JPS6368963A - Method for supporting coordinate lattice generation - Google Patents

Method for supporting coordinate lattice generation

Info

Publication number
JPS6368963A
JPS6368963A JP61211653A JP21165386A JPS6368963A JP S6368963 A JPS6368963 A JP S6368963A JP 61211653 A JP61211653 A JP 61211653A JP 21165386 A JP21165386 A JP 21165386A JP S6368963 A JPS6368963 A JP S6368963A
Authority
JP
Japan
Prior art keywords
coordinate grid
coordinate lattice
area
analysis
physical quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61211653A
Other languages
Japanese (ja)
Inventor
Toshiyuki Takagi
敏行 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61211653A priority Critical patent/JPS6368963A/en
Publication of JPS6368963A publication Critical patent/JPS6368963A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the work time for generating a coordinate lattice, and to generate an optimum coordinate lattice in accordance with a physical phenomenon to be analyzed, by roughening the coordinate lattice which is generated first, and fining the coordinate lattice of a local analyzing area. CONSTITUTION:A coordinate lattice generation support device 1 is provided with an arithmetic processor 4, and to the processor 4, a storage device 5 and an operating board 6 are connected and also, a display device 2 is connected through an image processor 3. A coordinate lattice is generated in the whole analyzing area, the physical quantity of the whole analyzing area is derived by an analysis, and a contour line of the physical quantity is displayed on the device 2. The coordinate lattice in a local analyzing area in the analyzing area which has been set by an analysis worker is generated by taking the derived physical quantity into consideration. By using the coordinate lattice in the local analyzing area, the physical quantity in the local analyzing area is calculated. The coordinate lattice in the whole analyzing area is corrected by using a gradient of the derived physical quantity in the local analyzing area, and using the physical quantity of the whole analyzing area in other area. In this way, the work time required for generating the coordinate lattice is reduced and an optimum coordinate lattice can be generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、計算機を用いた数値解析における、解析対象
の座標格子生成支援方法に係り、特に、座標格子の生成
に要する作業時間を低減し、解析対象である物理現象に
応じて、対話型によって最適な座標格子を生成するのに
好適な座標格子生成支援方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for supporting the generation of a coordinate grid for an analysis object in numerical analysis using a computer, and in particular, to a method for supporting the generation of coordinate grids for an analysis target in numerical analysis using a computer. , relates to a coordinate grid generation support method suitable for interactively generating an optimal coordinate grid depending on a physical phenomenon to be analyzed.

(従来の技術〕 構造解析、流体解析、電磁場解析等の分野では有限要素
法や差分法を用いた汎用の数値解析プログラムが作成さ
れてきており精度の高い解析が可能となってきている。
(Prior Art) In fields such as structural analysis, fluid analysis, and electromagnetic field analysis, general-purpose numerical analysis programs using the finite element method and the finite difference method have been created, making highly accurate analysis possible.

設計者が、それらを使う場合、入力データの作成に多大
の時間が必要となるため、座標格子の生成を支援するた
めの手法及びプログラムが、開発されている。これらは
、形状モデリング法により、計算機中に解析領域を構築
し、内外挿、あるいは、座櫟変換法等により座標格子点
の位置を計算し、格子点の番号付け、物性データ等のデ
ータを自動的に作成する(たとえば、日経メカニカル、
1984年10月8日号、PP。
When designers use these, it takes a lot of time to create input data, so methods and programs have been developed to support the creation of coordinate grids. These methods involve constructing an analysis region in a computer using the shape modeling method, calculating the positions of coordinate grid points using interpolation or interpolation, or the zigzag transformation method, and automatically generating data such as grid point numbering and physical property data. (for example, Nikkei Mechanical,
October 8, 1984 issue, PP.

65−71に各種の手法、プログラムが紹介されている
)。さらに、座標格子点を解析によって得られた物理量
の勾配によって、再修正することにより、解析精度を向
上させる方法も提案している(たとえば、精密機械47
巻4号pP399−404)。
65-71 introduce various methods and programs). Furthermore, a method is proposed to improve the analysis accuracy by re-correcting the coordinate grid points using the gradient of the physical quantity obtained by the analysis (for example, precision machinery 47
Vol. 4, p. 399-404).

