JPS636989B2 - - Google Patents

Info

Publication number
JPS636989B2
JPS636989B2 JP5607581A JP5607581A JPS636989B2 JP S636989 B2 JPS636989 B2 JP S636989B2 JP 5607581 A JP5607581 A JP 5607581A JP 5607581 A JP5607581 A JP 5607581A JP S636989 B2 JPS636989 B2 JP S636989B2
Authority
JP
Japan
Prior art keywords
positive electrode
molding
active material
electrode active
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5607581A
Other languages
Japanese (ja)
Other versions
JPS57170456A (en
Inventor
Shoichi Komatsu
Seiichi Mizutani
Tadashi Sawai
Keigo Momose
Iwao Shirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5607581A priority Critical patent/JPS57170456A/en
Publication of JPS57170456A publication Critical patent/JPS57170456A/en
Publication of JPS636989B2 publication Critical patent/JPS636989B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/12Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with flat electrodes

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ボタン型電池、特に小型薄型のボタ
ン型電池の正極活物質を正極容器内で所定形状に
成型する際の成型性の向上安定化と成型物の高密
度化により電気容量の増加を図つた正極部の製造
法に関するものである。 一般にボタン型電池の正極部は、正極活物質1
の上部周縁に正極リング2を介在させて正極容器
3内に加圧圧着して正極活物質の成型密度を高め
ている。これは電池の封口時に加わる圧力を正極
リングで食い止めると共に、正極活物質の保存中
における化学的な変化および封口圧に起因する正
極部の変形あるいは崩れを防止する上で正極リン
グの存在と成型の高密度化は重要な意味をもつて
いる。 ところが、近年は電池の小型薄型化に伴い、正
極部の厚さも薄くすることが要請されており、正
極部の厚みが薄くなるに従つて、同一成型圧力で
成型すると成型密度が低下し、加圧力を増加させ
る必要がある。しかし正極活物質の厚みを薄くし
加圧力を増加して成型すると、正極部の中心部が
第2図に示す様に彎曲し、この正極活物質の彎曲
部にクラツクや剥離、正極リングとのギヤツプ発
生が生じるとともに、正極部と正極容器相互の密
着性が弱くなり、電池組立時に正極活物質がはず
れたり、正極活物質に注入した電解液がクラツ
ク、剥離あるいはギヤツプ等を通じて正極容器側
壁より外部へクリープし易くなつたりして電池生
産性および品質面において極めて不都合な面を生
じていた。 また加圧力を小さくすれば、正極部の彎曲およ
びクラツク等の発生はなくなるが、成型密度が低
下するとともに、正極部の厚みの制限により正極
活物質の充填量が少なくなり電気容量の低下とと
もに、正極活物質に必要以上の電解液が浸透し、
保存中における保存性能が著しく低下、電池品質
面の信頼性低下の要因となつていた。 本発明はこの様な欠点を解消するものであり、
正極部の成型性について種々検討を行なつた結
果、正極容器内にペレツト状に粗成型した正極活
物質と正極リングを加圧圧着する加圧工程におい
て、少なくとも2回以上の加圧により再成型し、
かつ1回目の加圧圧力に比べて2回目以降の加圧
圧力を大きくすることによつて正極活物質の成型
密度を高めるとともに正極活物質の彎曲を防止
し、クラツク、剥離およびギヤツプ発生を抑制し
うることを見い出したものである。 以下本発明の一実施例を図とともに説明する。
第1図は、本発明による構成の薄型ボタン電池の
半断面図である。主として1価の酸化銀と黒鉛等
との混合物である正極活物質1をペレツト状に粗
成型し、正極リング2と共に正極容器3の中に加
圧圧着する。その上に順次セパレータ4、電解液
含浸材5、主として汞化亜鉛粉末とカルボキシメ
チルセルローズの如くアルカリ電解液中でゲル化
する物質との混合物からなる負極6、ナイロン等
からなる封口リング7に挾持された負極容器8を
載置し、正極容器の上端部を内方にカールするこ
とにより電池を密封する。 第2図は従来の製造法における正極部の断面で
あり、必要とする正極部の厚みと成型密度を得る
ため加圧力を増加すれば、正極活物質の中央が彎
曲するとともにクラツク、剥離等が発生する。こ
の現象は、加圧成型時に正極活物質内に含有され
ている空気の脱気が充分に行なわれず、残留空気
の膨張や正極活物質の充填量が少なく正極部の外
径φに対する厚みHの比率φ/Hが大きくなるに
従つて、正極活物質に加えられた圧力の力学的挙
動は気体や液体のいずれとも異なり、1点に加え
られた力を各方向に均等に伝えることが出来なく
そのために応力の分布が均一でなくなり、成型後
の密度分布の不均一、あるいは粉体の圧縮過程で
起きる粉体粒子の変形が加圧応力の不均一化によ
り不完全となつて加圧力の一部が粉体内部に残留
応力として貯えられる等によつて起きるものと考
えられる。 本発明は、成型時の加圧工程を従来の1回のみ
の成型より少なくとも2回の加圧と加圧力の圧力
設定を行なうことにより、正極活物質内の含有空
気の脱気を充分に行なうと共に、加圧力を逐次増
加することにより粉体粒子の配列状態変化を容易
化して加圧力の応力分布の不均一を減少し、粉体
粒子個々に加わる圧力が増加均一化して粉体粒子
の変形が充分に行なわれるようにしたものであ
る。これにより粉体内部の残留応力が小さくなつ
て正極活物質の彎曲とクラツク、剥離等の防止が
できるとともに成型密度分布の均一化と高密度成
型、すなわち高容量化が可能となる。 ちなみに直径11.6m/m、高さ2.0m/mと、
直径7.9m/m、高さ2.0m/mの酸化銀電池にお
いて、従来の成型方法と本発明における成型方法
および加圧力を変化させた場合の成型後による正
極活物質の彎曲、クラツク、剥離等の成型不良
と、成型密度とを比較してみると表−1に示す結
果となつた。 表−1より従来の成型方法であると、電池のタ
イプによつても異なるが、成型密度は加圧力を増
すと共に高密度となる。ただし、成型後における
成型不良は増加する。また同一加圧力で数回加圧
成型を行なうことによつて高密度化、成型不良の
減少は図れるが完全とはいえない。ここで成型時
の加圧力の設定を逐次増加することによつて、必
要とする成型密度が得られると共に、成型不良の
発生を0.01%以下にすることが可能となつた。 また正極部を同一寸法として従来の成型方法と
本発明法とを比較した場合、従来に比べて本発明
法では正極活物質を7〜15%多く充填することが
できた。 また電池高さが2.0m/mよりも高い電池にお
いては、加圧力を6〜10トンとして成型しても正
極活物質の彎曲等の成型不良の発生はほとんどな
いが、成型密度で5.3〜5.6g/c.c.が限度であつ
た。一方本発明の加圧工程で、一回目の加圧力を
4〜6トン、2回目の加圧力を6〜10トンで成型
することによつて5.5〜6.0g/c.c.の成型密度を容
易に得ることができた。
The present invention improves and stabilizes the moldability when molding the positive electrode active material of a button-type battery, particularly a small and thin button-type battery, into a predetermined shape in a positive electrode container, and increases the electric capacity by increasing the density of the molded product. The present invention relates to a method of manufacturing a positive electrode part. Generally, the positive electrode part of a button type battery is made of positive electrode active material 1
A positive electrode ring 2 is interposed on the upper periphery of the positive electrode ring 2 and is pressurized into the positive electrode container 3 to increase the molding density of the positive electrode active material. This is because the positive electrode ring prevents the pressure applied when sealing the battery, and also prevents the positive electrode from deforming or collapsing due to chemical changes during storage of the positive electrode active material and sealing pressure. Densification has important implications. However, in recent years, as batteries have become smaller and thinner, there has been a need to reduce the thickness of the positive electrode.As the thickness of the positive electrode becomes thinner, the molding density decreases when molded at the same molding pressure. It is necessary to increase the pressure. However, when the thickness of the positive electrode active material is reduced and the pressure is increased to mold it, the center of the positive electrode part is curved as shown in Figure 2, and this curved part of the positive electrode active material causes cracks, peeling, and contact with the positive electrode ring. Along with the occurrence of gaps, the adhesion between the positive electrode part and the positive electrode container becomes weak, and the positive electrode active material may come off during battery assembly, or the electrolyte injected into the positive electrode active material may crack, peel off, or leak from the side wall of the positive electrode container to the outside through gaps. This has led to a tendency for cell creep to occur, resulting in extremely inconvenient aspects in terms of battery productivity and quality. Furthermore, if the pressurizing force is reduced, the occurrence of curvature and cracks in the positive electrode part will be eliminated, but at the same time, the molding density will decrease, and due to the limitation of the thickness of the positive electrode part, the filling amount of the positive electrode active material will decrease, and the electric capacity will decrease. More electrolyte than necessary penetrates into the positive electrode active material,
