JPS6370000A - Method for controlling electroplating liquid for zinc or zinc alloy - Google Patents

Method for controlling electroplating liquid for zinc or zinc alloy

Info

Publication number
JPS6370000A
JPS6370000A JP61210533A JP21053386A JPS6370000A JP S6370000 A JPS6370000 A JP S6370000A JP 61210533 A JP61210533 A JP 61210533A JP 21053386 A JP21053386 A JP 21053386A JP S6370000 A JPS6370000 A JP S6370000A
Authority
JP
Japan
Prior art keywords
plating
lead
zinc
column
plating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61210533A
Other languages
Japanese (ja)
Other versions
JPH0138880B2 (en
Inventor
Masaharu Kaneko
正治 金子
Takashi Hori
宇司 堀
Manabu Inoue
学 井上
Tadashi Itahana
板花 正
Takashi Sakata
阪田 喬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kagaku Sangyo Co Ltd
Original Assignee
Nihon Kagaku Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kagaku Sangyo Co Ltd filed Critical Nihon Kagaku Sangyo Co Ltd
Priority to JP61210533A priority Critical patent/JPS6370000A/en
Publication of JPS6370000A publication Critical patent/JPS6370000A/en
Publication of JPH0138880B2 publication Critical patent/JPH0138880B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To efficiently remove lead ion contained in a galvanizing bath in greater quantities, by bringing the galvanizing bath contg. lead ions into contact with hydrated antimony oxide and thereafter bringing this into contact with titania-base composite oxide. CONSTITUTION:Electroplating liquid of zinc and zinc alloy is drawn out from a plating tank 1 and introduced into a storage tank 5 of plating liquid after separating anode sludge with a filter 4. This plating liquid is led to a column 7 packed with an inorganic ion exchanger 8 consisting of hydrated antimony oxide by means of a pump 6 and greater parts of lead ions incorporated in the plating liquid are adsorbed. The plating liquid discharged from the column 7 is introduced into a column 9 packed with an adsorbent 10 consisting of titania-base composite oxide, trace Sb ion and residual lead ion incorporated in the plating liquid are adsorbed, and thereafter it is returned to the storage tank 5. By this method, lead ions can be efficiently removed without forming insoluble ppt. and plating quality can be enhanced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は亜鉛または亜鉛合金電気めっき液の管理方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for managing a zinc or zinc alloy electroplating solution.

〈従来の技術〉 近年、耐蝕性、溶接性、塗装性、加工性等に優れたZn
、 Zn−Fe、 Zn−Ni、 Zn−Co、 Zn
−Fe−Ni。
<Conventional technology> In recent years, Zn, which has excellent corrosion resistance, weldability, paintability, workability, etc.
, Zn-Fe, Zn-Ni, Zn-Co, Zn
-Fe-Ni.

Zn−Co−Moなどの亜鉛または亜鉛合金電気めっき
鋼板が開発され、自動車、家電、建材など幅広い用途に
使われている。これら亜鉛系電気めっき鋼板は、陽極と
しては不浴性陽極または可溶性陽極を、めっき浴として
は硫酸浴または塩化浴を、電解セルとしては横型セルま
たは竪型セルを、それぞれ使用した高速の連続電気めっ
き装置で製造される。
Zinc or zinc alloy electroplated steel sheets such as Zn-Co-Mo have been developed and are used in a wide range of applications such as automobiles, home appliances, and building materials. These zinc-based electroplated steel sheets are manufactured using high-speed continuous electricity using a non-bath anode or a soluble anode as the anode, a sulfuric acid bath or chloride bath as the plating bath, and a horizontal or vertical cell as the electrolytic cell. Manufactured using plating equipment.

ところで、このような電気めっき工程に於いては、不浴
性陽極に用いた鉛合金電極、建浴に用いた硫酸亜鉛、硫
酸鉄、硫酸などの金属や薬品、可溶性陽極に用いた亜鉛
電極などから、微量の鉛イオンがめつき浴中に溶は込む
がこのmff1鉛イオンがめつき皮膜中に含有されると
、めっき皮膜の性能に種々の悪影響を及ぼず。特開昭5
2−30728号公報には、亜鉛または亜鉛合金電気め
っき浴中の微量鉛イオンがめつき皮膜に共析し、めっき
密着性及び耐蝕性を劣化せしめ、特に加熱後のめっき密
着性を著しく…なわせることが示されている。また特公
昭58−39236号公報には、不溶性鉛陽極から電解
液中に溶出した微量の鉛イオンがめつき皮膜に共析し、
光沢ムラや無光沢を生じやすいことが示されている。
By the way, in such an electroplating process, lead alloy electrodes used as non-bath anodes, metals and chemicals such as zinc sulfate, iron sulfate, and sulfuric acid used in bath preparation, and zinc electrodes used as soluble anodes, etc. Therefore, a small amount of lead ions dissolve into the plating bath, but when these mff1 lead ions are contained in the plating film, they do not have various adverse effects on the performance of the plating film. Japanese Patent Application Publication No. 5
Publication No. 2-30728 discloses that trace amounts of lead ions in a zinc or zinc alloy electroplating bath co-deposit on the plating film, deteriorating the plating adhesion and corrosion resistance, and in particular significantly changing the plating adhesion after heating. It has been shown that Furthermore, Japanese Patent Publication No. 58-39236 discloses that trace amounts of lead ions eluted from an insoluble lead anode into the electrolyte eutectoid on the plating film.
It has been shown that uneven gloss and matteness tend to occur.

このような悪影響をもたらす鉛イオンをめっき浴から除
去する方法として次に示すような種々の方法が知られて
いる。
Various methods are known to remove lead ions that cause such adverse effects from the plating bath, as shown below.

(1)鉛含量の少ない薬剤やメタルを用いる。(1) Use chemicals and metals with low lead content.

(2)めっき浴に亜鉛末を添加する。(2) Add zinc powder to the plating bath.

(3)弱電解を行う。(3) Perform weak electrolysis.

(4)鉛または鉛合金以外の不ン容性電極を用いる。(4) Use an intolerant electrode other than lead or lead alloy.

(5)めっき浴にストロンチウムまたはバリウムの炭酸
塩を添加する。
(5) Adding strontium or barium carbonate to the plating bath.

しかし、(1)の方法は試薬特級グレードの薬剤や高純
度のメタルを使用することになり大幅なコストアップと
なる。(2)、 (3)の方法は装置面や析出速度に難
点がある。(4)の方法は白金めっきチタン電極等を用
いるが、めっき浴中での表面摩耗が多いため経済性に問
題がある。(5)の方法は一般に広く行われているが、
形成された不溶性沈澱物がめつき品に付着して押し疵を
発生させる。
However, method (1) uses special reagent grade chemicals and high purity metals, resulting in a significant increase in cost. Methods (2) and (3) have drawbacks in terms of equipment and deposition rate. Method (4) uses a platinum-plated titanium electrode or the like, but there is a problem in economic efficiency because the surface is frequently worn in the plating bath. Method (5) is generally widely used, but
The formed insoluble precipitate adheres to the plated product and causes scratches.

そこで、本発明者等は微量鉛イオンの共析によるめっき
皮膜の密着不良や光沢不良を防止する方法として、鉛イ
オンを含有するめっき液をチタニア系複合酸化物からな
る吸着剤に接触させることによって、めっき浴中の鉛イ
オン含量の増加を抑制しながら亜鉛または亜鉛合金電気
めっきを行う技術を開発し、既に特許出願をしたく昭和
61年9月1日付)。
Therefore, the present inventors have developed a method for preventing poor adhesion and poor gloss of plating films due to eutectoiding of trace amounts of lead ions, by bringing a plating solution containing lead ions into contact with an adsorbent made of a titania-based composite oxide. , has developed a technology to perform zinc or zinc alloy electroplating while suppressing the increase in lead ion content in the plating bath, and has already filed a patent application (dated September 1, 1986).

この方法に従えば、めっき液中の鉛イオンはチタニア系
複合酸化物からなる吸着剤に吸着されて1■/l以下の
濃度となり、均一光沢で密着性良好な亜鉛または亜鉛合
金電気めっきが得られる。
According to this method, the lead ions in the plating solution are adsorbed by the adsorbent made of titania-based composite oxide to a concentration of less than 1 μ/L, resulting in zinc or zinc alloy electroplating with uniform gloss and good adhesion. It will be done.

しかも、吸着剤の再生使用が可能で、かつスラッジの形
成がないという特徴を有するため、めっき液中の鉛イオ
ン除去に関わる費用は大幅に軽減される利点がある。
Moreover, since the adsorbent can be reused and there is no sludge formation, there is an advantage that the cost associated with removing lead ions from the plating solution can be significantly reduced.

〈発明が解決しようとする問題点〉 しかしながら、上記方法を詳細に検討した七ころ、この
方法にもまだ改良すべき点が残されていることが判明し
た。それはチタニア系複合酸化物からなる吸着剤の鉛に
対する吸着量が数置/1〜十数■/1と小さいことであ
る。従ってめっき液中の鉛4度を所定値以下に保つため
には、吸着剤のカラム充填量を多くしたり、吸着剤充填
カラムの更新を早めたりすることが必要とされた。
<Problems to be Solved by the Invention> However, when the above method was examined in detail, it was found that there were still points to be improved in this method. The reason is that the amount of lead adsorbed by the adsorbent made of titania-based composite oxide is as small as a few orders of magnitude to a few tens of square meters. Therefore, in order to keep the lead content in the plating solution below a predetermined value, it has been necessary to increase the amount of adsorbent packed in the column or to renew the adsorbent-filled column sooner.

本発明は従来法の欠点を解消しためっき液の管理方法、
即ちめっき浴中に不溶性の沈澱物を形成させることなし
に、鉛イオンを効率良く大量に除去できる亜鉛または亜
鉛合金電気めっき液の管理方法の提供を目的とする。
The present invention provides a plating solution management method that eliminates the drawbacks of conventional methods.
That is, the object of the present invention is to provide a method for managing a zinc or zinc alloy electroplating solution that can efficiently remove a large amount of lead ions without forming insoluble precipitates in a plating bath.

〈問題点を解決するための手段〉 本発明者等はまず各種の可溶性金属塩を用いて新規組成
のチタニア系複合酸化物を合成したり、或いはチタニア
系複合酸化物の表面処理を行ったりして、チタニア系複
合酸化物の鉛吸着容量の増大を試みた。しかし、ある程
度の効果は見られたが、大幅な性能アップには至らなか
った。そこで、各種の活性炭、ゼオライト、 2Mg0
・6SiO□・nll□0゜Mgetlz(S+n0z
)z・3H2o、  5b203・nH2O,チタン酸
カリウム、などの吸着剤やイオン交換体等を用いて、回
分法によりめっき液中の鉛除去試験を行ったところ、こ
の中でsb、o、・nH,0(アンチモン酸またはき水
酸化アンチモン)が最高の鉛除去率を示した。
<Means for solving the problem> The present inventors first synthesized a titania-based composite oxide with a new composition using various soluble metal salts, or performed surface treatment on the titania-based composite oxide. Therefore, we attempted to increase the lead adsorption capacity of titania-based composite oxides. However, although some effects were seen, the performance did not improve significantly. Therefore, various activated carbon, zeolite, 2Mg0
・6SiO□・nll□0゜Mgetlz(S+n0z
) Z・3H2o, 5b203・nH2O, potassium titanate, etc., adsorbents and ion exchangers were used to perform a lead removal test in the plating solution using a batch method. ,0 (antimonic acid or antimony hydroxide) showed the highest lead removal rate.

ところで、sb、o、・nll□0が特異な選択吸着性
を有する無機イオン交換体であることは以前から知られ
ており、鉛に対しても強い選択吸着性を示し、約5me
q/gという大きなイオン交換容量を有することも報告
されていた。しかし、このような特徴があるにも係わら
ずその利用が遅れていたのは、sb <アンチモン)が
溶7夜中に微量浴出するという欠点があるためであった
。事実、亜鉛系めっき液にmいた場合、条件によって異
なるが数■/lから数十回/βのsbが浴出してくる。
By the way, it has been known for a long time that sb, o, ・nll□0 is an inorganic ion exchanger that has a unique selective adsorption property, and it also shows a strong selective adsorption property for lead.
It was also reported to have a large ion exchange capacity of q/g. However, despite these features, its use has been delayed due to the drawback that sb<antimony) is released in small amounts during the night. In fact, when exposed to a zinc-based plating solution, sb comes out at a rate of several square meters per liter to several tens of times per liter, although this varies depending on the conditions.

亜鉛または亜鉛合金電気めっきに於いては、sbイオン
がめつき液中に2w/ffi以上存在すると、亜鉛の異
常析出を促進して鉄のような亜鉛合金めっき成分の析出
を妨害する。sbイオンにはこのような作用があるため
、通常めっき液中のSbン農度は鉛の場合と同様約1■
/l以下となる様に管理されている。従って、5bzO
s・n H,0は優れた鉛の選択吸着性と大きな鉛イオ
ン交換容量を有するにも係わらず、sbイオン浴出とい
う欠点があるため、めっき液中の鉛除去に応用できなか
った。
In zinc or zinc alloy electroplating, if sb ions are present in the plating solution in an amount of 2 w/ffi or more, they promote abnormal precipitation of zinc and interfere with the precipitation of zinc alloy plating components such as iron. Because sb ions have such an effect, the sb ion concentration in the plating solution is usually about 1, as in the case of lead.
/l or less. Therefore, 5bzO
Although s·n H,0 has excellent lead selective adsorption and large lead ion exchange capacity, it cannot be applied to lead removal from plating solutions because of the disadvantage of sb ion bathing.

しかしながら、本発明者等が更に詳細に検討を重ねた結
果、チタニア系複合酸化物からなる吸着剤が低pHの亜
鉛系めっき液中に含有されるsbを鉛の場合と同様に優
先吸着することを見い出し、含水酸化アンチモンからな
る無機イオン交換体とチタニア系複合酸化物からなる吸
着剤との二段処理により、めっき液中の鉛濃度を長期間
にわたって管理値以下に保つことができる本発明を完成
するに至った。
However, as a result of more detailed studies by the present inventors, we found that an adsorbent made of titania-based composite oxide preferentially adsorbs sb contained in a low-pH zinc-based plating solution in the same way as lead. We discovered this and developed the present invention, which can maintain the lead concentration in the plating solution below the control value for a long period of time through a two-stage treatment using an inorganic ion exchanger made of hydrous antimony oxide and an adsorbent made of titania-based composite oxide. It was completed.

すなわち、本発明の亜鉛または亜鉛合金電気めっき液の
管理方法は、鉛イオンを含有する亜鉛または亜鉛合金電
気めっき液を、まず含水酸化アンチモンからなる無機イ
オン交換体を充填した第一段目のカラムに導いて、めっ
き液中の大部分の鉛イオンを吸着させ、次いで第一段目
のカラムから排出されためっき液、すなわち第一段目の
カラムで吸着できなかった極微量の鉛イオンと含水酸化
アンチモンから溶出したitのsbイオンを含をするめ
っき液を、チタニア系複合酸化物からなる吸着剤を充填
した第二段目のカラムに導いて、めっき液中の極微量の
鉛イオンと微量sbイオンを吸着させることによって、
鉛イオン濃度を所定値以下に保つことを特徴とするもの
である。
That is, in the method for managing a zinc or zinc alloy electroplating solution of the present invention, a zinc or zinc alloy electroplating solution containing lead ions is first transferred to a first stage column filled with an inorganic ion exchanger made of hydrous antimony oxide. Most of the lead ions in the plating solution are adsorbed, and then the plating solution discharged from the first column, that is, the extremely small amount of lead ions and water that could not be adsorbed by the first column, is The plating solution containing IT and sb ions eluted from antimony oxide is guided to the second stage column packed with an adsorbent made of titania-based composite oxide, where it is separated from the extremely small amount of lead ions in the plating solution. By adsorbing sb ions,
It is characterized by keeping the lead ion concentration below a predetermined value.

〈作用〉 本発明法に従えば、亜鉛または亜鉛合金電気めっき液中
に含有される微量の鉛イオンは効率よく大量に含水酸化
アンチモンからなる無機イオン交換体、およびチタニア
系複合酸化物からなる吸着剤に吸着され、めっき液中の
鉛イオン濃度を長期に亘って管理値の1■/l以下に保
つ。めっき液中の鉛イオン濃度の低下により、めっき皮
膜に共析する釦が大幅に減少するため、めっき皮膜に光
沢むらの発生がなく、まためっき皮膜を加熱してもめっ
き皮膜の密着性が低下しない。更にはめつき槽への不7
容性沈澱物の混入がないことからめつき皮膜に押し疵が
発生しない。
<Function> According to the method of the present invention, trace amounts of lead ions contained in the zinc or zinc alloy electroplating solution are efficiently adsorbed in large quantities by the inorganic ion exchanger made of hydrous antimony oxide and the titania-based composite oxide. The lead ion concentration in the plating solution is maintained at the control value of 1/l or less over a long period of time. Due to the decrease in the lead ion concentration in the plating solution, the number of buttons eutectoid on the plating film is significantly reduced, so there is no occurrence of uneven gloss on the plating film, and the adhesion of the plating film is reduced even when the plating film is heated. do not. In addition, there is no need to add 7 to the plating tank.
Since there is no contamination of electrolytic precipitates, no scratches will occur on the plating film.

〈実施例〉 本発明に用いられる亜鉛または亜鉛合金電気めっき液は
、工業的に使用される種々の組成の亜鉛または亜鉛合金
電気めっき液をすべて包含するものであって、その代表
的なものとしては国内で多用されている硫酸浴用めっき
液、例えば20−500g / I Zn5Oa ・7
 +120をベースにして20−300g/lのFe1
o4・7HzO,NiSO4・68zO,Co50a 
・7HzOなどの合金用金属塩、20−100g/Aの
1hSO4゜(Nl+4) 2504. NazSOa
などの電導性向上剤、5−60g/lのHJO3,Cl
1sCOOH,CJIIOt、Cl1tCOONa。
<Example> The zinc or zinc alloy electroplating solution used in the present invention includes all industrially used zinc or zinc alloy electroplating solutions of various compositions, and representative examples include: is a plating solution for sulfuric acid bath that is widely used in Japan, for example 20-500g / I Zn5Oa ・7
20-300g/l Fe1 based on +120
o4・7HzO, NiSO4・68zO, Co50a
- Alloying metal salts such as 7HzO, 20-100g/A of 1hSO4° (Nl+4) 2504. NazSOa
Conductivity improvers such as 5-60g/l HJO3, Cl
1sCOOH, CJIIOt, Cl1tCOONa.

(NL) 3chHs(hなどの緩衝剤や錯化剤を各々
1種または2種以上添加したpH7以下、多くはpl+
が1−2のめっき液が挙げられる。これらは浴/?L5
0−60’C,Dk30−150A/d%、  ライン
スピード5〇−150m/n+inのめっき条件で通常
用いられる。
(NL) 3chHs (pH 7 or less with the addition of one or more buffering agents and complexing agents such as h, mostly pl+
Examples include plating solutions with 1-2. These are bath/? L5
It is usually used under plating conditions of 0-60'C, Dk 30-150A/d%, and line speed 50-150m/n+in.

本発明に用いられる含水酸化アンチモンからなる無機イ
オン交換体とは、一般式5bzOs・ntl、0(1≦
n≦5)で表される5価アンチモンの含水酸化物を主体
とした無機イオン交換体を指す。かかる含水酸化アンチ
モンは、例えば金属アンチモンの硝酸による酸化、五塩
化アンチモンまたはへキサクロロアンチモン酸(IIS
bC16)の加水分解、三酸化アンチモンまたは三塩化
アンチモンの硝酸または過酸化水素による酸化などで作
られるが、その調製法や乾燥条件の相違により含水量や
結晶状態の異なったものが得られる。一般に結晶性、ガ
ラス状および無定形の三種類があり、この中で特に結晶
性ものが安定でイオン交換容量も大きいといわれる。含
水酸化アンチモンの耐薬品性向上、鉛イオン交換容積の
増大等の目的で、含水酸化アンチモンの調製時に錫、ジ
ルコニウム、チタン。
The inorganic ion exchanger made of hydrous antimony oxide used in the present invention has the general formula 5bzOs・ntl, 0 (1≦
Refers to an inorganic ion exchanger mainly composed of a hydrous oxide of pentavalent antimony represented by n≦5). Such hydrous antimony oxides can be prepared, for example, by oxidation of metallic antimony with nitric acid, antimony pentachloride or hexachloroantimonic acid (IIS
It is produced by hydrolysis of bC16), oxidation of antimony trioxide or antimony trichloride with nitric acid or hydrogen peroxide, etc., but products with different water contents and crystal states can be obtained depending on the preparation method and drying conditions. Generally, there are three types: crystalline, glassy, and amorphous, and among these, the crystalline type is said to be particularly stable and has a large ion exchange capacity. Tin, zirconium, and titanium are used when preparing hydrous antimony oxide for the purpose of improving the chemical resistance of hydrous antimony oxide and increasing its lead ion exchange capacity.

リンなどの可溶性塩を反応させて、アンチモン酸錫、ア
ンチモン酸ジルコニウム8アンチモン酸チータン、アン
チモン酸リンなどのアンチモン欣化合物の形にして使用
しても良い。これら含水酸化アンチモンからなる無機イ
オン交換体は、粉末状。
A soluble salt such as phosphorus may be reacted to form an antimony compound such as tin antimonate, zirconium antimonate, titanium antimonate, or phosphorous antimonate. These inorganic ion exchangers made of hydrated antimony oxide are in powder form.

粒状、ペレット状、ハニカム状などの任意の形状に成型
して用いることが出来る。
It can be molded into any shape such as granules, pellets, or honeycombs.

本発明に用いられるチタニア系複合酸化物からなる吸着
剤とは、チタニア(TiO□ンを主体とする無機酸化物
の複合体から構成された多孔質構造の合成無機吸着剤の
総称である。具体例としては四塩化チタン、硫酸チタン
、硫酸チタニル、チタンイソボキシドなどの可;容性チ
タン塩の水溶液に、メタ珪酸ナトリウム、オルト珪酸ナ
トリウム、水ガラス1四塩化珪素、珪酸エチル、シリカ
ゾルなどの可溶性珪酸塩の水?容液及び或いはアルミニ
ウム。
The adsorbent made of a titania-based composite oxide used in the present invention is a general term for a synthetic inorganic adsorbent with a porous structure composed of a composite of inorganic oxides mainly composed of titania (TiO□). For example, in an aqueous solution of a soluble titanium salt such as titanium tetrachloride, titanium sulfate, titanyl sulfate, or titanium isoboxoxide, sodium metasilicate, sodium orthosilicate, water glass, silicon tetrachloride, ethyl silicate, silica sol, etc. Soluble silicates in water and/or aluminum.

ジルコニウム、マグネシウムなどの可7容性金属塩化合
物の水?W ?(f、とを混合した溶液に、アンモニア
水或いは水酸化ナトリウムの水冷液を添1a Lで形成
されたチタニア−シリカ、チタニア−シリカ−アルミナ
、チタニアーソリカーマグネソアなどの複合酸化物を濾
過洗浄後、乾燥または焼成したものなどが挙げられる。
Water of 7-soluble metal salt compounds such as zirconium and magnesium? W? Add aqueous ammonia or a water-cooled solution of sodium hydroxide to the mixed solution of (f) and filter the complex oxides such as titania-silica, titania-silica-alumina, and titania solica magnesoa formed in 1a L. Examples include those that have been washed, dried, or fired.

これらは含水酸化アンチモンの場合と同様に粉末状9粒
状、ペレット状、ハニカム状などのII:意の形状に成
型して用いることが出来る。
Similar to the case of hydrous antimony oxide, these can be molded into desired shapes such as powder, pellets, and honeycomb shapes.

尚、本発明の「チタニア系複合酸化物」なる表現の中に
は、チタニアだけからなる場合をも例外的に包含される
ことを了解すべきである。また当然のことながら、本発
明のチタニア系複合酸化物は上記の加水分解法で作られ
たものだけに限定されることばなく、水熱法或いは他の
湿式法などで作られたものも包括される6更にはチタン
酸カリウムの如く、フラックス法、徐冷、焼成法、メル
ト法などで合成されたものも包含される。
It should be noted that it should be understood that the expression "titania-based composite oxide" in the present invention exceptionally includes cases where the oxide is composed only of titania. Naturally, the titania-based composite oxide of the present invention is not limited to those made by the above-mentioned hydrolysis method, but also includes those made by a hydrothermal method or other wet methods. Furthermore, it also includes those synthesized by flux method, slow cooling, calcination method, melt method, etc., such as potassium titanate.

本発明において、鉛イオンを含有するめっき液と含水酸
化アンチモンからなる無機イオン交換体及びチタニア系
複合酸化物からなる吸着剤との接触方法はカラム法、す
なわち該無機イオン交換体を充填したカラム(充填塔)
とそれに1!!!結された該吸着剤を充填したカラム(
充填塔)に鉛を含有しためっき液を通液する方法が好ま
しい。鉛イオン或いはsbイオンを多量吸着して飽和に
達した場合、カラムを取り替えるだけで良いため、浴管
理が簡単でまた無機イオン交換体及び吸着剤の再生も容
易である。他の方式も可能であるが、かえって浴管理が
煩雑となり、また鉛やsbの除去率を低下させる場合が
多い。カラム法の場合、1:)及びsbの除去率は当然
のことながら、前記無機イオン交換化成いは吸着剤の充
填量が多いほど、またカラム中乙こおけるめっき液の流
速が遅いほど、更にカラム充填剤の表面積が大きいほど
及びめっき液のpl+が高いほど向上する。
In the present invention, the method of contacting the plating solution containing lead ions with the inorganic ion exchanger made of hydrous antimony oxide and the adsorbent made of titania-based composite oxide is a column method, that is, a column packed with the inorganic ion exchanger ( packed tower)
And 1! ! ! A column packed with the bound adsorbent (
A method in which a plating solution containing lead is passed through a packed tower is preferred. When a large amount of lead ions or sb ions are adsorbed and saturation is reached, it is only necessary to replace the column, so bath management is easy and the inorganic ion exchanger and adsorbent can be easily regenerated. Although other methods are possible, they often complicate bath management and reduce the removal rate of lead and sb. In the case of the column method, the removal rate of 1:) and sb naturally increases as the inorganic ion exchange chemical composition increases as the amount of adsorbent packed increases and as the flow rate of the plating solution in the column decreases. The larger the surface area of the column packing material and the higher the pl+ of the plating solution, the better.

