JPS6369831A - Heat-treating method for thioether based resin - Google Patents

Heat-treating method for thioether based resin

Info

Publication number
JPS6369831A
JPS6369831A JP61215321A JP21532186A JPS6369831A JP S6369831 A JPS6369831 A JP S6369831A JP 61215321 A JP61215321 A JP 61215321A JP 21532186 A JP21532186 A JP 21532186A JP S6369831 A JPS6369831 A JP S6369831A
Authority
JP
Japan
Prior art keywords
heat
resin
temperature
formulas
tables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61215321A
Other languages
Japanese (ja)
Inventor
Makoto Terauchi
寺内 眞
Mitsutoshi Aritomi
有富 充利
Yoshiji Ichihara
祥次 市原
Koukichi Komatsuzaki
小松崎 行吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP61215321A priority Critical patent/JPS6369831A/en
Publication of JPS6369831A publication Critical patent/JPS6369831A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase intrinsic viscosity and heat distortion temperature and make it possible to improve heat resistance while holding excellent water and solvent resistance, by heat-treating a specific amorphous aromatic thermoplastic resin at a specific temperature for a specific time. CONSTITUTION:An amorphous aromatic thermoplastic resin, consisting essentially of thioether bonds and further containing amide groups and/or imide groups, preferably aromatic polyamide and/or imide resin having repeating units expressed by formulas I-III (Ar is bifunctional aromatic residue; formula IV is formula V or VI) is heat-treated under temperature condition below the glass transition temperature of the resin - above [(glass transition temperature of the resin) - 100 deg.C] for >=3hr.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はチオエーテル系樹脂の熱処理方法に関する。本
発明の方法により得られるチオエーテル系樹脂は特に耐
熱性に優れ、高温下で使用するエンジニアリングプラス
チック、繊維、フィルム、塗膜素材として有用である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for heat treating thioether resins. The thioether resin obtained by the method of the present invention has particularly excellent heat resistance and is useful as engineering plastics, fibers, films, and coating materials used at high temperatures.

〔従来の技術〕[Conventional technology]

芳香族ポリチオエーテルアミド樹脂、チオエーテル結合
を有する芳香族ポリアミド共重合体、芳香族ポリチオエ
ーテルアミドイミド樹脂、チオエーテル結合を有する芳
香族ポリアミドイミド共重合体、芳香族ポリチオエーテ
ルイミド樹脂等、チオエーテル結合を必須成分とし、さ
らにアミド基および/またはイミド基を含有する非晶性
の芳香族熱可塑性樹脂(以下チオエーテル系樹脂と略称
する)は優れた成形加工性と耐熱性のバランスを不し、
かつ機械的性質や耐水性、耐溶剤性も優秀であり、新規
なエンジニアリングツリスチック、繊維、フィルム、塗
膜素材等として期待される。
Aromatic polythioetheramide resins, aromatic polyamide copolymers with thioether bonds, aromatic polythioetheramide imide resins, aromatic polyamideimide copolymers with thioether bonds, aromatic polythioetherimide resins, etc. that require thioether bonds. The amorphous aromatic thermoplastic resin (hereinafter abbreviated as thioether resin) which further contains an amide group and/or an imide group as a component has an imbalance between excellent moldability and heat resistance,
It also has excellent mechanical properties, water resistance, and solvent resistance, and is expected to be used as a new engineering material, fiber, film, coating material, etc.

しかし、縄温下で使用する場合には一層優れた耐熱性を
有することが望ましい。
However, when used at room temperature, it is desirable to have even better heat resistance.

一般に、耐熱性を表わす尺度である熱変形温度で捉えた
場合、芳香族ポリイミド樹脂(デュポン社MVespe
1等)、芳香族ポリアミドイミド樹脂(Atnoco社
製Torlon等)、芳香族ポリアミド樹脂〔蛮人社製
コー不ツクスCMR等〕、芳香族ポリエステル樹脂(住
友化学社製エコノール等)等の芳香族系樹脂はチオエー
テル系樹脂と同等以上の熱変形温度を有するものも多い
が、これらの樹脂は成形加工性が劣る。一方、熱硬化性
樹脂でも、芳香族ビスマレイミド樹脂、芳香族多官能マ
レイミド樹脂、多官能(メタ)アクリレート系樹脂、ア
セチレン末端芳香族系樹脂、多官能エポキシ樹脂等、チ
オエーテル系樹脂同等以上の耐熱性を有するものがある
が、これらは、成形サイクル、機械的性質、熱安定性等
において劣る。
Generally speaking, aromatic polyimide resin (DuPont's MVespe
1, etc.), aromatic polyamide-imide resins (Torlon, manufactured by Atnoco, etc.), aromatic polyamide resins (Kofux CMR, manufactured by Banjin Co., Ltd., etc.), aromatic polyester resins (Econol, manufactured by Sumitomo Chemical, etc.), etc. Many of these resins have heat distortion temperatures equal to or higher than those of thioether resins, but these resins have poor moldability. On the other hand, thermosetting resins such as aromatic bismaleimide resins, aromatic polyfunctional maleimide resins, polyfunctional (meth)acrylate resins, acetylene-terminated aromatic resins, and polyfunctional epoxy resins have heat resistance equivalent to or higher than that of thioether resins. However, these are inferior in molding cycle, mechanical properties, thermal stability, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、芳嘔族ポリアミドイミド樹脂や、エーテルア
ミド(イミド)系樹脂(エーテル結合を必須成分とし、
さらにアミド基またはイミド基を含有する芳香族熱可塑
性樹脂)を熱処理することによって熱変形温度を向上さ
せることができることが知られている( Torlon
技術資料、特開昭59−140232号公報等)が、分
子量を直鎖的に向上させることは困難であった。
By the way, aromatic polyamide-imide resin and ether amide (imide) resin (which has an ether bond as an essential component,
Furthermore, it is known that the heat distortion temperature can be improved by heat treating an aromatic thermoplastic resin containing an amide group or an imide group (Torlon
Technical data, JP-A-59-140232, etc.), it was difficult to linearly improve the molecular weight.

−□   □    ル ボリフ二二しンスルフイド(以下PPSと略す)に代表
されるように、主鎖にS原子を含有する樹脂は、熱処理
時にC−8結合の開裂/再結合を伴うため、架橋/鎖延
長を起こすことが知られている。この際、−C−や−8
O2−のような電子求引性基が系中に存在すると、この
反応が穏やかに進行し、ゆるやかに鎖延長する傾向にあ
ることも知られている。しかし、この反応は結晶性樹脂
であるPPSにおいてのみ特徴的な現象と考えられてい
オニ−チル系樹脂においても起こり、単に熱変形温度を
向上させることができるだけでなく、固有粘度(二分子
量)を高めることができ、しかもガラス転移温度は変化
せず、かつ本質的にゲル分を生じないことから、直鎖的
に鎖延長していると考えられ、そのためチオエーテル系
樹脂の優れた性質はそのまま保持されることを見出し、
本発明を完成するに到った。
-□ □ Resins containing S atoms in the main chain, as typified by Luborif-22-Sulfide (hereinafter abbreviated as PPS), undergo cross-linking/chain cleavage due to the cleavage/recombination of C-8 bonds during heat treatment. It is known to cause prolongation. At this time, -C- or -8
It is also known that when an electron-withdrawing group such as O2- is present in the system, this reaction tends to proceed slowly and the chain tends to be extended slowly. However, this reaction is considered to be a characteristic phenomenon only in PPS, which is a crystalline resin, and also occurs in one-chill resins, and it not only can improve the heat distortion temperature but also increase the intrinsic viscosity (bimolecular weight). Moreover, the glass transition temperature does not change and essentially no gel content is produced, so it is thought that the chain is linearly extended, and therefore the excellent properties of thioether resins are maintained. find out that it will be done,
The present invention has now been completed.

〔発明の構成〕[Structure of the invention]

本発明は、チオエーテル系樹脂を熱処理することにより
、優れた機械的性質や耐水性、耐溶剤性を保持したまま
、耐熱性を向上させることを可能にするものである。
The present invention makes it possible to improve heat resistance while maintaining excellent mechanical properties, water resistance, and solvent resistance by heat-treating a thioether resin.

即ち、本発明は、チオエーテル結合を必須成分とし、さ
らにアミド基および/またはイミド基を含有する非晶性
の芳香族熱可塑性樹脂を、樹脂のガラス転移温度未満、
〔〔樹脂のガラス転移温度)−100℃〕以上の温度条
件下、3時間以上熱処理し、その固有粘度、および熱変
形温度を高めることを特徴とする、チオエーテル系樹脂
の熱処理方法を提供するものである。
That is, the present invention provides an amorphous aromatic thermoplastic resin having a thioether bond as an essential component and further containing an amide group and/or an imide group, at a temperature below the glass transition temperature of the resin.
[Providing a method for heat treating a thioether resin, which is characterized by heat treating for 3 hours or more under a temperature condition of [[glass transition temperature of resin] -100°C] or higher to increase its intrinsic viscosity and heat distortion temperature. It is.

本発明に用いられるチオエーテル系樹脂としては、下記
式(I)〜(Ill)で示される繰返し単位を有する芳
香族ポリアミド及び/又はイミド樹脂が好ましく、 −6= C式中、Arは2価の芳香族残基である。また、(j である。〕 その中でも、繰返し単位として前記式(I)〜(1■)
で示される繰返し単位のみを有する芳香族ポリアミド及
び/又はイミド樹脂、式(I)で示される繰返し単位を
50〜99モル係含有する芳香族ポリアミド共重合体、
式(1)で示される繰返し単位をポリアミド共重合体、 (式中、Ar’は炭素数6〜20の2価の芳香族残基で
ある。) CH3(J   IJ (V) (Vl) 及び式(III)で示される繰返し単位と、下式(1m
)で示される繰返し単位とからなる芳香族ポリアミドイ
ミド共重合体、 (式中、Ar”は2価の芳香族残基である。)がとくに
好ましい。
The thioether resin used in the present invention is preferably an aromatic polyamide and/or imide resin having repeating units represented by the following formulas (I) to (Ill), in which -6=C, Ar is a divalent It is an aromatic residue. In addition, (j is.) Among them, the above formulas (I) to (1■) are used as repeating units.
Aromatic polyamide and/or imide resin having only repeating units represented by formula (I), aromatic polyamide copolymer containing 50 to 99 moles of repeating units represented by formula (I),
The repeating unit represented by formula (1) is a polyamide copolymer, (in the formula, Ar' is a divalent aromatic residue having 6 to 20 carbon atoms.) CH3 (J IJ (V) (Vl) and The repeating unit represented by formula (III) and the following formula (1m
An aromatic polyamide-imide copolymer consisting of a repeating unit represented by (wherein Ar'' is a divalent aromatic residue) is particularly preferred.

〔熱処理方法〕[Heat treatment method]

本発明の熱処理方法は、〔(樹脂のガラス転移温度)−
100℃〕以上、樹脂のガラス転移温度未満の温度条件
で行なう必要がある。該温度範囲の下限以下では、本発
明の効果はほとんど期待できず、上限以上では成形品を
処理する場合に、変形等を伴い、好ましくない。
The heat treatment method of the present invention includes [(glass transition temperature of resin) -
It is necessary to carry out the process at a temperature of 100° C. or higher and lower than the glass transition temperature of the resin. Below the lower limit of the temperature range, hardly any effect of the present invention can be expected, and above the upper limit, deformation etc. occur when processing the molded product, which is not preferable.

本発明の熱処理を行なう時間は少なくとも31晴間、好
ましくは8時間以上必要である。
The heat treatment of the present invention requires at least 31 days, preferably 8 hours or more.

