JPH04216646A - Method for simulating shape of semiconductor integrated circuit - Google Patents

Method for simulating shape of semiconductor integrated circuit

Info

Publication number
JPH04216646A
JPH04216646A JP40289590A JP40289590A JPH04216646A JP H04216646 A JPH04216646 A JP H04216646A JP 40289590 A JP40289590 A JP 40289590A JP 40289590 A JP40289590 A JP 40289590A JP H04216646 A JPH04216646 A JP H04216646A
Authority
JP
Japan
Prior art keywords
shape
hole
cross
section
representative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40289590A
Other languages
Japanese (ja)
Inventor
Tetsuya Abe
哲哉 安部
Satoshi Tazawa
聰 田沢
Kazuyuki Saito
斎藤 和之
Seitaro Matsuo
松尾 誠太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP40289590A priority Critical patent/JPH04216646A/en
Publication of JPH04216646A publication Critical patent/JPH04216646A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To estimate the cross-sectional shape of a hole after performing a working process in a short calculating time by adding the data of the representative points of the surface shape representing the shape of the hole in addition to the points representing the two-dimensional shape on a section to be analyzed. CONSTITUTION:The detailed two-dimensional shape of a cross section every time step and the rough three-dimensional shape of a whole hole 3 are found by virtually defining a plurality of shielding plates 8 with holes 3 produced by cutting a hole 3 in round slices in the horizontal direction in a plurality of nearly parallel planes every time step in the first stage and calculating the movement of each point representing the surface shape on a section to be analyzed (a surface the cross-sectional shape of which is to be estimated) and the movement of several points representing the shape of the hole 3 on each shielding plate 8 by taking the incident particle interrupting effect of each plate 8 in the second stage. After finding the shapes, the stage is again returned to the first state. The first and second stages are repeated until all time steps are completed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体集積回路の形状
シミュレーション方法に関し、特に、大規模半導体集積
回路(以下、LSIと呼ぶ)の加工プロセス(デポジシ
ョンまたはエッチング)実施後の表面の加工形状を予測
するシミュレーション技術に関するものであり、予測精
度の向上と計算時間の短縮を図ったLSIの形状シミュ
レーション方法に関するものである。
[Field of Industrial Application] The present invention relates to a method for simulating the shape of a semiconductor integrated circuit, and in particular, to a method for simulating the shape of a large-scale semiconductor integrated circuit (hereinafter referred to as LSI) after a processing process (deposition or etching) is performed. The present invention relates to a simulation technique for predicting the shape of an LSI, and relates to an LSI shape simulation method that improves prediction accuracy and reduces calculation time.

【0002】0002

【従来の技術】従来のLSIの形状シミュレーション(
例えば、田沢ら、“Unified Topograp
hy Simulator for Complex 
Reaction including both D
eposition and Etching”,Sy
mposium on VLSI Technolog
y, 1989.)では、プロセス実施後の形状をシミ
ュレーション対象物の断面形状が、解析断面の垂直方向
に無限に続くものと仮定して、2次元の変形計算を行っ
ていた。ところが、現実のLSI上では、解析断面に垂
直な方向の表面形状の影響が無視できない場合が多く、
特に、スルーホール部のような穴の部分では、解析断面
の手前と奥に存在する壁によってデポジションまたはエ
ッチングに寄与する入射粒子が遮蔽される効果を考慮し
なければ、正確な形状予測ができないという問題があっ
た。
[Prior art] Conventional LSI shape simulation (
For example, Tazawa et al., “Unified Topograph
hy Simulator for Complex
Reaction including both D
“eposition and etching”,Sy
Mposium on VLSI Technology
y, 1989. ), two-dimensional deformation calculations were performed on the assumption that the cross-sectional shape of the simulated object continued indefinitely in the direction perpendicular to the analysis cross-section. However, on actual LSIs, the influence of the surface shape in the direction perpendicular to the analysis cross section cannot be ignored in many cases.
In particular, in hole areas such as through-holes, accurate shape prediction cannot be made unless the effect of shielding incident particles that contribute to deposition or etching by the walls in front and behind the analysis cross section is taken into account. There was a problem.