第j図ユよ本発明のめっき液の管理方法を説明するため
の模式図である。
FIG. J is a schematic diagram for explaining the plating solution management method of the present invention.

本発明法に従ってめっき液を管理する場合、めっき槽1
からめっき液を連続的または間欠的に抜き出し、濾iM
ti4でアノードスラッノを分離してからめっき液をめ
っき液貯槽5へ導入する。一方、めっき液貯槽5から別
の循!7i経路でめっき液をポンプ6で含水酸化アンチ
モンからなる無機イオン交換体8を充填したカラム7へ
導き、めっき液中の大部分の鉛イオンを吸着させる。次
にカラム7から排出されためっき液をチタニア系複合酸
化物からなる吸着剤10を充填したカラム9に導きめっ
き液中の微量sbイオンと残留鉛イオンを吸着させた後
、元のめっき液貯槽5へ戻す。めっき液貯槽5から釦イ
オンの減少しためっきン夜をポンプ11でめっき槽lへ
送ってめっきを行う方式が採られる。
When managing the plating solution according to the method of the present invention, plating tank 1
The plating solution is continuously or intermittently extracted from the
The plating solution is introduced into the plating solution storage tank 5 after the anode slurry is separated by ti4. On the other hand, another circulation from the plating solution storage tank 5! Through route 7i, the plating solution is guided by a pump 6 to a column 7 filled with an inorganic ion exchanger 8 made of hydrous antimony oxide, and most of the lead ions in the plating solution are adsorbed. Next, the plating solution discharged from column 7 is introduced into column 9 filled with adsorbent 10 made of titania-based composite oxide to adsorb trace amounts of sb ions and residual lead ions in the plating solution, and then returned to the original plating solution storage tank. Return to 5. A method is adopted in which plating liquid with reduced button ions is sent from the plating liquid storage tank 5 to the plating tank l by a pump 11 for plating.

図中2は7ノード、3はスI・リップである。In the figure, 2 is 7 nodes, and 3 is a slip.

次に実権例及び比較例を示し、本発明を更に詳述する。Next, practical examples and comparative examples will be shown to further explain the present invention in detail.

本具体例で使用した無機イオン交換体及び吸着剤は次の
ようにしてRJ3 ”IJした。
The inorganic ion exchanger and adsorbent used in this specific example were subjected to RJ3'' IJ as follows.

(1)〈含水酸化アンチモンからなる無機イオン交換体
〉 反応器へ純水を入れ攪(↑しながら5bzllhをj;
Jえ、40°Cに加熱する。この加り九゛限濁溶液に2
3%l1zOzを添加する。反応終了後、得られた生成
物を100°Cで乾燥後製粉し、20−42メノンユに
分級する。
(1) <Inorganic ion exchanger made of hydrated antimony oxide> Pour pure water into the reactor and stir (↑ while stirring;
Heat to 40°C. Add this to the 90% turbid solution.
Add 3% l1zOz. After the reaction is completed, the obtained product is dried at 100°C, milled, and classified into 20-42 menonyu.

(2)〈チタニア−シリカ複合酸化物からなる吸着剤〉 メタ珪酸ナトリウムを所定の原子比になる量をとってイ
オン交換水にi8解した後、塩酸を加えてplllとす
る。これに所定の原子比になるように四塩化チタン水溶
液を加え、この混合溶液に3Mのアンモニア水または水
酸化ナトリウムI容液をp)18に至まで′滴下し、ゲ
ルを析出させる。このケ′ルを洗浄乾燥したものを20
0メツシユに破砕し、プレスで成型後破砕して20−4
2メツシユに分級する。
(2) <Adsorbent made of titania-silica composite oxide> After taking an amount of sodium metasilicate at a predetermined atomic ratio and dissolving it in ion-exchanged water, hydrochloric acid is added to form a plll. A titanium tetrachloride aqueous solution is added to this mixture so that a predetermined atomic ratio is obtained, and 3M ammonia water or sodium hydroxide solution (I volume) is added dropwise to this mixed solution up to p) 18 to precipitate a gel. Wash and dry this kettle for 20
Crush into 0 mesh, mold it with a press and crush it to 20-4
Classify into 2 categories.

(3)〈その他のチクニア系複合酸化物からなる吸着剤
〉 (2)の場合と同様、目的金属の可溶性金属塩の少なく
とも1種を所定の原子比になる量をとってイオン交換水
に溶解する。これに所定の原子比になるように四塩化チ
タン水溶液を加え、以下(2)と同様の手順で調製する
(3) <Adsorbents made of other chiknia-based composite oxides> As in the case of (2), at least one soluble metal salt of the target metal is dissolved in ion-exchanged water in an amount to achieve a predetermined atomic ratio. do. A titanium tetrachloride aqueous solution is added to this so that a predetermined atomic ratio is obtained, and the preparation is performed in the same manner as in (2) below.

(4)〈チタン酸カリウム複合酸化物からなる吸着剤〉 窯業協会誌、88.111−16(1980)に詳述さ
れたフラツクス性で作られたKzTi40qをプレスで
成型後破砕して20−42メツシユに分級する。
(4) <Adsorbent made of potassium titanate composite oxide> KzTi40q made with flux properties detailed in Ceramics Association Journal, 88.111-16 (1980) was molded with a press and then crushed to obtain 20-42 Classify into Metsuyu.