【発明が解決しようとする問題点〕[Problem that the invention attempts to solve]

上記の解析によって得られた物理量の勾配によって座標
格子を再修正する従来技術は、解析領域全体の解析結果
を用いて、座標格子を再修正するという方法をとるため
、座標格子を作成するために、解析領域全体の物理量の
計算を数回繰り返す必要があり、計算時間が多くなると
いう問題点があった。二次元問題では、計算時間が短か
いため、特に問題とならないが、三次元問題では、計算
時間が二次元問題に比べて五倍ないし十倍必要となるた
め、対話的に処理することが難しいという間照点があっ
た。
The conventional technique of re-modifying the coordinate grid using the gradient of the physical quantity obtained by the above analysis takes a method of re-modifying the coordinate grid using the analysis results of the entire analysis area. However, there was a problem in that it was necessary to repeat the calculation of physical quantities for the entire analysis area several times, which increased the calculation time. For two-dimensional problems, there is no particular problem because the calculation time is short, but for three-dimensional problems, the calculation time is five to ten times that of two-dimensional problems, making it difficult to process interactively. There was a bright spot.

本発明の目的は、座標格子生成の作業時間を低減し、解
析する物理現象に応じて最適な座標格子を対話的に容易
に生成できる座標格子生成支援方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a coordinate grid generation support method that can reduce work time for coordinate grid generation and easily generate an optimal coordinate grid interactively according to a physical phenomenon to be analyzed.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、以下ような手段により達成される。 The above object is achieved by the following means.

解析領域内に座標格子を生成して、物理現象を解析し、
物理量の等高線を表示し、次に、解析領域内の一部の領
域を局所解析領域と定義し、すでに1.得られている物
理量を用いて1局所解析領域内に産声格子を物理量の勾
配を考慮して作成する。作成された座標格子を用いて、
局所解析領域内の物理量を計算する。次に、解析領域か
ら局所解析領域内を除いた領域では、最初に求めた物理
量を用い、局所解析領域では、局所解析領域の解析で得
られた物理量を用いて、物理量の勾配を考慮して、解析
領域全体の座標格子を生成する。
Generate a coordinate grid within the analysis domain to analyze physical phenomena,
The contour lines of the physical quantities are displayed, and then some area within the analysis area is defined as the local analysis area, and 1. Using the obtained physical quantities, a birth grid is created within one local analysis region, taking into account the gradient of the physical quantities. Using the created coordinate grid,
Calculate physical quantities within the local analysis region. Next, in the region excluding the local analysis region from the analysis region, the physical quantities obtained first are used, and in the local analysis region, the physical quantities obtained by the analysis of the local analysis region are used, taking into account the gradient of the physical quantity. , generate a coordinate grid for the entire analysis domain.

物理量の勾配を考慮して、座標格子を作成する方法とし
ては、例えば、J、U、Brackbill (J、C
omp。
As a method for creating a coordinate grid taking into account the gradient of physical quantities, for example, J, U, Brackbill (J, C
omp.

Phys、46.pp342−368(1982))の
方法を用いて、下記の汎関数を最小化することによって
、座標格子を生成する方法を用いれば良い。
Phys, 46. A method of generating a coordinate grid by minimizing the following functional using the method of pp. 342-368 (1982) may be used.

■=λIII+λ2I2 ここで、λl、λ2は、パラメータ、 11=/  ((Oe)”+(On)”+(03)”)
dQ工2=fWJndΩ ξ、η、3は、写像空間の座標、Ωは、解析領域、Wは
、物理量または、その勾配の分布である。
■=λIII+λ2I2 Here, λl and λ2 are parameters, 11=/ ((Oe)”+(On)”+(03)”)
dQ engineering 2=fWJndΩ ξ, η, 3 are the coordinates of the mapping space, Ω is the analysis region, and W is the distribution of the physical quantity or its gradient.

〔作用〕[Effect]

上記の手段の中で、最初に生成する座標格子を警<シ、
局所解析領域の座標格子を細かくするこ・とにより、物
理量の計算に要する計算時間を低減できる。また、局所
解析領域として、解析上重要な領域をとれば、従来の全
体の解析領域を細かい座標格子を用いて解析し、得られ
た物理量を用いて座標格子を再修正する手法と比較して
も、解析精度を同程度に与える座標格子を生成できる。
Among the above methods, the first coordinate grid to be generated is
By making the coordinate grid of the local analysis region finer, the calculation time required for calculating physical quantities can be reduced. In addition, if a region that is important for analysis is taken as a local analysis region, compared to the conventional method of analyzing the entire analysis region using a fine coordinate grid and re-correcting the coordinate grid using the obtained physical quantities. can also generate a coordinate grid that provides the same level of analytical accuracy.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第1
図は、本発明の座標格子生成支援装置1の構成を示す。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure shows the configuration of a coordinate grid generation support device 1 of the present invention.