【0003】上記問題を克服する方法としては、LSI
の形状を3次元データとして扱い、3次元の変形計算を
行う方法(例えば、山口ら、“三次元形状シミュレーシ
ョン”,第36回応用物理学会関係連合講演会講演予稿
集)がある。
[0003] As a method to overcome the above problem, LSI
There is a method of treating the shape as three-dimensional data and performing three-dimensional deformation calculations (for example, Yamaguchi et al., "Three-dimensional Shape Simulation", Proceedings of the 36th Japan Society of Applied Physics Association Conference).

【0004】0004

【発明が解決しようとする課題】しかし、通常、LSI
のパターン設計やプロセス設計を行う際には、穴の断面
形状が予測できれば充分であるにもかかわらず、穴の全
体形状の変形を3次元で計算するため、この方法で通常
の2次元シミュレーションと同程度の精度を得るために
は、膨大な計算時間がかかるという問題があった。
[Problem to be solved by the invention] However, usually LSI
Although it is sufficient to be able to predict the cross-sectional shape of the hole when performing pattern design or process design, since the deformation of the entire hole shape is calculated in three dimensions, this method is different from normal two-dimensional simulation. There is a problem in that it takes a huge amount of calculation time to obtain the same level of accuracy.

【0005】本発明の課題は、半導体集積回路の加工プ
ロセス実施後の断面形状の予測を、解析断面に垂直な方
向の表面形状の影響を考慮に入れ、かつ、短い計算時間
で実施することができる技術を提供することにある。
[0005] An object of the present invention is to predict the cross-sectional shape of a semiconductor integrated circuit after the processing process has been carried out, while taking into account the influence of the surface shape in the direction perpendicular to the analyzed cross-section, and in a short calculation time. Our goal is to provide the technology that makes it possible.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
に、本発明では、半導体集積回路の表面上で、デポジシ
ョンまたはエッチング後の断面形状を予測する半導体集
積回路の形状シミュレーション方法において、穴の部分
のように、デポジションまたはエッチングに寄与する粒
子の入射が周囲の3次元的な形状の遮蔽効果を受ける場
合に対して、1タイムステップ毎に、穴を水平方向にほ
ぼ平行な複数の平面で輪切りにすることによってできる
穴のあいた複数の遮蔽板を仮想的に定義する第1の段階
と、断面形状を予測すべき面(解析断面)上で表面の形
状を表す各点の移動と、各遮蔽板上で穴の形状を代表す
るいくつかの点の移動を、各遮蔽板による入射粒子の遮
蔽効果を考慮に入れて計算することにより、1タイムス
テップ経過後の、断面の詳細な2次元形状と、穴全体の
大まかな3次元形状を求める第2の段階と、この後、再
び第1の段階に戻って、全タイムステップが終了するま
で、第1の段階と第2の段階を繰り返すことを最も主要
な特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a shape simulation method for a semiconductor integrated circuit that predicts the cross-sectional shape after deposition or etching on the surface of a semiconductor integrated circuit. For cases where the incidence of particles contributing to deposition or etching is affected by the shielding effect of the surrounding three-dimensional shape, as in the part shown in FIG. The first step is to virtually define multiple shielding plates with holes created by cutting them into rings on a plane, and the movement of each point representing the surface shape on the plane whose cross-sectional shape is to be predicted (analytical cross-section). , by calculating the movement of several points representing the shape of the hole on each shielding plate, taking into account the shielding effect of each shielding plate on incident particles, the detailed cross-section after one time step has elapsed. a second stage to obtain the two-dimensional shape and the rough three-dimensional shape of the entire hole, and then return to the first stage again and repeat the first and second stages until all time steps are completed. The most important feature is the repetition of

【0007】[0007]

【作用】前述の手段によれば、穴の部分で、解析断面の
手前と奥に存在する壁によって、デポジションまたはエ
ッチングに寄与する入射粒子が遮蔽される効果を考慮し
たシミュレーションが行える。また、膜に穴を開けたり
、穴に膜を付けたりする場合に、穴の形状が時間的に変
化し、角が徐々に丸くなったり、尖ったりする現象が表
れる場合があるが、本発明では、各タイムステップ毎に
、表面形状代表点の移動を計算して、各遮蔽板の穴の形
状を再近似するため、穴が丸くなったり、尖ったりする
ために遮蔽効果が変化する現象を考慮したシミュレーシ
ョンが行える。
[Operation] According to the above-mentioned means, a simulation can be performed that takes into account the effect that incident particles contributing to deposition or etching are shielded by walls existing in front and behind the analysis section in the hole portion. Furthermore, when making a hole in a membrane or attaching a membrane to a hole, the shape of the hole may change over time, and the corners may gradually become rounded or sharp. In order to re-approximate the shape of the hole in each shielding plate by calculating the movement of the representative point of the surface shape at each time step, we will calculate the phenomenon in which the shielding effect changes due to the hole becoming rounded or pointed. You can perform simulations that take this into account.

【0008】つまり、本発明では、図形データとしては
、解析断面上の2次元形状を表す点以外に、穴の形状を
代表する表面形状代表点のデータが追加されるだけであ
り、表面移動計算も、2次元の計算を単純に3次元に拡
張するだけですむ。即ち、3次元の面移動処理や不要面
の削除処理等の複雑でかつ膨大な計算時間を必要とする
処理は一切不要になる。
In other words, in the present invention, in addition to the points representing the two-dimensional shape on the analytical cross section, data on surface shape representative points representing the shape of the hole are only added as graphic data, and surface movement calculation Also, it is sufficient to simply extend the two-dimensional calculation to three dimensions. In other words, complicated processing such as three-dimensional surface movement processing and unnecessary surface deletion processing that requires an enormous amount of calculation time is completely unnecessary.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面を用いて具体
的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0010】なお、実施例を説明するための全図におい
て、同一機能を有するものは同一符号を付け、その繰り
返しの説明は省略する。
[0010] In all the drawings for explaining the embodiment, parts having the same functions are given the same reference numerals, and repeated explanations thereof will be omitted.

【0011】 図1は、本発明の一実施例のLSIの形状シミュレーシ
ョン方法のを説明するためのフローチャート、図2は、
本実施例のLSIの形状シミュレーション方法を説明す
るための代表断面の定義例を示す平面図、図3は、代表
断面の定義例を説明するための解析断面図、図4は、遮
蔽計算平面を説明するための要部斜視図、 図5は、遮蔽計算平面および表面形状代表点の定義例を
説明するための平面図、 図6は、遮蔽計算平面および表面形状代表点の定義例を
説明するための解析断面図、 図7は、遮蔽板の定義例を説明するための平面図、図8
は、遮蔽板の定義例を説明するための解析断面図、図9
は、遮蔽板の穴を示す閉曲線と代表断面との交点から表
面形状代表点を再定義する例を説明するための平面図、 図10は、遮蔽板の穴を示す閉曲線と代表断面との交点
から表面形状代表点を再定義する例を説明するための解
析断面図、 図11は、各遮蔽板よる入射粒子の遮蔽効果の計算概念
を説明するための平面図、 図12は、各遮蔽板よる入射粒子の遮蔽効果の計算概念
を説明するための解析断面図、 図13は、移動後の各表面形状代表点から代表表面曲線
を再定義する例を説明するための平面図、図14は、移
動後の各表面形状代表点から代表表面曲線を再定義する
例を説明するための解析断面図である。
FIG. 1 is a flow chart for explaining an LSI shape simulation method according to an embodiment of the present invention, and FIG.
A plan view showing an example of defining a representative cross section for explaining the LSI shape simulation method of this embodiment, FIG. 3 is an analytical cross-sectional view for explaining an example of defining a representative cross section, and FIG. 4 shows a shielding calculation plane. FIG. 5 is a plan view for explaining a definition example of a shield calculation plane and surface shape representative points; FIG. 6 is a diagram for explaining a definition example of a shield calculation plane and surface shape representative points. Fig. 7 is a plan view for explaining an example of the definition of a shielding plate, Fig. 8
is an analytical cross-sectional view for explaining an example of the definition of a shielding plate, FIG.
10 is a plan view for explaining an example of redefining the surface shape representative point from the intersection of the closed curve showing the hole in the shield plate and the representative cross section, and FIG. 10 is the intersection of the closed curve showing the hole in the shield plate and the representative cross section. 11 is a plan view for explaining the calculation concept of the shielding effect of incident particles by each shielding plate, and FIG. 12 is a cross-sectional view of each shielding plate. Figure 13 is a plan view for explaining an example of redefining the representative surface curve from each surface shape representative point after movement; FIG. 2 is an analytical cross-sectional view for explaining an example of redefining a representative surface curve from each surface shape representative point after movement.

