use a reinforcing material such as a binder.
JP61214423A 1986-09-11 1986-09-11 Insulation Expired - Fee Related JPH0827130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61214423A JPH0827130B2 (en) 1986-09-11 1986-09-11 Insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61214423A JPH0827130B2 (en) 1986-09-11 1986-09-11 Insulation

Publications (2)

Publication Number Publication Date
JPS6370076A true JPS6370076A (en) 1988-03-30
JPH0827130B2 JPH0827130B2 (en) 1996-03-21

Family

ID=16655543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61214423A Expired - Fee Related JPH0827130B2 (en) 1986-09-11 1986-09-11 Insulation

Country Status (1)

Country Link
JP (1) JPH0827130B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136434A (en) * 1982-02-08 1983-08-13 松下電器産業株式会社 Heat-insulating structure and its manufacture
JPS59225275A (en) * 1983-06-01 1984-12-18 松下電器産業株式会社 Vacuum heat-insulating material
JPS6124961A (en) * 1984-07-11 1986-02-03 シャープ株式会社 Heat-insulating wall of refrigerator, etc.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136434A (en) * 1982-02-08 1983-08-13 松下電器産業株式会社 Heat-insulating structure and its manufacture
JPS59225275A (en) * 1983-06-01 1984-12-18 松下電器産業株式会社 Vacuum heat-insulating material
JPS6124961A (en) * 1984-07-11 1986-02-03 シャープ株式会社 Heat-insulating wall of refrigerator, etc.

Also Published As

Publication number Publication date
JPH0827130B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
JPS61119895A (en) Vacuum heat-insulating unit and manufacture thereof
HUT77188A (en) Heat-insulating body
JP2543041B2 (en) Insulation
JP2001001352A (en) Production of vacuum insulating material core
JPS6321475A (en) Heat insulator
JPS6370076A (en) Heat insulator
JPH0789003B2 (en) Insulation
JPS6370077A (en) Heat insulator
JPS63189772A (en) Heat insulator
JPS59137777A (en) Heat-insulator pack
JPS61153480A (en) Heat insulator
JPH0753769A (en) Foamed thermal insulator and its production
JPH05280691A (en) Heat insulating body
JP3725958B2 (en) Insulator manufacturing method
JPS62147275A (en) Manufacture of heat insulator
JPS62246690A (en) Heat insulator
JPS61103090A (en) Vacuum heat-insulating structure
JPS61153481A (en) Heat insulator
JPH02154894A (en) Heat insulator
JPH023115B2 (en)
JP2000107595A (en) Carbon dioxide adsorbent, foamed heat insulating material and heat insulating box body
JPS61153479A (en) Heat insulator
JPH10230161A (en) Carbon dioxide acid gas adsorption agent and expandable heat insulating material and heat insulated box
JPS62178866A (en) Manufacture of heat insulator
JPH01102288A (en) Heat-insulating box body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees