JPS6369316A - High voltage drive circuit - Google Patents

High voltage drive circuit

Info

Publication number
JPS6369316A
JPS6369316A JP61214381A JP21438186A JPS6369316A JP S6369316 A JPS6369316 A JP S6369316A JP 61214381 A JP61214381 A JP 61214381A JP 21438186 A JP21438186 A JP 21438186A JP S6369316 A JPS6369316 A JP S6369316A
Authority
JP
Japan
Prior art keywords
voltage
fet
channel mos
mos type
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61214381A
Other languages
Japanese (ja)
Inventor
Toshiyuki Iwazawa
岩澤 利幸
Masayoshi Miura
眞芳 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61214381A priority Critical patent/JPS6369316A/en
Priority to EP87113349A priority patent/EP0264614A1/en
Priority to US07/095,457 priority patent/US4825102A/en
Publication of JPS6369316A publication Critical patent/JPS6369316A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent dielectric breakdown even if a voltage being an ON dielectric strength of a FET or over and being an OFF dielectric voltage or below is impressed to a circuit of the output stage by connecting a resistor symmetrically between a P-channel FET and an N-channel FET. CONSTITUTION:One end of resistors R1, R1 is connected to the source of FETs 4, 5, a voltage being a half or over of the impressed voltage (VH-VL) is impressed to the resistors R1, R2 and only a voltage being the ON-state dielectric voltage or below is impressed to the FETs 4, 5 in ON-state by selecting the resistor R1 as the interval resistance RP or over in the transient state and selecting the resistor R2 as the internal resistance RN or over and no breakdown is caused. Even in this case, when the internal resistances RP, RN are small, most of the voltage (VH-VL) is impressed to the resistors R1, R2 by selecting the resistors R1, R2 as[(VH-VL)/(R1+R2+RP+RN)]<=IM, and no breakdown voltage of the FETs 4, 5 being in on-state is not induced, where VH is a high voltage potential, VL is a low voltage potential and IM is a value of peak currents of the FET which is smaller.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、真室放電管、エレクトロルミネッセンス、イ
ンクジェットプリンタ等で使用される高電圧駆動回路に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to high voltage drive circuits used in true chamber discharge tubes, electroluminescence, inkjet printers, and the like.

従来の技術 最近MOS型のFET技術の発達に伴なって、高電圧駆
動回路にMOS型のFETが使用されるようになった。
2. Description of the Related Art With the recent development of MOS type FET technology, MOS type FETs have come to be used in high voltage drive circuits.

その回路は、従来のバイポーラ型のトランジスタをその
ままMOS型FETにおき変えたものがあるが、駆動回
路の消費電力を軽減する事及び、出力波形を改善する為
に、第3図のように、PチャネルMOS型FET104
と、NチャネルMOS型FET105を使いプッシュプ
ルタイプにした駆動回路が使われるようになった。以下
、第3図を参照しながら、従来の高電圧駆動回路の動作
について説明する。
Some of these circuits are those in which conventional bipolar transistors are replaced with MOS FETs, but in order to reduce the power consumption of the drive circuit and improve the output waveform, as shown in Figure 3, P-channel MOS type FET104
Then, a push-pull type drive circuit using an N-channel MOS FET 105 came into use. The operation of the conventional high voltage drive circuit will be described below with reference to FIG.

vLの夫々の側にあるMOS型FET104.105の
入力ゲートレベルに合わせる回路である。
This is a circuit that matches the input gate level of MOS type FETs 104 and 105 on each side of vL.

】04はPチャネルのMOS型FET、105はNチャ
ネルのMOS型FETである。
04 is a P-channel MOS type FET, and 105 is an N-channel MOS type FET.

以上のような構成に於いて、以下その動作について、第
4図のタイムチャートと共に説明する。
The operation of the above configuration will be explained below with reference to the time chart of FIG. 4.

まず入力信号が論理ゝゝ1“になると、インバータ10
1の出力は論理1ゝ0“になり、したがって、レベルシ
フタ102及び103の出力は論理ゝ0〃になる。
First, when the input signal becomes logic ``1'', the inverter 10
The output of 1 becomes a logic 1'0'', and therefore the outputs of level shifters 102 and 103 become a logic 0''.

一方PチャネルのMOS型FET104はON状態とな
り、NチャネルのMOS型FET105であるから、O
FF状態となる。それ故、出力はvHの電位となる。
On the other hand, the P-channel MOS type FET 104 is in the ON state, and since it is an N-channel MOS type FET 105, the O
The state becomes FF. Therefore, the output has a potential of vH.

次に、入力信号が論理ゝ0“になると、インバータ10
1の出力は論理ゝ1“になり、従って、レベルシフタ1
02及び103の出力は論理11“になる。そこでPチ
ャネルMOS型FET104はOFF状態、Nチャネル
MOS型FETはON状態となり、出力はvL電位とな
る。ここで(vH−VL )の電位差はFET104及
び105のOFF時の耐圧以下でなければならない。
Next, when the input signal becomes logic "0", the inverter 10
The output of 1 becomes logic “1”, therefore, level shifter 1
The outputs of 02 and 103 become logic 11". Therefore, the P channel MOS type FET 104 becomes OFF state, the N channel MOS type FET becomes ON state, and the output becomes vL potential. Here, the potential difference of (vH - VL) is And the withstand voltage when 105 is OFF must be lower than that.

発明が解決しようとする問題東 MOS型FETの中にはON時のドレイン−ソース間の
耐圧と、OFF時の耐圧を規定しているものがあり、一
般に(ON時の耐圧)< (OFF時の耐圧)である。
Problems to be Solved by the Invention Some MOS FETs have a specified breakdown voltage between the drain and source when ON and a breakdown voltage when OFF. Generally, (withstand voltage when ON) < (when OFF) pressure resistance).

そこで、駆動回路の印加電圧(VH−VL)を(ON時
の耐圧)<(VH−VL)<(OFF時の耐圧)の条件
下で使用する時、第3図で示す駆動回路では、次のよう
な問題が生じる。つまり、入力信号が論理10“からゝ
1“に変化する時、FET104ではOFF状態からO
N状態に変化し、FET】05ではON状態からOFF
状態に変化をする。そして、あるタイミングでは、−瞬
、FET104及びFET105が共にON状態になる
ことがある。
Therefore, when the applied voltage (VH-VL) of the drive circuit is used under the condition of (withstand voltage when ON) < (VH - VL) < (withstand voltage when OFF), the drive circuit shown in Fig. 3 has the following: The following problems arise. In other words, when the input signal changes from logic 10" to logic 1", FET 104 changes from OFF state to OFF state.
Changes to N state, FET】05 turns from ON state to OFF
make a change in state. Then, at a certain timing, the FET 104 and the FET 105 may both be in the ON state.

この時、印加電圧(VH−VL)が、ON時の耐圧より
大きいことから、FET104及びFET105は破壊
につながることになる。又、入力信号が論理力“からゝ
0“に変化する時も同様のことがいえる。
At this time, since the applied voltage (VH-VL) is higher than the withstand voltage when ON, FET 104 and FET 105 will be destroyed. The same thing can be said when the input signal changes from a logic level of ``0'' to ``0''.

本発明は従来技術の以上のような問題を解決するもので
あり、FETのON時の耐圧以上の電圧を駆動回路に印
加しても、FETの破壊につながらないようにすること
を目的とするものである。
The present invention solves the above problems of the prior art, and aims to prevent the FET from being destroyed even if a voltage higher than the withstand voltage when the FET is turned on is applied to the drive circuit. It is.

問題点を解決するための手段 本発明は、高電圧駆動回路の出力段のPチャネルMOS
型FETのソースと、NチャネルMOS型FETのソー
スとの間に夫々抵抗器を接続することにより上記目的を
達成するものである。
Means for Solving the Problems The present invention provides a P-channel MOS in the output stage of a high voltage drive circuit.
The above object is achieved by connecting resistors between the source of the FET and the source of the N-channel MOS FET.

作    用 本発明は上記構成により1両方のFETが瞬間的にON
状態になった時、これらの抵抗に電圧が加わり、FET
の耐電圧破壊を防ぐことが出来る。
Function: The present invention has the above-mentioned configuration so that both FETs are turned on instantaneously.
When the condition is reached, voltage is applied to these resistors and the FET
It is possible to prevent breakdown of withstand voltage.

実施例 以下図面を参照しながら本発明の1つの実施例について
説明する。
Embodiment One embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の1つの実施例に於ける出力部の回路図
である。第2図は第1図の出力トランジスタ及び負荷の
等価回路図である。
FIG. 1 is a circuit diagram of an output section in one embodiment of the present invention. FIG. 2 is an equivalent circuit diagram of the output transistor and load of FIG. 1.