【0012】図2乃至図14において、1はLSI基板
、2は絶縁膜、3は穴(スルーホール)、4は代表断面
、5は代表表面形状曲線、6は解析断面、7は遮蔽計算
平面、8は遮蔽板である。
2 to 14, 1 is an LSI substrate, 2 is an insulating film, 3 is a hole (through hole), 4 is a representative cross section, 5 is a representative surface shape curve, 6 is an analytical cross section, and 7 is a shielding calculation plane. , 8 is a shielding plate.

【0013】本実施例のLSIの形状シミュレーション
方法は、図1に示すように、まず、前処理として、解析
の基準となる底面(基準底面と呼ぶ、通常は、LSI基
板1に平行な面)に垂直な面として、解析断面6の設定
(ステップ101)の他に、図2(平面図)及び図3(
図2の解析断面図)に示すように、いくつかの代表断面
4を定義し(ステップ102,)、各代表断面4上で表
面形状を表す曲線(代表表面形状曲線と呼ぶ)4の関数
を求める(ステップ103)。
In the LSI shape simulation method of this embodiment, as shown in FIG. 1, first, as a pre-processing, a bottom surface (referred to as a reference bottom surface, usually a surface parallel to the LSI substrate 1) serving as a reference for analysis is prepared. In addition to setting the analytical cross section 6 (step 101) as a plane perpendicular to
As shown in the analytical cross-sectional view of FIG. (Step 103).

【0014】以下、1タイムステップ毎に、表面形状代
表点を求め(ステップ104)、閉曲線方程式による近
似値をもとめる(ステップ105)。次に、新たな表面
形状代表点を求め(ステップ106)各点の表面積の移
動を計算する(入射粒子の遮蔽計算を含む)(ステップ
107)。次に、代表表面形状曲線5を定義する(スッ
テプ108)。
Thereafter, at each time step, representative points of the surface shape are determined (step 104), and approximate values are determined using a closed curve equation (step 105). Next, a new representative point of the surface shape is determined (step 106), and the movement of the surface area of each point is calculated (including calculation of shielding of incident particles) (step 107). Next, a representative surface shape curve 5 is defined (step 108).

【0015】そして、前記ステップ104から108の
処理を、全タイムステップが終了するまで繰り返す(ス
テップ109)。
[0015] Then, the processes of steps 104 to 108 are repeated until all time steps are completed (step 109).

【0016】前記ステップ104の処理では、図4乃至
図6に示すように、基準底面に平行な複数の平面(遮蔽
計算平面と呼ぶ)に対して、各代表表面形状曲線5との
交点(表面形状代表点と呼ぶ)を求める。
In the process of step 104, as shown in FIGS. 4 to 6, the points of intersection with each representative surface shape curve 5 (surface (referred to as shape representative points).