本発明の熱処理を行なう場合のチオエーテル系樹脂の形
状は問わない。ただし微粉状の場合には本発明の効果が
乏しいため、成形品もしくはベレット状であることが望
ましい。とりわけ溶融成形品においては、固有粘度が帆
1以上上昇し、熱変形温度も15℃以上上昇し、発明の
効果が大きい。
The shape of the thioether resin used in the heat treatment of the present invention does not matter. However, if it is in the form of a fine powder, the effect of the present invention is poor, so it is desirable that it be in the form of a molded article or pellet. Particularly in the case of melt-molded products, the intrinsic viscosity increases by 1 degree or more, and the heat distortion temperature increases by 15 degrees C. or more, so the effects of the invention are significant.

本発明の熱処理は、チオエーテル系樹脂を所定温度にコ
ントロールされた加熱装置に入れて所定時間加熱するこ
とにより実施される。力a?、装置の形式には特に制限
がないが、通常は電気加熱方式によるオープンが便利で
あり、オーブン中の雰囲気としては例えば熱風循環式、
熱風流通式などを利用することができる。
The heat treatment of the present invention is carried out by placing the thioether resin in a heating device controlled at a predetermined temperature and heating it for a predetermined period of time. Power a? There are no particular restrictions on the type of device, but it is usually convenient to open with an electric heating method, and the atmosphere in the oven may be, for example, a hot air circulation type,
A hot air flow system can be used.

〔加工・用途〕[Processing/Applications]

本発明の熱処理されたチオエーテル系樹脂を成形加工す
る際は、公知の種々の充填剤成分を含むことができる。
When molding the heat-treated thioether resin of the present invention, various known filler components can be included.

充填剤成分の代表的な例としては、(a)yA維状光填
剤ニガジス繊維、炭素繊維、ポロン繊維、アルミナ繊維
、シリコン−カーバイ)[維等、Φ)無機物充填剤:マ
イ力、タルク、クレイ、グラファイト、カーポンプフッ
ク、シリカ、アスベスト、硫化モリブデン、酸化マグネ
シウム、酸化カルシウム等、を挙げることができる。
Typical examples of filler components include (a) yA fibrous optical filler Nigadis fiber, carbon fiber, poron fiber, alumina fiber, silicon carbide) [fiber, etc., Φ) Inorganic filler: Myriki, talc , clay, graphite, car pump hook, silica, asbestos, molybdenum sulfide, magnesium oxide, calcium oxide, etc.

本発明の熱処理されたチオエーテル系樹脂は、電気、電
子分野の各種部品、ノ・ウジフグ類、自動車部品、航空
機用内装材、摺動部品、ギアー、絶線材料、耐熱フィル
ム、1111I′熱ワニス、耐熱繊組、等広範な範囲で
用いることがOJ能であるが、特にそのすぐれた耐熱性
を生かして高温下で使用する部品用途への使用が推奨さ
れる。
The heat-treated thioether resin of the present invention can be used to produce various parts in the electrical and electronic fields, car parts, interior materials for aircraft, sliding parts, gears, insulation materials, heat-resistant films, 1111I' thermal varnishes, Although OJ can be used in a wide range of applications such as heat-resistant fiber braiding, it is particularly recommended to take advantage of its excellent heat resistance for use in parts that are used at high temperatures.

〔実施例〕〔Example〕

以下、実施例をあげて本発明をさらに具体的に説明する
が、本発明はかかる実施例によりその範囲を限定される
ものではない。
Hereinafter, the present invention will be explained in more detail with reference to examples, but the scope of the present invention is not limited by these examples.