During storage, the storage performance deteriorated significantly, which caused a decrease in reliability in terms of battery quality. The present invention solves these drawbacks,
As a result of various studies on the moldability of the positive electrode part, we found that during the pressurization process in which the positive electrode ring is bonded to the positive electrode active material roughly formed into pellets in the positive electrode container, it is possible to re-shape it by applying pressure at least twice. death,
In addition, by increasing the pressurization pressure from the second time onwards compared to the first time, the molding density of the positive electrode active material is increased, and curvature of the positive electrode active material is prevented, thereby suppressing the occurrence of cracks, peeling, and gaps. This is what I discovered that can be done. An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a half-sectional view of a thin button battery constructed according to the present invention. A positive electrode active material 1, which is mainly a mixture of monovalent silver oxide and graphite, is roughly molded into a pellet shape, and is press-fitted together with a positive electrode ring 2 into a positive electrode container 3. A separator 4, an electrolyte-impregnated material 5, a negative electrode 6 mainly made of a mixture of zinc chloride powder and a substance that gels in an alkaline electrolyte such as carboxymethyl cellulose, and a sealing ring 7 made of nylon or the like are sandwiched thereon in order. The battery is sealed by placing the negative electrode container 8 that has been prepared and curling the upper end of the positive electrode container inward. Figure 2 shows a cross section of the positive electrode part in the conventional manufacturing method.If the pressurizing force is increased to obtain the required thickness and molding density of the positive electrode part, the center of the positive electrode active material will curve and cracks, peeling, etc. will occur. Occur. This phenomenon occurs because the air contained in the positive electrode active material is not sufficiently degassed during pressure molding, and the residual air expands and the filling amount of the positive electrode active material is small, resulting in a change in thickness H relative to the outer diameter φ of the positive electrode part. As the ratio φ/H increases, the mechanical behavior of the pressure applied to the positive electrode active material differs from that of either gas or liquid, and the force applied to one point cannot be transmitted equally in all directions. As a result, the stress distribution becomes uneven, and the density distribution after molding becomes uneven, or the deformation of powder particles that occurs during the powder compression process becomes incomplete due to uneven pressure stress, resulting in uniform pressure force. This is thought to be caused by residual stress being stored inside the powder. In the present invention, the air contained in the positive electrode active material is sufficiently degassed by performing the pressurization process at the time of molding at least twice and setting the pressurizing force, rather than the conventional one-time molding process. At the same time, by gradually increasing the pressure, the arrangement state of the powder particles can be easily changed, reducing the uneven stress distribution of the pressure, increasing the pressure applied to each powder particle, making it more uniform, and deforming the powder particles. This is to ensure that this is carried out adequately. This reduces the residual stress inside the powder, making it possible to prevent curvature, cracking, and peeling of the positive electrode active material, and also to make the molding density distribution uniform and to achieve high-density molding, that is, to increase the capacity. By the way, the diameter is 11.6m/m and the height is 2.0m/m.
In a silver oxide battery with a diameter of 7.9 m/m and a height of 2.0 m/m, bending, cracking, peeling, etc. of the positive electrode active material after molding when the conventional molding method and the molding method of the present invention and the pressurizing force were changed. Comparing the molding defects and molding density, the results are shown in Table 1. Table 1 shows that when using the conventional molding method, the molding density increases as the pressing force increases, although it varies depending on the type of battery. However, the number of molding defects after molding increases. Further, by performing pressure molding several times with the same pressure, it is possible to increase the density and reduce molding defects, but it cannot be said to be perfect. By successively increasing the pressure setting during molding, it was possible to obtain the required molding density and to reduce the occurrence of molding defects to 0.01% or less. Furthermore, when comparing the conventional molding method and the method of the present invention with the same size of the positive electrode part, the method of the present invention was able to fill 7 to 15% more positive electrode active material than the conventional method. In addition, for batteries with a height higher than 2.0 m/m, molding defects such as curvature of the positive electrode active material hardly occur even if the pressurizing force is 6 to 10 tons, but the molding density is 5.3 to 5.6 m/m. The limit was g/cc. On the other hand, in the pressurizing process of the present invention, a molding density of 5.5 to 6.0 g/cc can be easily obtained by molding with a pressing force of 4 to 6 tons for the first time and 6 to 10 tons for the second time. I was able to do that.

【表】 次に本発明の方法により製造された正極部をも
つ直経11.6m/m、高さ2.0m/mの酸化銀電池
の耐漏液性能を表−2に示し、第3図に6.8KΩ
定抵抗負荷での放電特性を示す。 なお、電池Aは2回の加圧を施したもので1回
目の加圧力を2〜3トン、2回目を4〜8トンと
し成型密度を5.2g/c.c.としたものを示し、電池
Bは3回の加圧を施したもので1回目の加圧力を
2〜3トン、2回目を4〜8トン、3回目を6〜
10トンとし成型密度を5.4g/c.c.としたものであ
る。電池Cは従来法による6〜8トンの加圧で1
回加圧したものであり、その成型密度は5.1g/
c.c.であつた。また耐漏液性能の試験条件は温度45
℃、相対湿度90%に各50個保存した。
[Table] Next, Table 2 shows the leakage resistance performance of a silver oxide battery with a diameter of 11.6 m/m and a height of 2.0 m/m, which has a positive electrode part manufactured by the method of the present invention. KΩ
Shows the discharge characteristics under constant resistance load. In addition, battery A was pressurized twice, with the first pressurizing force being 2 to 3 tons and the second pressurizing force of 4 to 8 tons, and the molding density was 5.2 g/cc, and battery B was The pressure was applied three times, the first pressurizing force was 2 to 3 tons, the second was 4 to 8 tons, and the third was 6 to 3 tons.
The weight was 10 tons, and the molding density was 5.4 g/cc. Battery C was pressurized by 6 to 8 tons using the conventional method.
The molding density is 5.1g/
It was cc. In addition, the test conditions for leakage resistance are at a temperature of 45
Fifty pieces of each were stored at ℃ and 90% relative humidity.

【表】 以上のごとく本発明を使用することにより、特
に薄型アルカリボタン電池の正極部の成型時にお
けるペレツト状正極活物質内の含有空気の充分な
脱気と、粉体粒子の流動をよくし、応力分布の不
均一を減少させて不良の減少と高容量化を図ると
ともに、電池の保存性能に対する信頼性を向上さ
せることができる。前記実施例の説明は酸化銀電
池について行なつたが、二価酸化銀電池、水銀電
池、ボタン型アルカリマンガン電池についても加
圧力の設定圧力差はあるが、同様な効果が得られ
ることを確認した。
[Table] By using the present invention as described above, it is possible to sufficiently degas the air contained in the pellet-like positive electrode active material and to improve the flow of powder particles, especially when molding the positive electrode part of a thin alkaline button battery. By reducing non-uniformity of stress distribution, it is possible to reduce defects and increase capacity, and to improve the reliability of storage performance of the battery. Although the above example was explained with respect to a silver oxide battery, it was confirmed that the same effect could be obtained with a divalent silver oxide battery, a mercury battery, and a button-type alkaline manganese battery, although there was a difference in the set pressure. did.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造法により得た薄型アルカ
リボタン型電池の半断面図、第2図は従来の製造
法による正極部の断面図、第3図は本発明の製造
法による電池の放電特性を示す図である。 1……正極活物質、2……正極リング、3……
正極容器、4……セパレータ、6……負極、8…
…負極容器。
Fig. 1 is a half-sectional view of a thin alkaline button battery obtained by the manufacturing method of the present invention, Fig. 2 is a sectional view of the positive electrode part obtained by the conventional manufacturing method, and Fig. 3 is a discharge of the battery by the manufacturing method of the present invention. FIG. 3 is a diagram showing characteristics. 1... Positive electrode active material, 2... Positive electrode ring, 3...
Positive electrode container, 4...Separator, 6...Negative electrode, 8...
...Negative electrode container.

Claims (1)

【特許請求の範囲】[Claims] 1 粗成型により正極活物質をペレツト状とする
とともに、その上部周縁に断面逆L字状の正極リ
ングを介在させて正極容器内に挿入した後、正極
容器と正極活物質および正極リングを加圧圧着す
る工程において、少なくとも2回以上の加圧によ
り再成型し、かつ1回目の加圧圧力に比べて2回
目以降の加圧圧力を大きくしたことを特徴とする
薄型アルカリボタン電池用正極部の製造法。
1. The positive electrode active material is formed into a pellet by rough molding, and a positive electrode ring with an inverted L-shaped cross section is interposed on the upper periphery of the pellet, and the positive electrode ring is inserted into the positive electrode container. The positive electrode container, the positive electrode active material, and the positive electrode ring are then pressurized. A positive electrode part for a thin alkaline button battery, characterized in that the positive electrode part for a thin alkaline button battery is re-molded by applying pressure at least twice or more in the attaching process, and the pressure applied from the second time onwards is greater than the pressure applied at the first time. Manufacturing method.
JP5607581A 1981-04-13 1981-04-13 Manufacture of positive electrode for button type battery Granted JPS57170456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5607581A JPS57170456A (en) 1981-04-13 1981-04-13 Manufacture of positive electrode for button type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5607581A JPS57170456A (en) 1981-04-13 1981-04-13 Manufacture of positive electrode for button type battery

Publications (2)

Publication Number Publication Date
JPS57170456A JPS57170456A (en) 1982-10-20
JPS636989B2 true JPS636989B2 (en) 1988-02-15

Family

ID=13016960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5607581A Granted JPS57170456A (en) 1981-04-13 1981-04-13 Manufacture of positive electrode for button type battery

Country Status (1)

Country Link
JP (1) JPS57170456A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960946A (en) * 2017-05-08 2017-07-18 宁波必霸能源有限公司 Button cell cathode top and negative pole combination and alkaline button cell

Also Published As

Publication number Publication date
JPS57170456A (en) 1982-10-20

Similar Documents

Publication Publication Date Title
JPS636989B2 (en)
EP4131592A1 (en) Cylindrical battery
JP2002373711A (en) Button type air-zinc battery and its method of manufacture
US4096328A (en) Divalent silver oxide cell
IL26126A (en) Sealed rechargeable battery cell
EP1818999A1 (en) A button-shaped alkaline battery
JP2628657B2 (en) Method for forming positive electrode of thin silver oxide battery
JPS5852617Y2 (en) silver oxide battery
JPS6050029B2 (en) thin battery
JP3681799B2 (en) Button-type alkaline battery
JPS628122Y2 (en)
JPS6321099Y2 (en)
JPS6324298B2 (en)
JPS591334Y2 (en) sealed battery
JPS58165255A (en) Method of manufacturing silver oxide battery
JPS60167260A (en) Alkaline battery
JPS5853026Y2 (en) flat battery
JP2609620B2 (en) Manufacturing method of cylindrical alkaline battery
JPS636992B2 (en)
JPS636993B2 (en)
JPS59175553A (en) Cylindrical type battery and its manufacturing method
JPS61273867A (en) Manufacture of dry battery
JPS5830071A (en) Manufacture of small enclosed battery
JP2000100394A (en) Cylindrical alkaline battery
JPH0745273A (en) Button-shaped silver oxide battery