【0017】前記ステップ105の処理では、各遮蔽計
算平面7上で各表面形状代表点(またはその近傍)を通
る閉曲線を方程式で近似し、図7及び図8に示すように
、この閉曲線方程式によって定義される穴のあいた遮蔽
板8を仮想的に定義する。近似に使用する方程式として
は、例えば、角が丸い場合、
In the process of step 105, a closed curve passing through each surface shape representative point (or its vicinity) on each shielding calculation plane 7 is approximated by an equation, and as shown in FIGS. A shielding plate 8 with holes to be defined is virtually defined. For example, when the corners are rounded, the equations used for approximation are:

【0018】[0018]

【数1】  xn/αn+уn/βn=1角が尖ってい
る場合、
[Formula 1] xn/αn+уn/βn=1 If the corner is sharp,

【0019】[0019]

【数2】  x=α(p1/n+q1/n)[Math 2] x=α(p1/n+q1/n)

【0020
0020
]

【数3】  y=β(p1/n−q1/n)[Math 3] y=β(p1/n-q1/n)

【0021
0021
]

【数4】  │p│+│q│=1 が適当である。ここで、xとyは遮蔽計算平面上の座標
変数、α、βおよびnは定数である。つまり、2≦n<
∞の時、楕円(丸まった図形)を表し、0≦n≦1の時
、とがった図形を表すことになる。
[Formula 4] |p|+|q|=1 is appropriate. Here, x and y are coordinate variables on the shielding calculation plane, and α, β, and n are constants. In other words, 2≦n<
When ∞, it represents an ellipse (a rounded figure), and when 0≦n≦1, it represents a pointed figure.

【0022】ステップ106の処理では、図9及び図1
0に示すように、各遮蔽板8の穴を示す閉曲線と最初に
定義した複数個の代表断面との交点を求め、この交点を
新たな表面形状代表点とする。
In the process of step 106, FIGS.
0, the intersections between the closed curves indicating the holes of each shielding plate 8 and the first defined representative cross sections are found, and these intersections are set as new surface shape representative points.

【0023】ステップ107の処理では、解析断面上の
各点および各表面形状代表点の移動を、図11及び図1
2に示すように、各遮蔽板8による入射粒子の遮蔽を考
慮に入れて計算する。
In the process of step 107, each point on the analytical cross section and each surface shape representative point are moved as shown in FIGS. 11 and 1.
As shown in FIG. 2, the calculation is performed taking into account the shielding of incident particles by each shielding plate 8.

【0024】ステップ108の処理では、図13及び図
14に示すように、移動後の各表面形状代表点を、それ
らが属する代表断面ごとに、線分によって接続するか、
または関数で近似することによって、新たな代表表面曲
線を定義する。
In the process of step 108, as shown in FIGS. 13 and 14, the surface shape representative points after movement are connected by line segments for each representative section to which they belong, or
Or define a new representative surface curve by approximating it with a function.

【0025】以上の説明からわかるように、本実施例に
よれば、LSI基板1上の絶縁物2に設けられた穴3の
部分のように、デポジションまたはエッチングに寄与す
る粒子の入射が周囲の3次元の形状の遮蔽効果を受ける
場合に対して、第1の段階である、1タイムステップ毎
に、穴3を水平方向にほぼ平行な複数の平面で輪切りに
することによってできる穴3のあいた複数の遮蔽板8を
仮想的に定義し、第2の段階である、解析断面(断面形
状を予測すべき面)6上で表面の形状を表す各点の移動
と、各遮蔽板8上で穴の形状を代表するいくつかの点の
移動を、各遮蔽板8による入射粒子の遮蔽効果を考慮に
入れて計算することにより、1タイムステップ経過後の
、断面の詳細な2次元形状と、穴3の全体の大まかな3
次元形状を求め、この後、再び第1の段階に戻って、全
タイムステップが終了するまで、第1の段階と第2の段
階を繰り返すことにより、穴3の部分で、解析断面6の
手前と奥に存在する壁によって、デポジションまたはエ
ッチングに寄与する入射粒子が遮蔽される効果を考慮し
たシミュレーションが行える。
As can be seen from the above description, according to this embodiment, particles contributing to deposition or etching are not incident on the surrounding area, such as in the hole 3 provided in the insulator 2 on the LSI substrate 1. In the case where the shielding effect of the three-dimensional shape is applied, the first step is to cut the hole 3 into rings in multiple planes approximately parallel to the horizontal direction at each time step. A plurality of open shielding plates 8 are virtually defined, and the second step is to move each point representing the shape of the surface on the analysis cross section (the surface where the cross-sectional shape is to be predicted) 6 and to move each point on each shielding plate 8. By calculating the movement of several points representing the shape of the hole by taking into account the shielding effect of each shielding plate 8 on incident particles, the detailed two-dimensional shape of the cross section after one time step has elapsed. , overall rough 3 of hole 3
Find the dimensional shape, then return to the first step again and repeat the first and second steps until all time steps are completed. Simulations can be performed that take into account the effect of shielding incident particles that contribute to deposition or etching by the wall that exists in the back.