実施例1.2及び比較例1.2 下式の構造で示されるチオエーテル系樹脂〔ηinh 
= 0.7 s ttt/ t (0,2% N−メチ
ルピロリドン溶液、30℃で測定)oTr=227℃〕
Cm/n”80/20 (モル比〕〕 を320℃で圧縮成形して試験片を作成した。この試験
片を各々第1表に示した温度に設定した熱風循環式の加
熱炉に入れ、第1表に示した時間で熱処理した。
Example 1.2 and Comparative Example 1.2 Thioether resin [ηinh
= 0.7 s ttt/t (0.2% N-methylpyrrolidone solution, measured at 30°C) oTr = 227°C]
Cm/n"80/20 (molar ratio)] was compression molded at 320°C to create test pieces. Each of the test pieces was placed in a hot air circulation type heating furnace set at the temperature shown in Table 1. Heat treatment was performed for the times shown in Table 1.

熱処理後の各試験片について、ηinh、  熱変形温
度、機械特性、吸水率等についての測定結果を第1表に
併せて示した。
Table 1 also shows the measurement results of ηinh, heat distortion temperature, mechanical properties, water absorption, etc. for each test piece after heat treatment.

第1表から明らかなように熱処理温度が低い場合(比較
例1)では、ηinhや熱変形温度の向上効果がほとん
どない。また熱処理時間が短い場合(比較例2)も、η
inhや熱変形温度の向上効果がほとんどない。これに
対し、本発明の熱処理条件によれば、ηinhや熱変形
温度が飛躍的に向上した。
As is clear from Table 1, when the heat treatment temperature is low (Comparative Example 1), there is almost no effect of improving ηinh or heat distortion temperature. Also, when the heat treatment time is short (Comparative Example 2), η
There is almost no effect of improving inh or heat distortion temperature. On the other hand, according to the heat treatment conditions of the present invention, ηinh and heat distortion temperature were dramatically improved.

C以下余白) 〔第 ] 表〕 1)  DSCで測定。Margin below C) [Chapter] Table] 1) Measured by DSC.

2)  0.2%N−メチルピロリドン溶液、30℃。2) 0.2% N-methylpyrrolidone solution, 30°C.

33 18.6 kf/ct/を荷重。33 Load 18.6 kf/ct/.

4)、5) ASTIvi D−638に準拠。4), 5) Based on ASTIvi D-638.

6)  ASTM D−570に準拠(2411r、&
漬の値〕013一 実施例3 下式の構造で示されるチオエーテル系樹脂[η1nh=
o、65dt/y (0,2%N−メチルピロリドン溶
液、30℃で測定)o Ty= 260℃]−(m/n
10/p=40/40/IO/10 (モル比)〕を3
25℃で圧縮成形して試験片を作成した。この試験片を
第2表に示した温度に設定した熱風循環式の加熱炉に入
れ、第2表に示した時間で熱処理した。
6) Based on ASTM D-570 (2411r, &
[η1nh=
o, 65 dt/y (0,2% N-methylpyrrolidone solution, measured at 30°C) o Ty = 260°C] - (m/n
10/p=40/40/IO/10 (molar ratio)] to 3
A test piece was prepared by compression molding at 25°C. This test piece was placed in a hot air circulation type heating furnace set at the temperature shown in Table 2, and heat treated for the time shown in Table 2.

熱処理後の各試験片について、ηinh、熱変形温度、
機械特性等についての測定結果を併せて示した。結果と
して、本発明の熱処理条件により、ηinhや熱変形温
度力新篭繭的に向上した。
For each test piece after heat treatment, ηinh, heat distortion temperature,
Measurement results regarding mechanical properties, etc. are also shown. As a result, under the heat treatment conditions of the present invention, ηinh and thermal deformation temperature force were significantly improved.

〔第 2 表〕 1)  DSCで測定。[Table 2] 1) Measured by DSC.

23 0.2%N−メチルピロリドン溶液、30’C0
3)  18.6 ky/1tti荷重。
23 0.2% N-methylpyrrolidone solution, 30'C0
3) 18.6 ky/1tti load.

4)  ASTM D−638に準拠。4) Compliant with ASTM D-638.