本実施例に於けるめっき液中の鉛除去は第2図に示され
るような装置で実施した。鉛イオンを含有するめっき液
15をめっき槽12から定量ポンプ13で所定量の含水
酸化アンチモン無機イオン交換体16を充填した内径8
11φのカラム14へ導き、次にカラム14からの流出
めっき液を所定量のチタニア系複合酸化物吸着剤19を
充填した内径8璽糟φのカラム18へ送った。カラム1
8からの排出めっき液をフラクションコレクター20で
20.0g毎に採取し、鉛イオン濃度及びSbイオン濃
度を原子吸光光度法により測定した。図中17はグラス
ウールである。
In this example, lead removal from the plating solution was carried out using an apparatus as shown in FIG. A plating solution 15 containing lead ions is transferred from a plating tank 12 by a metering pump 13 to an inner diameter 8 filled with a predetermined amount of a hydrous antimony oxide inorganic ion exchanger 16.
The plating solution was introduced into a column 14 having a diameter of 11 φ, and then the plating solution flowing out from the column 14 was sent to a column 18 having an inner diameter of 8 φ and filled with a predetermined amount of a titania-based composite oxide adsorbent 19. Column 1
The plating solution discharged from No. 8 was collected every 20.0 g using a fraction collector 20, and the lead ion concentration and Sb ion concentration were measured by atomic absorption spectrophotometry. In the figure, 17 is glass wool.

本比較例におけるめっき液中の鉛除去は第3図に示され
るような装置で実施した。めっき液24をメッキ槽21
から定量ポンプ22で所定量の無機イオン交換体または
吸着剤25を充填した内径8謹膳φのカラム23へ送っ
た。カラム23からの流出液はフラクションコレクター
27で20.0g毎に採取し、鉛イオン濃度とsbイオ
ン?Q度を原子吸光光度法により測定した。図中21は
めっき槽、26はグラスウールである。
Lead removal from the plating solution in this comparative example was carried out using an apparatus as shown in FIG. Plating solution 24 is transferred to plating tank 21
From there, it was sent by a metering pump 22 to a column 23 having an inner diameter of 8 φ and filled with a predetermined amount of an inorganic ion exchanger or adsorbent 25 . The effluent from the column 23 is collected every 20.0 g by the fraction collector 27, and the lead ion concentration and sb ion concentration are measured. The Q degree was measured by atomic absorption spectrophotometry. In the figure, 21 is a plating tank, and 26 is glass wool.

(実施例1) ZnSO4H71120200g / f 。(Example 1) ZnSO4H71120200g/f.

Fe5Oa H711g0   280 g / ’ 
Fe5Oa H711g0 280 g/'
.

(Nl+4) !So4    50 g / j!。(Nl+4)! So4 50g/j! .

c、osot       o、s g / 6 。c, osot o, s g / 6.

Pb”        5■/A。Pb” 5■/A.

からなるpl+ 1.8の亜鉛合金電気めっき液を1−
/minの流速で含水酸化アンチモン(SbzOs ・
2.bllzO)からなる無機イオン交換体1gを充填
したカラム及びこれに連結されたチタニア系1M合酸化
物(Ti02:SiO□−80:20)からなる吸着剤
1gを充填したカラムに通液した。めっき液をl1通液
した時点における排出めっき液中の鉛濃度は0.5■/
1.Sb濃度は0.3■/ilでいずれも管理値内にあ
った。
Zinc alloy electroplating solution with pl+ 1.8 consisting of 1-
Hydrous antimony oxide (SbzOs ・
2. The solution was passed through a column filled with 1 g of an inorganic ion exchanger made of 1 g of an inorganic ion exchanger made of 1 g of titania-based 1M composite oxide (Ti02:SiO□-80:20) connected thereto. The lead concentration in the discharged plating solution after passing 11 plating solutions was 0.5■/
1. The Sb concentration was 0.3/il, which was within the control value.

(鉛の管理値はl mg/ 7! 、 Sbの管理値は
1mg/jり(比較例1−1) 実施例1と同一組成のめっき液lρ中に2gのSrCO
3を添加し常温で2時間振とうした。不溶性沈澱物を濾
過した後のめっき液中の鉛濃度は1.5可/1で、管理
値を超えていた。
(The control value for lead is 1 mg/7!, and the control value for Sb is 1 mg/J (Comparative Example 1-1). 2 g of SrCO in the plating solution lρ with the same composition as Example 1.
3 was added and shaken at room temperature for 2 hours. The lead concentration in the plating solution after filtering the insoluble precipitate was 1.5/1, which exceeded the control value.

(比較例1−2) 実施例1と同一組成のめっき液を11117/mlnの
流速で、チタニア系複合酸化物(Ti02:SiO□=
80・20)からなる吸着剤1gを充填したカラムに通
液した。めっき液を11通液した時点における排出めっ
き液中の鉛7二度は1.4■/lで管理値を超えていた
(Comparative Example 1-2) A plating solution having the same composition as in Example 1 was used at a flow rate of 11117/ml to form a titania-based composite oxide (Ti02:SiO□=
The solution was passed through a column packed with 1 g of an adsorbent consisting of 80.20). When the plating solution was passed 11 times, the lead content in the discharged plating solution was 1.4 .mu./l, which exceeded the control value.

(比較例1−3) 実施例1と同一キ■成のめっき液を1ml/lll1l
の流速で、含水酸化アンチモン(Sb2O5・2.51
120)からなる無機イオン交換体1gを充填したカラ
ムに通液した。めっき液を1a通液した時点における排
出めっき液中の鉛濃度は0.8 N/ 1で管理値内で
あったが、Sb濃度は1.1nv/jlで管理値を超え
ていた。
(Comparative Example 1-3) A plating solution with the same composition as in Example 1 was used at 1ml/lll1l.
Hydrous antimony oxide (Sb2O5.2.51
The solution was passed through a column packed with 1 g of an inorganic ion exchanger consisting of 120). When the plating solution was passed through 1a, the lead concentration in the discharged plating solution was 0.8 N/1, which was within the control value, but the Sb concentration was 1.1 nv/jl, which exceeded the control value.

(実施例2) ZnSOn ・71120   220 g / 1 
(Example 2) ZnSOn ・71120 220 g/1
.

Fe5Oa ’ 7H20250g / 1 。Fe5Oa’ 7H20250g/1.

NazSOa       100 g / R。NazSOa 100 g/R.

クエン酸     5g/l。Citric acid 5g/l.

Pb”        5 nv/ 1 。Pb” 5 nv/1.

からなるpH2,2の亜鉛合金電気めっき液を1Inl
/minの流速で含水酸化アンチモン(SbzOs ・
21120)からなる無機イオン交換体3gを充填した
カラム及びこれに連結されたチタニア系複合酸化物(T
iO□:SiO□:MgO=50:45:5)からなる
吸着剤3gを充填したカラムに通液した。めっき液を1
011m液した時点における排出めっき液中の鉛濃度は
0.3■/z、Sb濃度は0.5++wr/ffで、い
ずれも管理値の範囲内にあった。
1 Inl of pH 2.2 zinc alloy electroplating solution consisting of
Hydrous antimony oxide (SbzOs ・
A column packed with 3 g of an inorganic ion exchanger consisting of 21120) and a titania-based composite oxide (T
The solution was passed through a column filled with 3 g of an adsorbent consisting of iO□:SiO□:MgO=50:45:5). 1 plating solution
The lead concentration in the discharged plating solution at the time when the 011m solution was poured was 0.3 .mu./z, and the Sb concentration was 0.5++wr/ff, both of which were within the control value range.