【0026】また、矩形の穴3に、膜を付ける場合等に
、穴3の形状が時間的に変化し、角が徐々に丸くなる現
象が表れる場合があるが、本発明では、各タイムステッ
プ毎に、表面形状代表点の移動を計算して、各遮蔽板8
の穴の形状を再近似するため、穴が丸くなるために遮蔽
効果が変化する現象を考慮したシミュレーションが行え
る。
Furthermore, when a film is applied to a rectangular hole 3, the shape of the hole 3 may change over time and the corners may gradually become rounded. However, in the present invention, each time step For each shielding plate 8, the movement of the representative point of the surface shape is calculated.
In order to reapproximate the shape of the hole, a simulation can be performed that takes into account the phenomenon that the shielding effect changes as the hole becomes rounder.

【0027】つまり、本発明では、図形データとしては
、解析断面上の2次元形状を表す点以外に、穴3の形状
を代表する表面形状代表点のデータが追加されるだけで
あり、表面移動計算も、2次元の計算を単純に3次元に
拡張するだけですむ。即ち、3次元の面移動処理や不要
面の削除処理等の複雑でかつ膨大な計算時間を必要とす
る処理は一切不要になる。
In other words, in the present invention, in addition to the points representing the two-dimensional shape on the analytical cross section, data of the surface shape representative point representing the shape of the hole 3 is only added as graphic data, and the surface movement Calculations can be done by simply extending two-dimensional calculations to three-dimensional ones. In other words, complicated processing such as three-dimensional surface movement processing and unnecessary surface deletion processing that requires an enormous amount of calculation time is completely unnecessary.

【0028】以上、本発明を実施例に基づいて具体的に
説明したが、本発明は、前記実施例に限定されることな
く、その要旨を逸脱しない範囲において、種々変更し得
ることはいうまでもない。
Although the present invention has been specifically explained above based on examples, it goes without saying that the present invention is not limited to the above-mentioned examples and can be modified in various ways without departing from the gist thereof. Nor.

【0029】[0029]

【発明の効果】本発明によれば、解析断面に垂直な方向
の表面形状の影響を考慮に入れた半導体集積回路の形状
シミュレーションを容易に実施することができ、図形デ
ータの内容および変形計算を完全に3次元化した場合に
比べて、大幅な計算時間の短縮が可能となる。
[Effects of the Invention] According to the present invention, it is possible to easily perform a shape simulation of a semiconductor integrated circuit that takes into account the influence of the surface shape in the direction perpendicular to the analysis cross section, and to calculate the contents of the shape data and deformation. Compared to a completely three-dimensional case, calculation time can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例のLSIの形状シミュレーシ
ョン方法を説明するためのフローチャートである。
FIG. 1 is a flowchart for explaining an LSI shape simulation method according to an embodiment of the present invention.

【図2】本実施例のLSIの形状シミュレーション方法
を説明するための代表断面の定義例を示す平面図である
FIG. 2 is a plan view showing an example of defining a representative cross section for explaining the LSI shape simulation method of this embodiment.