実施例4及び比較例3 下式の構造で示されるチオエーテル系樹脂〔ηinh 
= 0.57 dl/ f (0,2%N−メチルピロ
リドン溶液、30℃で測定)o’l’y=240℃〕を
320℃で圧縮成形して試験片を作成した。この試験片
を第3表に示した温度に設屋した熱風循環式の加熱炉に
入れ、第3表に示した時間熱処理したO 熱処理後の各試験片について、ηinb、熱変形温度、
機械特性等についての測定結果を併せて示した。
Example 4 and Comparative Example 3 Thioether resin [ηinh
= 0.57 dl/f (0.2% N-methylpyrrolidone solution, measured at 30°C) o'l'y = 240°C] was compression molded at 320°C to create a test piece. This test piece was placed in a hot air circulation type heating furnace set at the temperature shown in Table 3, and heat-treated for the time shown in Table 3.
Measurement results regarding mechanical properties, etc. are also shown.

第1表から明らかなように、熱処理温度が高い場合(比
較例3)では、ηinhや熱変形温度の向上効果は大き
いものの、本発明の熱処理条件(実施例4)との差は小
さく、しかも成形品にフタレが生じたりするため好まし
くない。
As is clear from Table 1, when the heat treatment temperature is high (Comparative Example 3), the effect of improving ηinh and heat distortion temperature is large, but the difference from the heat treatment conditions of the present invention (Example 4) is small. This is not preferable because it may cause sagging in the molded product.

〔第 3 表〕 1)  1)SCで測定。[Table 3] 1) 1) Measured by SC.

21 0.2%N−メチルピロリドン溶液、30℃33
 18.6 kg/ca荷重。
21 0.2% N-methylpyrrolidone solution, 30℃33
18.6 kg/ca load.

4) ASTM D−63sに準拠。4) Compliant with ASTM D-63s.

比較例4 下式の構造で示されるポリエーテルイミド樹脂C08社
、ウルテム−1000)ヲ315℃テ圧縮成形して試験
片を作成した。
Comparative Example 4 A test piece was prepared by compression molding a polyetherimide resin (C08, Ultem-1000) having the structure shown below at 315°C.

この試験片を第4表に示した温度に設定した熱風循環式
の加熱炉に入れ、第4表に示した時間熱処理した。
This test piece was placed in a hot air circulation type heating furnace set at the temperature shown in Table 4, and heat treated for the time shown in Table 4.

熱処理後の各試験片について、ηinh 、熱変形温度
、機械特性等についての測定結果を併せて示した。結果
として、熱変形温度は上昇するものの、+7inhはほ
とんど変化せず、本発明のような効果はなかった。
For each test piece after heat treatment, measurement results regarding ηinh, heat distortion temperature, mechanical properties, etc. are also shown. As a result, although the heat distortion temperature increased, +7 inh hardly changed, and there was no effect like the present invention.

(以下余白) 〔第 4 表〕 1)DSCで測定。(Margin below) [Table 4] 1) Measured by DSC.

2)  0.2%N−メチルピロリドン溶液、30℃0
3)18.6呟/d荷重。
2) 0.2% N-methylpyrrolidone solution, 30°C 0
3) 18.6 m/d load.

4)ASTIVl、D−638に準拠。4) Compliant with ASTIVl, D-638.

Claims (2)