(比較例2−1) 実施例2と同−組成のめっき液1βに3gのBaC0z
を添加し常温で1時間振ようした。不冷性沈S物を’d
t過した後のめっき液中の2:旨震度は1.6■/lで
管理イ直を超えていた。
(Comparative Example 2-1) 3 g of BaC0z in plating solution 1β having the same composition as Example 2
was added and shaken at room temperature for 1 hour. 'd non-coolable sediment
The seismic intensity of 2:2 in the plating solution after 30 minutes was 1.6 ■/l, which exceeded the control limit.

(比較例2−2) 実施例2と同一組成のめっき液を1m7/minの流速
でチタニア系複合酸化物(Tin□:5iOt:nBo
 =50:45:5)からな゛る吸着剤3gを充填した
カラムに通液した。めっき)茂を1.5g通液した時点
における排出めっき液中の鉛7舊度は1.3■/lで管
理値を超えていた。
(Comparative Example 2-2) Titania-based composite oxide (Tin□:5iOt:nBo
The solution was passed through a column packed with 3 g of an adsorbent consisting of 50:45:5). When 1.5 g of plating solution was passed through the plating solution, the lead concentration in the discharged plating solution was 1.3 .mu./l, which exceeded the control value.

(比較例2−2) 実施例2と同一)Jl成のめっき液を1m//minの
流速で含水酸化アンチモン(SbzOs・2110)か
らなる無機イオン交換体3gを充填したカラムにiIl
液した。めっき液を81!il液した時点における排出
めっき液中の鉛/壱度:よ0.6■/ρで管理値内にあ
ったが、Sbi農度は2.1.mg/fで管理値を超え
ていた。
(Comparative Example 2-2) Same as Example 2) A plating solution of Jl composition was poured into a column filled with 3 g of an inorganic ion exchanger made of hydrous antimony oxide (SbzOs 2110) at a flow rate of 1 m//min.
It liquefied. 81 plating solution! The lead/density in the discharged plating solution at the time of the il solution was 0.6/ρ, which was within the control value, but the Sbi yield was 2.1. mg/f exceeded the control value.

(実施例3) ZnSOn ・7)1z0     150 g / 
1 。
(Example 3) ZnSOn ・7) 1z0 150 g /
1.

Fe5Oa ・711zO250g / e 。Fe5Oa・711zO250g/e.

N15Oa・61120.    250 g / f
f 。
N15Oa・61120. 250g/f
f.

Na2S0.         30 g / 1 。Na2S0. 30g/1.

83BOi、          30 g / IV
、。
83BOi, 30g/IV
,.

クエン酸       10g/l。Citric acid 10g/l.

Pb”             5 mg/ 1 。Pb” 5 mg/1.

からなるpH1,5の亜鉛合金電気めっき液を1.5d
/m1nO速疫で含水酸化アンチモン(SbzOs・4
11□O)からなる無機イオン交換体3gを充填したカ
ラム及びこれに連結されたチタン酸カリウム(KzTi
aOw)からなる吸着剤6gを充填したカラムに通液し
た。
1.5d of zinc alloy electroplating solution with pH 1.5 consisting of
Hydrous antimony oxide (SbzOs・4
A column packed with 3 g of an inorganic ion exchanger consisting of 11□O) and potassium titanate (KzTi
The solution was passed through a column packed with 6 g of adsorbent consisting of aOw).

めっき液を10fJ液した時点における排出めっき?(
1,中)m濃度::0.2 w/ l + Sba度は
0.25mg/lでいずれも管理値内であった。
Discharge plating when 10 fJ of plating solution is applied? (
1, middle) m concentration:: 0.2 w/l + Sba degree was 0.25 mg/l, both within the control value.

次にこの使用済みの二段カラムに2Mの硝酸を2ml/
minの流速で50M通液した後、純水を500mZ通
液じで洗浄した。このようにして得られた再生カラムを
用いて、前述と同様のテストを行ったところ、め、っき
液10!通液した時Iハにおける排出めっき液中の鉛、
・震度は0.22■/ F 、 Si+iW度は0.2
■/lであって、新品と同様の性能を示した。
Next, add 2ml/2M nitric acid to this used two-stage column.
After passing a 50M solution at a flow rate of min, pure water was washed with a 500mZ solution. Using the thus obtained regenerated column, we conducted the same test as above and found that the plating solution was rated at 10! Lead in the discharged plating solution at Ic when the solution is passed,
・Seismic intensity is 0.22■/F, Si+iW degree is 0.2
■/l, showing the same performance as a new product.

以上、を発QQを実施例と比較例によって説明したか、
本発明、よこれらの実施例によって圧定されるシ・ので
ないことは当然である。
Above, we have explained QQ using examples and comparative examples.
It goes without saying that the present invention is not limited to these embodiments.