第1図に於いて、VHは高電圧電位、vLは低電圧電位
、であり(VH−VL)の電圧が回路に供給されている
In FIG. 1, VH is a high voltage potential, vL is a low voltage potential, and a voltage of (VH-VL) is supplied to the circuit.

図中の1はインバータ、2及び3はレベルシフタであり
、4はPチャネルMOS型FET、5はNチャネルMO
S型FETであって、FET 4及びFET5の耐圧特
性と供給電圧(VH−VL )との間には、共に、 (ON時の耐BE) < (VH−VL)< (OFF
 時(7)耐圧)の関係式を満足している。又レベルシ
フタ2及び3はインバータ1で出力された信号レベルを
PチャネルFET 4のゲート入力レベル、及びNチャ
ネルFET 5のゲート入力レベルに夫々、変換するも
のである。R1、R7は抵抗器であり、一端はFET4
及びFET 5のソース側に接続され、夫々のや端は接
続され出力信号の取り出し口となる。
In the figure, 1 is an inverter, 2 and 3 are level shifters, 4 is a P-channel MOS FET, and 5 is an N-channel MOSFET.
It is an S-type FET, and between the breakdown voltage characteristics of FET 4 and FET 5 and the supply voltage (VH-VL), (BE resistance when ON) < (VH-VL) < (OFF
(7) withstand voltage) is satisfied. Level shifters 2 and 3 convert the signal level output from inverter 1 to the gate input level of P-channel FET 4 and the gate input level of N-channel FET 5, respectively. R1 and R7 are resistors, and one end is FET4
and the source side of FET 5, and the respective ends are connected to serve as an outlet for the output signal.

又、6は負荷であり、負荷の他端は電位Vcに接続され
ている。
Further, 6 is a load, and the other end of the load is connected to the potential Vc.

次に第2図に於いて、14は第1図のPチャネルFET
 4の等価回路であり、15は第1図のNチャネルFE
T 5の等価回路である。図中RP、RNは夫々のFE
TのON時の内部抵抗であり、Sp、SNは夫々のスイ
ッチ、又、(IP)M、(IN)Mは夫々のFETのせ
ん順電流値である。1Mは(IP)M及び(IN)Mの
うちの小さい方の値である。RLは第1図の負荷6が抵
抗性の場合の抵抗値、cLは負荷6が容量性の場合の容
量、LLは負荷6が誘導性の場合のインゲタタンスであ
り、D、’、 D、は共にダイオードであり電圧吸収の
為に他端はvH%vLに接続されている。
Next, in FIG. 2, 14 is the P-channel FET of FIG.
4 is the equivalent circuit, and 15 is the N-channel FE in Fig. 1.
This is an equivalent circuit of T5. In the figure, RP and RN are the respective FEs.
It is the internal resistance when T is ON, Sp and SN are the respective switches, and (IP)M and (IN)M are the forward current values of the respective FETs. 1M is the smaller value of (IP)M and (IN)M. RL is the resistance value when the load 6 in Fig. 1 is resistive, cL is the capacitance when the load 6 is capacitive, LL is the ingetatance when the load 6 is inductive, and D,', D, are Both are diodes, and the other end is connected to vH%vL for voltage absorption.

以上のような構成に於いて、以下その動作を説明する。The operation of the above configuration will be explained below.

定常状態に於いては従来例で示したように入力信号が論
理−0“の暗は出力信号は■L電位になり、入力信号が
論理11“の時は、出力信号がVHを位となる。この時
、一方のFETがON状態の時、他方のFETは必ずO
FF状態となっている為に印加電圧(VH−VL )は
OFF状態のFETにかかり、ON状態のFETは耐圧
破壊はしない。
In the steady state, as shown in the conventional example, when the input signal is logic -0, the output signal becomes L potential, and when the input signal is logic 11, the output signal becomes VH. . At this time, when one FET is in the ON state, the other FET is always in the OFF state.
Since the FET is in the FF state, the applied voltage (VH-VL) is applied to the FET in the OFF state, and the FET in the ON state does not undergo voltage breakdown.

一方過渡状襲の時、つまり入力信号が論理ゝゝ0“から
11″に変わる時及び論理ゝINから′0〃に変わる時
、PチャネルFET 4とNチャネルFET5が、−瞬
共にON状態になっていることが考えられる。
On the other hand, at the time of a transient condition, that is, when the input signal changes from logic 0 to 11, and from logic IN to 0, P-channel FET 4 and N-channel FET 5 are instantly turned on. It is possible that this is happening.

一般に、MOS型FETに於いては (ONBSの耐圧)≧(OFF時の耐圧)/2であると
考えられる。それ故過渡状態の場合抵抗のR8の値を内
部抵抗RPの値以上にし、かつ、抵抗R7の値を内部抵
抗RNの値以上に取れば、抵抗R1及びR2に印加電圧
(VHVL)の半分以上の電圧がかかり、ON状態であ
るFET 4及び5では、ON状態の耐圧以下の7圧し
かかからず耐圧破壊につながらない。
Generally, in a MOS type FET, it is considered that (withstand voltage of ONBS)≧(withstand voltage when OFF)/2. Therefore, in a transient state, if the value of resistor R8 is set equal to or higher than the value of internal resistor RP, and the value of resistor R7 is set equal to or higher than the value of internal resistor RN, then half or more of the voltage (VHVL) applied to resistors R1 and R2 is set. In FETs 4 and 5, which are in the ON state, only 7 voltages are applied, which is less than the withstand voltage in the ON state, and this does not lead to breakdown of the withstand voltage.

又、この場合でも、内部抵抗RP及びRNの値が小さい
時は 〔(VH−VL)/ (R1+R1+RP−I−RN)
〕≦IM・川・・■となるR1及びR,を選べば、(V
HVL )の電桂の大部分はR1とR7の抵抗にかかり
、ON状態であるFET4及び5の耐圧破壊につながる
ことはない。
Also, even in this case, when the values of internal resistances RP and RN are small, [(VH-VL)/(R1+R1+RP-I-RN)
] ≦IM・River... If we choose R1 and R, such that (V
Most of the voltage of HVL) is applied to the resistances of R1 and R7, and does not lead to breakdown of the breakdown voltage of FETs 4 and 5 which are in the ON state.

次に負荷6を接続した場合を考える。先ず抵抗性の負荷
RLの場合、過渡状態では抵抗R2に流れる電流と抵抗
RLに流れる電流があるので((VH−VL)/(R1
+R,+RP+RN)〕十((VH−VL) /(R,
+Rp十Rt、) )≦(Ip)M        ・
曲・■を満足す/BI Rl、R2を選ぶ必要がある。
Next, consider the case where load 6 is connected. First, in the case of a resistive load RL, in a transient state there is a current flowing through the resistor R2 and a current flowing through the resistor RL, so ((VH-VL)/(R1
+R, +RP+RN)] ten ((VH-VL) /(R,
+Rp×Rt,) )≦(Ip)M ・
Song/■ Satisfies /BI It is necessary to select Rl and R2.

しかし、RL )R+ 、 Rtと考えねば0式と一致
する。
However, if we consider RL)R+ and Rt, it matches Equation 0.

次に容量性の負荷cLの場合は、 ((VH−VL) / (R1+Rp) ) < (I
p)yt、((VH−VL)/(R,十RN)〕≦ (
IN)M           ・・・・・・■を満足
するR1、R2を選べばよい。しかし、C,ノ値が小さ
い時は負荷6は第2図の抵抗性負荷RLと考えらね、R
L″>R1,Rffiとなるがら0式が成立する。
Next, in the case of capacitive load cL, ((VH-VL) / (R1+Rp) ) < (I
p)yt, ((VH-VL)/(R, 10RN)]≦(
IN)M ・・・・・・R1 and R2 that satisfy ■ should be selected. However, when the value of C, is small, load 6 cannot be considered as resistive load RL in Fig. 2, R
Although L″>R1, Rffi, formula 0 holds true.

次に誘導性負荷LLの場合は、一般にダイオードD1、
D2が接続されているので抵抗性負荷RLと考えられ、
■式を満足するR1、R2を選ぶことになる、 以上の説明から明らかなように、本実診例によれば、出
力段のPチャネルMOS型FET4とNチャネルMOS
型FET5との間に抵抗R,,R,を接続することによ
り、 (ON時の耐圧)<〔印加電圧:  (VHVL)〕<
(OFF時の耐圧)なる電圧を印加しても、耐圧破壊を
防ぐことが出来る。
Next, in the case of an inductive load LL, the diode D1,
Since D2 is connected, it is considered a resistive load RL,
■R1 and R2 are selected to satisfy the formula.As is clear from the above explanation, according to this practical example, the output stage P-channel MOS type FET4 and N-channel MOS
By connecting resistors R,,R, between type FET5, (withstand voltage when ON)<[applied voltage: (VHVL)]<
Even if a voltage of (withstand voltage when OFF) is applied, breakdown of the withstand voltage can be prevented.

発明の効果 以上のように本発明は、PチャネルMos型FETと、
NチャネルMOS型FETとをプッシュプル型に使用し
た出力段の回路に於いて、PチャネルFETとNチャネ
ルFETとの間に、対称的に抵抗を接続することにより
、FETのON時の耐圧以上でかつOFF時の耐圧以下
の電圧を出力段の回路に印加しても耐圧破壊を防ぐこと
が出来、その効果は大きい。
Effects of the Invention As described above, the present invention includes a P-channel Mos type FET,
In an output stage circuit using an N-channel MOS type FET in a push-pull type, by connecting a resistor symmetrically between the P-channel FET and the N-channel FET, the withstand voltage is higher than the withstand voltage when the FET is ON. Even if a voltage lower than the withstand voltage when OFF is applied to the output stage circuit, breakdown of the withstand voltage can be prevented, which is highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1つの実施例に於ける高電圧駆動回路
図、第2図は第1図の回路図の田力段に於ける等価回路
図、第3図は従来の高電圧駆動回路図、第4図は第3図
の回路図のタイムチャートである。 1・・・インバータ、2.3・・・レベルシック、4・
・・PチャネルMOS型FET、5・・・NチャネルM
OS型FET、6・・・負荷、14・・・PチャネルM
OS型FETの等節回路、15・・・NチャネルMOS
型FETの等節回路、R3、R2・・・抵抗。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 j12図
Fig. 1 is a high voltage drive circuit diagram in one embodiment of the present invention, Fig. 2 is an equivalent circuit diagram of the circuit diagram of Fig. 1 in the Tajiki stage, and Fig. 3 is a conventional high voltage drive circuit. 4 is a time chart of the circuit diagram of FIG. 3. 1...Inverter, 2.3...Level thick, 4.
...P channel MOS type FET, 5...N channel M
OS type FET, 6...Load, 14...P channel M
OS type FET equinodal circuit, 15...N channel MOS
Type FET equinodal circuit, R3, R2...resistance. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure j12

Claims (3)

【特許請求の範囲】[Claims] (1)PチャネルMOS型FETのドレイン側に第1の
電圧V_H、NチャネルMOS型FETのドレイン側に
第2の電圧V_Lを印加し、前記PチャネルMOS型F
ETと前記NチャネルMOS型FETとをプッシュプル
タイプに接続し、前記印加電圧の差(V_H−V_L)
を前記PチャネルMOS型FET及び前記NチャネルM
OS型FETのON耐圧のうち小さい方の値より大きく
、かつ、OFF耐圧のうち小さい方の値よりも小さくし
、前記PチャネルMOS型FETのON時の内部抵抗値
R_P以上の抵抗R_1を前記PチャネルMOS型FE
Tのソース側に接続し、前記NチャネルMOS型FET
のON時の内部抵抗値R_N以上の抵抗R_2を前記N
チャネルMOS型FETのソース側に接続し、前記抵抗
R_1、R_2の他端同士を接続し、出力端とした高電
圧駆動回路。
(1) A first voltage V_H is applied to the drain side of the P-channel MOS type FET, a second voltage V_L is applied to the drain side of the N-channel MOS type FET, and a second voltage V_L is applied to the drain side of the P-channel MOS type FET.
The ET and the N-channel MOS type FET are connected in a push-pull type, and the difference in the applied voltage (V_H - V_L)
The P-channel MOS type FET and the N-channel M
The resistor R_1 is set to be larger than the smaller value of the ON breakdown voltages of the OS type FET and smaller than the smaller value of the OFF breakdown voltages, and is equal to or higher than the internal resistance value R_P of the P-channel MOS type FET when it is turned on. P channel MOS type FE
connected to the source side of T, and the N-channel MOS type FET
The resistance R_2, which is greater than the internal resistance value R_N when turned on, is the N
A high voltage drive circuit connected to the source side of the channel MOS type FET, and the other ends of the resistors R_1 and R_2 connected to each other to serve as an output end.
(2)PチャネルMOS型FETの尖頭電流(I_P)
_MとNチャネルMOS型FETの尖頭電流(I_N)
_Mとのうち小さい方の値の電流値をI_Mとしたとき
、抵抗R_1、R_2が 〔(V_H−V_L)/(R_1+R_2+R_P+R
_N)〕≦I_Mを満足する特許請求の範囲第1項記載
の高電圧駆動回路。
(2) Peak current of P-channel MOS FET (I_P)
_M and peak current of N-channel MOS FET (I_N)
When the current value of the smaller value of _M is I_M, the resistances R_1 and R_2 are [(V_H-V_L)/(R_1+R_2+R_P+R
_N)]≦I_M The high voltage drive circuit according to claim 1, which satisfies the following.
(3)抵抗R_1及びR_2が 〔(V_H−V_L)/(R_1+R_P)〕≦(I_
P)_M、〔(V_H−V_L)/(R_2+R_N)
〕≦(I_N)_Mを満足する特許請求の範囲第1項記
載の高電圧駆動回路。
(3) Resistors R_1 and R_2 are [(V_H-V_L)/(R_1+R_P)]≦(I_
P)_M, [(V_H-V_L)/(R_2+R_N)
]≦(I_N)_M The high voltage drive circuit according to claim 1, which satisfies the following.
JP61214381A 1986-09-11 1986-09-11 High voltage drive circuit Pending JPS6369316A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61214381A JPS6369316A (en) 1986-09-11 1986-09-11 High voltage drive circuit
EP87113349A EP0264614A1 (en) 1986-09-11 1987-09-11 Mos fet drive circuit providing protection against transient voltage breakdown
US07/095,457 US4825102A (en) 1986-09-11 1987-09-11 MOS FET drive circuit providing protection against transient voltage breakdown

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61214381A JPS6369316A (en) 1986-09-11 1986-09-11 High voltage drive circuit

Publications (1)

Publication Number Publication Date
JPS6369316A true JPS6369316A (en) 1988-03-29

Family

ID=16654842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61214381A Pending JPS6369316A (en) 1986-09-11 1986-09-11 High voltage drive circuit

Country Status (1)

Country Link
JP (1) JPS6369316A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63214020A (en) * 1987-03-03 1988-09-06 Fuji Electric Co Ltd Cmos circuit for switching
JP2009081639A (en) * 2007-09-26 2009-04-16 Denso Corp Logic level output integrated circuit
JP2014155283A (en) * 2013-02-06 2014-08-25 Seiko Instruments Inc Charging/discharging control circuit and battery device
CN108540117A (en) * 2018-03-14 2018-09-14 湖北楚航电子科技有限公司 A kind of high power PIN RF switch driving circuits

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63214020A (en) * 1987-03-03 1988-09-06 Fuji Electric Co Ltd Cmos circuit for switching
JP2009081639A (en) * 2007-09-26 2009-04-16 Denso Corp Logic level output integrated circuit
JP2014155283A (en) * 2013-02-06 2014-08-25 Seiko Instruments Inc Charging/discharging control circuit and battery device
CN108540117A (en) * 2018-03-14 2018-09-14 湖北楚航电子科技有限公司 A kind of high power PIN RF switch driving circuits

Similar Documents

Publication Publication Date Title
US4825102A (en) MOS FET drive circuit providing protection against transient voltage breakdown
JP2996301B2 (en) Load and time adaptive current supply drive circuit
US4000412A (en) Voltage amplitude multiplying circuits
US7589571B1 (en) Capacitively coupled high side gate driver
US5378932A (en) Level shifting circuit
JPS635553A (en) Buffer circuit
US5886556A (en) Low power schmitt trigger
JPS63112893A (en) Semiconductor integrated circuit
JP2001168698A (en) High voltage switch
US4045793A (en) Digital to analog converter
US5184129A (en) Switchable DAC with current surge protection
US5218364A (en) D/a converter with variable biasing resistor
US5406142A (en) Level shifting low to high supply voltage interface circuit
JPS6369316A (en) High voltage drive circuit
US6717456B2 (en) Level conversion circuit
JP2000164730A (en) Mos semiconductor integrated circuit
US5339078A (en) Digital to analog converter switch circuit
US6819573B2 (en) DC to DC switching power converter with partial-swing switching and method
JPH027620A (en) Integrated logic circuit
TWI756970B (en) Level status detector
JPS5951621A (en) Digital-analog converter
JPS6221324A (en) Logic integrated circuit
US20240113727A1 (en) Digital-to-analog converters with triode switches
JP3190176B2 (en) Level shifter
US6239623B1 (en) Direct coupling field effect transistor logic (DCFL) circuit