【特許請求の範囲】[Claims] (1)チオエーテル結合を必須成分とし、さらにアミド
基および/またはイミド基を含有する非晶性の芳香族熱
可塑性樹脂を、樹脂のガラス転移温度未満、〔(樹脂の
ガラス転移温度)−100℃〕以上の温度条件下、3時
間以上熱処理し、その固有粘度、および熱変形温度を高
めることを特徴とする、チオエーテル系樹脂の熱処理方
法。
(1) An amorphous aromatic thermoplastic resin containing a thioether bond as an essential component and further containing an amide group and/or an imide group at a temperature below the glass transition temperature of the resin [(glass transition temperature of the resin) -100°C ] A method for heat-treating a thioether-based resin, which is characterized by heat-treating for 3 hours or more under the above temperature conditions to increase its intrinsic viscosity and heat distortion temperature.
(2)特許請求範囲第1項記載の非晶性の芳香族熱可塑
性樹脂が、下記式( I )〜(III)で示される繰返し単
位を有する芳香族ポリアミドおよび/またはイミド樹脂
である、特許請求の範囲第1項記載の方法。 ▲数式、化学式、表等があります▼( I ) ▲数式、化学式、表等があります▼(II) ▲数式、化学式、表等があります▼(III) (式中、Arは2価の芳香族残基である。また、▲数式
、化学式、表等があります▼は▲数式、化学式、表等が
あります▼、または▲数式、化学式、表等があります▼
である。)
(2) A patent in which the amorphous aromatic thermoplastic resin described in claim 1 is an aromatic polyamide and/or imide resin having repeating units represented by the following formulas (I) to (III). The method according to claim 1. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(III) (In the formula, Ar is a divalent aromatic group. It is a residue.Also, ▲There are mathematical formulas, chemical formulas, tables, etc.▼ is ▲There are mathematical formulas, chemical formulas, tables, etc.▼, or ▲There are mathematical formulas, chemical formulas, tables, etc.▼
It is. )
JP61215321A 1986-09-12 1986-09-12 Heat-treating method for thioether based resin Pending JPS6369831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61215321A JPS6369831A (en) 1986-09-12 1986-09-12 Heat-treating method for thioether based resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61215321A JPS6369831A (en) 1986-09-12 1986-09-12 Heat-treating method for thioether based resin

Publications (1)

Publication Number Publication Date
JPS6369831A true JPS6369831A (en) 1988-03-29

Family

ID=16670371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61215321A Pending JPS6369831A (en) 1986-09-12 1986-09-12 Heat-treating method for thioether based resin

Country Status (1)

Country Link
JP (1) JPS6369831A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138177A (en) * 2005-11-18 2007-06-07 Ems Chemie Ag Reinforced polyamide molding material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138177A (en) * 2005-11-18 2007-06-07 Ems Chemie Ag Reinforced polyamide molding material
US9221974B2 (en) 2005-11-18 2015-12-29 Ems-Chemie Ag Reinforced polyamide moulding materials

Similar Documents

Publication Publication Date Title
US4016140A (en) Amide-imide copolymer moldings and method of preparation
US3803081A (en) Polyamide molding powder prepolymers and method of preparation
Hergenrother Perspectives in the development of high‐temperature polymers
US3748304A (en) Amide-imide copolymers
US5159029A (en) Tough high performance composite matrix
JPS6369831A (en) Heat-treating method for thioether based resin
JPS59187054A (en) Heat-resistant thermoplastic resin composition
JPH0129382B2 (en)
JPS6153357A (en) Molding resin composition
CN113717384A (en) Modified polyamide-imide material and preparation method thereof
JPS61163937A (en) Production of polyimide molding
US4902740A (en) Polyamideimides containing 3,4'-diamino-diphenylether as diamine component, with plasticizer
JPH0125331B2 (en)
US3342768A (en) Coating compositions comprising a polyamic acid composition and a 2, 4-diamino-6-substituted-s-triazine
ZAMAN et al. Synthesis and characterization of polyimide-epoxy hybrid films
Rakoutz et al. Siloxane modification of bismaleimide resins
Zhang et al. Preparation and dielectric properties of POSS-NH2/cyanate ester resin organic-inorganic hybrids
Krishnan et al. Characterization of thermal behavior of mixed bismaleimides for composites
Kumar et al. Novel processable aromatic thermoplastic polyimides: Films, adhesives, moldings, and graphite composites
JPH03124714A (en) Coreactive oligomer mixture and its manufacture
Miao et al. Study on preparation and properties of epoxy resin modified by amine-terminated polyimide as electronic packaging materials
Hergenrother et al. Polyquinoxaline Matrix Resins And Composites
JPS6234956A (en) Resin composition for molding
JPH01149830A (en) Thermoplastic aromatic polyimide polymer
JPH0558029B2 (en)