〈発明の効叉〉 本発明に従えば亜鉛または亜鉛合金電気めっき)夜中の
鉛イオンを、含水酸化アユ/チモンからなる無機イオン
交換体を充填したカラムとチタニア系複合酸化物からな
る吸着剤を充填したカラムの二りり貴ノ、で不溶性成a
′カを形成することなく効辛才く多量除去でき乙。その
3、・め、光沢が均一でめっきの密着性が1′↓好なぬ
っき皮膜力(安定して1)られる、17!;こ、こねら
カラムの寿命が大幅に延長された上、カラLの再住使用
が可能である。従−て、本発明;、i市・鉛合金電気め
っきの品質向上、工程の5素化、コストダうンに多大の
貢献を成すものである。
<Effects of the Invention> According to the present invention, lead ions during zinc or zinc alloy electroplating are removed using a column packed with an inorganic ion exchanger made of hydrous ayu oxide/timon and an adsorbent made of a titania-based composite oxide. Insoluble substances in the packed column
It can effectively remove a large amount without forming any stains. Part 3: Uniform gloss and plating adhesion of 1'↓ Good plating film strength (stable 1) 17! The life of the Konera column has been significantly extended, and Kara L can be reused. Therefore, the present invention makes a significant contribution to improving the quality of lead alloy electroplating, reducing the process to five elements, and reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のめっき液管理方法を説明するための模
式図、第2図は本発明の方法の実施例で用いた鉛除去装
置の概念図、第3図は本発明の方法の比較例で用いた鉛
除去装置の概念図である。 L 12.21はめっき槽、2はアノード、3はストリ
ップ、4は濾過機、5はめっき液貯槽、6゜11、13
.22はポンプ、?、  9.14.18.23はカラ
ム、8.16は無機イオン交換体、10.19は吸着剤
、15、24はめっき?夜、17.26はグラスウール
、20゜27はフラクションコレクター、25はQ[イ
オン交iQ体または吸着剤である。 特許出願人  日本化学産業株式会社 金子正治
Figure 1 is a schematic diagram for explaining the plating solution management method of the present invention, Figure 2 is a conceptual diagram of a lead removal device used in an example of the method of the present invention, and Figure 3 is a comparison of the methods of the present invention. It is a conceptual diagram of the lead removal device used in the example. L 12.21 is a plating tank, 2 is an anode, 3 is a strip, 4 is a filter, 5 is a plating solution storage tank, 6゜11, 13
.. 22 is the pump? , 9.14.18.23 is column, 8.16 is inorganic ion exchanger, 10.19 is adsorbent, 15, 24 is plating? At night, 17.26 is glass wool, 20°27 is a fraction collector, and 25 is Q [ion exchanger iQ body or adsorbent. Patent applicant Masaharu Kaneko Nippon Kagaku Sangyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 鉛イオンを含有する亜鉛または亜鉛合金電気めっき液を
、まず含水酸化アンチモンからなる無機イオン交換体に
接触させ、次いでチタニア系複合酸化物からなる吸着剤
に接触させることにより、めっき浴中の鉛イオン含量の
増加を抑制することを特徴とする亜鉛または亜鉛合金電
気めっき液の管理方法。
A zinc or zinc alloy electroplating solution containing lead ions is first brought into contact with an inorganic ion exchanger made of hydrous antimony oxide, and then brought into contact with an adsorbent made of a titania-based composite oxide, thereby eliminating lead ions in the plating bath. A method for managing a zinc or zinc alloy electroplating solution, characterized by suppressing an increase in content.
JP61210533A 1986-09-09 1986-09-09 Method for controlling electroplating liquid for zinc or zinc alloy Granted JPS6370000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61210533A JPS6370000A (en) 1986-09-09 1986-09-09 Method for controlling electroplating liquid for zinc or zinc alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61210533A JPS6370000A (en) 1986-09-09 1986-09-09 Method for controlling electroplating liquid for zinc or zinc alloy

Publications (2)

Publication Number Publication Date
JPS6370000A true JPS6370000A (en) 1988-03-30
JPH0138880B2 JPH0138880B2 (en) 1989-08-16

Family

ID=16590934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61210533A Granted JPS6370000A (en) 1986-09-09 1986-09-09 Method for controlling electroplating liquid for zinc or zinc alloy

Country Status (1)

Country Link
JP (1) JPS6370000A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023778A1 (en) * 2006-08-21 2008-02-28 Jfe Steel Corporation Plating solution regenerating apparatus and method of regenerating plating solution
JP2008045188A (en) * 2006-08-21 2008-02-28 Jfe Steel Kk Apparatus for regenerating plating solution and method for regenerating plating solution
JP2008045187A (en) * 2006-08-21 2008-02-28 Jfe Steel Kk Apparatus for regenerating plating solution and method for regenerating plating solution
JP2008045186A (en) * 2006-08-21 2008-02-28 Jfe Steel Kk Apparatus for regenerating plating solution and method for regenerating plating solution
JP2014214320A (en) * 2013-04-23 2014-11-17 Jfeスチール株式会社 Device and method for manufacturing chromium electroplated steel strip

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023778A1 (en) * 2006-08-21 2008-02-28 Jfe Steel Corporation Plating solution regenerating apparatus and method of regenerating plating solution
JP2008045188A (en) * 2006-08-21 2008-02-28 Jfe Steel Kk Apparatus for regenerating plating solution and method for regenerating plating solution
JP2008045187A (en) * 2006-08-21 2008-02-28 Jfe Steel Kk Apparatus for regenerating plating solution and method for regenerating plating solution
JP2008045186A (en) * 2006-08-21 2008-02-28 Jfe Steel Kk Apparatus for regenerating plating solution and method for regenerating plating solution
JP2014214320A (en) * 2013-04-23 2014-11-17 Jfeスチール株式会社 Device and method for manufacturing chromium electroplated steel strip

Also Published As

Publication number Publication date
JPH0138880B2 (en) 1989-08-16

Similar Documents

Publication Publication Date Title
CN101066827B (en) Electroplating sludge treating and utilizing process
CN1020089C (en) Purification of graphite
CN103539283B (en) Comprehensive treatment method for removing Sb and Bi impurities in Cu electrolyte
WO2010004925A1 (en) Method of recovering silicon, titanium, and fluorine
CN108557895A (en) A kind of preparation method of high purity manganese sulfate
JPS60103028A (en) Treatment of iron or zinc-containing waste hydrochloric acid
JPS6370000A (en) Method for controlling electroplating liquid for zinc or zinc alloy
CN107400904A (en) The preparation method of copper electrolyte removing impurities agent and the method for copper electrolyte removing impurities
CN1041757C (en) Method for producing zinc powder from zinc-containing material by leaching electrolysis method
CN108840354A (en) LITHIUM BATTERY lithium chloride deep impurity-removing method
WO2021147809A1 (en) Method for preparing sb4o5cl2 directly from sb2o3 and aqueous hydrochloric acid solution
RU2514941C2 (en) Method of obtaining pure ammonium perrhenate
CN102826586A (en) Method for producing high purity nanometer zinc oxide by using steel plant dust
CN102826588B (en) Method for producing high-purity nanometer zinc oxide by using ammonia process decarburization of steel plant dust
CN110433782A (en) A kind of calcium sulfate crystal whiskers support the preparation method of porous oxide defluorination material
CN109183118A (en) Nickel pink salt colours sealing of hole recycling colorant and Waste water utilization method and Configuration Online
JPS60149792A (en) Electrolytic manufacture of alkali metal chromate
US3194749A (en) Electrolytic method of making cupric hydroxide
JP4099697B2 (en) Purification method of sulfuric acid cooking solution of iron titanate
US3895938A (en) Purification of mercury
FR2594107A1 (en) PROCESS FOR THE PREPARATION OF ALKALINE METAL CHLORATE
JPS6360299A (en) Zinc or zinc alloy plating method
CA2149717A1 (en) Composition material and process for removing sulphate from aqueous solution
CN107500364A (en) A kind of high-purity FeCl2·4H2O preparation method
CN1050367A (en) A kind of method of producing single nickel salt