支援装置1は1表示装置(例えば、CRT)2、画像処
理装置3、演算処理装置(例えば、電子計算機)4、記
憶装置5.操作盤(例えば、キーボード)6をもつ。表
示装置2は、画像処理装置3を介して、演算処理装置4
に接続されており、記憶装置5及び操作盤6も演算処理
装置4に接続されている。
The support device 1 includes a display device (for example, CRT) 2, an image processing device 3, an arithmetic processing device (for example, an electronic computer) 4, a storage device 5. It has an operation panel (for example, a keyboard) 6. The display device 2 is connected to the arithmetic processing device 4 via the image processing device 3.
The storage device 5 and operation panel 6 are also connected to the arithmetic processing device 4 .

第2図は、本発明になる処理手順のフローチャートを示
す。本処理手順は、以下の通りである。
FIG. 2 shows a flowchart of the processing procedure according to the present invention. This processing procedure is as follows.

(1)解析領域全体に座標格子を作成する。(1) Create a coordinate grid over the entire analysis area.

(2)解析領域全体の物理量を解析により求め、物理量
の等高線を表示装置上に表示する。
(2) The physical quantities of the entire analysis region are determined by analysis, and the contour lines of the physical quantities are displayed on a display device.

(3)解析作業者によって設定された解析領域内の局所
解析領域内の座標格子を上記(2)で求めた物理量を考
慮して生成する。
(3) Generate a coordinate grid within the local analysis area within the analysis area set by the analysis operator, taking into account the physical quantities obtained in (2) above.

(4)上記(3)で得られた座標格子を用い、また、境
界条件として、上記(2)で求めた解析結果を用いて局
所解析領域内の物理量を計算する。
(4) Calculate physical quantities within the local analysis region using the coordinate grid obtained in (3) above and the analysis results obtained in (2) above as boundary conditions.

(5)局所解析領域内では、上記(4)で求めた物理量
の勾配を用い、それ以外の領域では。
(5) In the local analysis region, use the gradient of the physical quantity obtained in (4) above, and in other regions.

上記(2)で求めた物理量を用いて、解析領域全体の座
標格子を修正する。
The coordinate grid of the entire analysis area is corrected using the physical quantities obtained in (2) above.

以上、本実施例によれば、上記(2)で等高線を解析作
業者が見ることによって、解析作業の十分な経験がなく
ても、解析上重要な領域(等高線の密な領域)を、局所
解析領域として設定できる。
As described above, according to this embodiment, by viewing the contour lines in (2) above, the analysis operator can locally identify areas that are important for analysis (areas with dense contour lines) even if he or she does not have sufficient experience in analysis work. Can be set as an analysis area.

また、上記(1)で生成する座標格子を粗くし、上記(
3)で生成する座標格子を細かくすることで、計算時間
を増大させることなく、物理現象の解析に最適な座標格
子を生成することができる。
In addition, the coordinate grid generated in (1) above is coarsened, and the coordinate grid generated in (1) above is
By making the coordinate grid generated in step 3) finer, it is possible to generate a coordinate grid that is optimal for analyzing physical phenomena without increasing calculation time.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、解析対象である物理現象に応じた座標
格子を容易にすることができるので、座標格子生成に要
する作業時間を低減し、数値シュミレーションの精度を
向上させることができる。
According to the present invention, it is possible to easily create a coordinate grid according to the physical phenomenon to be analyzed, thereby reducing the working time required to generate the coordinate grid and improving the accuracy of numerical simulation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の座標格子生成支援装置の構成図、第
2図は本発明の処理手順を示す図である。 1・・・座標格子生成支援装置、2川表示装置、3・・
・画像処理装置、4・・・演算処理装置、訃・・記憶装
置、早1図 ら−株11 躬2−図
FIG. 1 is a block diagram of a coordinate grid generation support device of the present invention, and FIG. 2 is a diagram showing a processing procedure of the present invention. 1... Coordinate grid generation support device, 2 River display device, 3...
・Image processing device, 4...Arithmetic processing unit,...Storage device, Haya 1 figure et al. 11 躬2-Figure