【図3】代表断面の定義例を説明するための解析断面図
である。
FIG. 3 is an analytical cross-sectional view for explaining an example of defining a representative cross-section.

【図4】遮蔽計算平面を説明するための要部斜視図であ
る。
FIG. 4 is a perspective view of a main part for explaining a shielding calculation plane.

【図5】遮蔽計算平面および表面形状代表点の定義例を
説明するための平面図である。
FIG. 5 is a plan view for explaining an example of defining a shielding calculation plane and surface shape representative points.

【図6】遮蔽計算平面および表面形状代表点の定義例を
説明するための解析断面図である。
FIG. 6 is an analytical cross-sectional view for explaining an example of defining a shielding calculation plane and surface shape representative points.

【図7】遮蔽板の定義例を説明するための平面図である
FIG. 7 is a plan view for explaining an example of the definition of a shielding plate.

【図8】遮蔽板の定義例を説明するための解析断面図で
ある。
FIG. 8 is an analytical cross-sectional view for explaining an example of the definition of a shielding plate.

【図9】遮蔽板の穴を示す閉曲線と代表断面との交点か
ら表面形状代表点を再定義する例を説明するための平面
図である。
FIG. 9 is a plan view for explaining an example of redefining a surface shape representative point from the intersection of a closed curve indicating a hole in a shielding plate and a representative cross section.

【図10】遮蔽板の穴を示す閉曲線と代表断面との交点
から表面形状代表点を再定義する例を説明するための解
析断面図である。
FIG. 10 is an analytical sectional view for explaining an example of redefining a surface shape representative point from the intersection of a closed curve indicating a hole in a shielding plate and a representative cross section.

【図11】各遮蔽板による入射粒子の遮蔽効果の計算概
念を説明するための平面図である。
FIG. 11 is a plan view for explaining the concept of calculating the shielding effect of incident particles by each shielding plate.

【図12】各遮蔽板による入射粒子の遮蔽効果の計算概
念を説明するための解析断面図である。
FIG. 12 is an analytical cross-sectional view for explaining the calculation concept of the shielding effect of incident particles by each shielding plate.

【図13】移動後の各表面形状代表点から代表表面曲線
を再定義する例を説明するための平面図である。
FIG. 13 is a plan view for explaining an example of redefining a representative surface curve from each surface shape representative point after movement;

【図14】移動後の各表面形状代表点から代表表面曲線
を再定義する例を説明するための解析断面図である。
FIG. 14 is an analytical cross-sectional view for explaining an example of redefining a representative surface curve from each surface shape representative point after movement.

【符号の説明】[Explanation of symbols]

1    LSI基板 2    絶縁物 3    穴 4    表断面 5    代表表面形状曲線 6    解析断面 7    遮蔽計算平面 8    遮蔽板遮蔽板 1 LSI board 2 Insulator 3 Hole 4     Surface section 5 Representative surface shape curve 6 Analysis cross section 7 Shielding calculation plane 8 Shielding plate Shielding plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  半導体集積回路の表面上で、デポジシ
ョンまたはエッチング後の断面形状を予測する半導体集
積回路の形状シミュレーション方法において、シミュレ
ーションの対象物を、水平方向にほぼ平行な複数の平面
で輪切りにすることによってできる穴のあいた複数の遮
蔽板を仮想的に定義し、各遮蔽板による入射粒子の遮蔽
効果を考慮に入れて、各点の移動を計算し、各タイムス
テップ毎に、解析平面上の点の移動を計算すると同時に
、各遮蔽板上の表面形状代表点の移動を計算し、各遮蔽
板の穴の形状を再近似することにより、シミュレーショ
ン対象物の3次元の全体形状の変化を近似的に追跡する
ことを特徴とする半導体集積回路の形状シミュレーショ
ン方法。
Claim 1. A semiconductor integrated circuit shape simulation method for predicting a cross-sectional shape after deposition or etching on the surface of a semiconductor integrated circuit, the object being simulated being sliced into rings by a plurality of planes substantially parallel to the horizontal direction. Virtually define multiple shielding plates with holes created by At the same time as calculating the movement of the upper point, the movement of the surface shape representative point on each shielding plate is calculated, and the shape of the hole in each shielding plate is reapproximated, thereby changing the overall three-dimensional shape of the simulation target. A method for simulating the shape of a semiconductor integrated circuit, which is characterized by approximately tracking the shape of a semiconductor integrated circuit.
JP40289590A 1990-12-17 1990-12-17 Method for simulating shape of semiconductor integrated circuit Pending JPH04216646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40289590A JPH04216646A (en) 1990-12-17 1990-12-17 Method for simulating shape of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40289590A JPH04216646A (en) 1990-12-17 1990-12-17 Method for simulating shape of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH04216646A true JPH04216646A (en) 1992-08-06