Claims (1)

【特許請求の範囲】 1、計算機を用いて物理現象を解析するために、対象と
する解析領域に最適な座標格子を作成する座標格子生成
支援方法において、 前記解析領域内に前記座標格子を生成し、前記座標格子
を用いて物理量を計算して、その等高線を表示する第一
ステップと、前記解析領域内の一部の領域を局所解析領
域とし、前記局所解析領域内に前記第一ステップで得ら
れた物理量に応じて前記座標格子を生成する第二ステッ
プと、前記局所解析領域の境界条件として、前記第一ス
テップで得られた結果を用いて、前記局所解析領域内の
物理量を解析する第三ステップと、前記局所解析領域で
は、前記第三ステップで得られた物理量に応じて、また
前記解析領域全体から前記局所解析領域を除いた領域で
は、前記第一ステップで得られた物理量に応じて前記座
標格子を生成する第四ステップとからなることを特徴と
する座標格子生成支援方法。
[Claims] 1. A coordinate grid generation support method for creating an optimal coordinate grid for a target analysis area in order to analyze a physical phenomenon using a computer, comprising: generating the coordinate grid within the analysis area. a first step of calculating a physical quantity using the coordinate grid and displaying its contour line; and a part of the area within the analysis area is set as a local analysis area, and the first step is performed within the local analysis area. A second step of generating the coordinate grid according to the obtained physical quantities, and analyzing the physical quantities in the local analysis area using the results obtained in the first step as boundary conditions of the local analysis area. In the third step, in the local analysis area, according to the physical quantity obtained in the third step, and in the area excluding the local analysis area from the entire analysis area, according to the physical quantity obtained in the first step. a fourth step of generating the coordinate grid according to the coordinate grid.
JP61211653A 1986-09-10 1986-09-10 Method for supporting coordinate lattice generation Pending JPS6368963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61211653A JPS6368963A (en) 1986-09-10 1986-09-10 Method for supporting coordinate lattice generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61211653A JPS6368963A (en) 1986-09-10 1986-09-10 Method for supporting coordinate lattice generation

Publications (1)

Publication Number Publication Date
JPS6368963A true JPS6368963A (en) 1988-03-28

Family

ID=16609357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61211653A Pending JPS6368963A (en) 1986-09-10 1986-09-10 Method for supporting coordinate lattice generation

Country Status (1)

Country Link
JP (1) JPS6368963A (en)

Similar Documents

Publication Publication Date Title
JP4933008B2 (en) Method and medium for computer-aided manufacturing measurement analysis
Liu et al. A wavelet multiresolution interpolation Galerkin method for targeted local solution enrichment
US5029119A (en) Program generation method
JPS6368963A (en) Method for supporting coordinate lattice generation
JPH09223248A (en) Three-dimensional processing method for two-dimensional graphic data
JPS63271516A (en) Graphic display data processing system
JPH04679A (en) Method and device for supporting coordinate grid preparation
JP3337608B2 (en) Analysis simulation device
JPS63656A (en) Supporting method for generation of coordinate grid
Laramee FIRST: A flexible and interactive resampling tool for CFD simulation data
JPS6272071A (en) Method and device for generating and supporting coordinate lattice
JPH09229727A (en) Method and apparatus for estimating physical amount
JPH0755656A (en) Method and device for analyzing stress
JPH08189909A (en) Method and device for simulating heat flow characteristic
JP2810051B2 (en) Automatic element dividing device
JP3289230B2 (en) Generator of finite element mesh distribution
JPH08292974A (en) Method and device for compound generatl analysis of control system, electric circuit, and duct network
JP2001099748A (en) Fluid simulation method and its device
CN116776427A (en) Parameterized modeling method and system for BIM model of space curved plate longitudinal stiffening rib of steel box girder bridge
JPH03204779A (en) Method and device for supporting numerical value calculation
JPS63304376A (en) Back-up method for production of coordinate grating
JPH04216646A (en) Method for simulating shape of semiconductor integrated circuit
JP4089806B2 (en) Curve generating device and method, and storage medium
JPH06348681A (en) Method and device for simulation
JP2902006B2 (en) Information presentation device