Family

ID=18512661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40289590A Pending JPH04216646A (en) 1990-12-17 1990-12-17 Method for simulating shape of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH04216646A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154975A1 (en) * 2008-05-28 2009-12-23 Lam Research Corporation Method to create three-dimensional images of semiconductor structures using a focused ion beam device and a scanning electron microscope
US10138550B2 (en) 2014-09-10 2018-11-27 Toshiba Memory Corporation Film deposition method and an apparatus
US10482190B2 (en) 2016-03-10 2019-11-19 Toshiba Memory Corporation Topography simulation apparatus, topography simulation method, and topography simulation program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154975A1 (en) * 2008-05-28 2009-12-23 Lam Research Corporation Method to create three-dimensional images of semiconductor structures using a focused ion beam device and a scanning electron microscope
US10138550B2 (en) 2014-09-10 2018-11-27 Toshiba Memory Corporation Film deposition method and an apparatus
US10482190B2 (en) 2016-03-10 2019-11-19 Toshiba Memory Corporation Topography simulation apparatus, topography simulation method, and topography simulation program

Similar Documents

Publication Publication Date Title
CN103093036B (en) Work pieces process emulation
JP2635617B2 (en) Method of generating orthogonal lattice points for evaluating semiconductor device characteristics
US20130246027A1 (en) Generating inviscid and viscous fluid-flow simulations over a surface using a fluid-flow mesh
US7467077B2 (en) Mesh model creating method, simulation apparatus and computer-readable storage medium
JP2701795B2 (en) Process simulation method
JPS62212771A (en) Automation device for numerical calculation procedure
Jones et al. RD3D (computer simulation of resist development in three dimensions)
JPH04216646A (en) Method for simulating shape of semiconductor integrated circuit
Sinha et al. A unified framework for statistical timing analysis with coupling and multiple input switching
Cuillière et al. A new approach to automatic and a priori mesh adaptation around circular holes for finite element analysis
US6192330B1 (en) Method and apparatus for string model simulation of a physical semiconductor process including use of specific depth angles and segment list with removal of redundant segments
US5815684A (en) Configuration simulating method employing string model for simulating layer configuration of silicon wafer
JP2005340396A (en) Apparatus, method, and program for shape simulation
JPH09223248A (en) Three-dimensional processing method for two-dimensional graphic data
Ódor Role of diffusion in branching and annihilation random walk models
Xu et al. Near-linear wirelength estimation for FPGA placement
Scheckler Algorithms for three-dimensional simulation of etching and deposition processes in integrated circuit fabrication
JP2000113229A (en) Method for re-dividing element of finite element analytic model
US6539526B1 (en) Method and apparatus for determining capacitances for a device within an integrated circuit
JP2002050553A (en) Shape simulation method and computer-readable recording medium with program for shape simulation stored thereon
Waring et al. Application of covariance structures to improve the fit of response surfaces to simulation data
JP3021136B2 (en) 3D simulation method
Sudirham et al. Space-time discontinuous galerkin method for wet-chemical etching of microstructures
Inui et al. Milling Simulation-Based Method to Evaluate Manufacturability of Machine Parts
JPH1153347A (en) Analyzer