JPS6368538A - Production of methyl isobutyl ketone - Google Patents

Production of methyl isobutyl ketone

Info

Publication number
JPS6368538A
JPS6368538A JP61212598A JP21259886A JPS6368538A JP S6368538 A JPS6368538 A JP S6368538A JP 61212598 A JP61212598 A JP 61212598A JP 21259886 A JP21259886 A JP 21259886A JP S6368538 A JPS6368538 A JP S6368538A
Authority
JP
Japan
Prior art keywords
catalyst
palladium
niobium pentoxide
methyl isobutyl
isobutyl ketone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61212598A
Other languages
Japanese (ja)
Other versions
JPH0737408B2 (en
Inventor
Takao Maki
真木 隆夫
Toshiharu Yokoyama
横山 寿治
Yumiko Sumino
角野 由美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP61212598A priority Critical patent/JPH0737408B2/en
Publication of JPS6368538A publication Critical patent/JPS6368538A/en
Publication of JPH0737408B2 publication Critical patent/JPH0737408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce methyl isobutyl ketone useful as an organic solvent by one stage, by using a catalyst comprising palladium and niobium pentoxide heat-treated in a specific temperature range as essential components of catalyst and reacting acetone with hydrogen. CONSTITUTION:Acetone is reacted with hydrogen by the use of a novel highly active catalyst consisting of palladium and niobium pentoxide which is heat- treated at 400-550 deg.C and dehydrated to give methyl isobutyl ketone. In the catalyst, palladium may be supported on the niobium pentoxide and the amount of palladium used is 0.001-10%, preferably about 0.01-5% based on niobium pentoxide by weight ratio. EFFECT:The reaction can be advantageously advanced by using the catalyst having high activity, high selectively, high stability and high power.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は有機溶剤として有用性の高いメチルイソブチル
ケトン(以下、MIBKと略す)の改良製造法に関する
ものでのる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an improved method for producing methyl isobutyl ketone (hereinafter abbreviated as MIBK), which is highly useful as an organic solvent.

[従来の技術] MIBKは従来アセトンと水素を原料としてジアセトン
アルコール及びメシチルオキシドを経由するいわゆる三
段法により製造されているが、この技術は全工程が長く
、しかも特に最初のジアセトンアルコール製造工程が平
衡反応のため原料転化率を上げることができず極めて能
率の悪い方法である。したがって、アセトンと水素から
直接MIBKを一段で製造する方法についても従来より
種々提案されており、触媒として例えばパラジウム−イ
オン交換樹脂、パラジウム−リン酸ジルコニウム、パラ
ジウム−アルミナ等が使われているが、いずれも、触媒
活性、触媒寿命等の面で問題が多かった。
[Prior art] MIBK has conventionally been produced by a so-called three-step process using acetone and hydrogen as raw materials via diacetone alcohol and mesityl oxide. Since the production process involves an equilibrium reaction, it is not possible to increase the raw material conversion rate, making it an extremely inefficient method. Therefore, various methods for directly producing MIBK from acetone and hydrogen in one step have been proposed, and for example, palladium-ion exchange resin, palladium-zirconium phosphate, palladium-alumina, etc. have been used as catalysts. All of them had many problems in terms of catalyst activity, catalyst life, etc.

[発明が解決しようとする問題点コ 本発明は従来技術の上記問題点を解決し、触媒活性が優
れ、工業的に安定した状態で使用できる触媒を使うメチ
ルイソブチルケトンの製造方法を提供しようとするもの
である。
[Problems to be Solved by the Invention] The present invention aims to solve the above-mentioned problems of the prior art and provide a method for producing methyl isobutyl ketone using a catalyst that has excellent catalytic activity and can be used in an industrially stable state. It is something to do.

[問題点を解決するための手段] 本発明者らはかかる問題点を解決すべく、アセトンと水
素から一段で直接MIBKを製造できる新規高活性触媒
の開発に努めた結果、パラジウムおよび、400℃以上
550℃以下で熱処理された五酸化ニオブを必須成分と
する触媒を用いることにより、効率良<MIBKが得ら
れることを知り、本発明に到達した。
[Means for Solving the Problems] In order to solve the problems, the present inventors have endeavored to develop a new highly active catalyst that can directly produce MIBK from acetone and hydrogen in one step. The present invention was achieved based on the knowledge that efficient MIBK can be obtained by using a catalyst containing niobium pentoxide as an essential component that has been heat-treated at 550° C. or lower.

すなわち本発明の構成はアセトンと水素を反応させて一
段でMIBKを製造するに際し、パラジウムおよび40
0℃ないし550℃の間で熱処理を受けた五酸化ニオブ
を必須成分とする触媒を用いるMIBKの製造方法であ
る。
That is, the structure of the present invention is that when producing MIBK in one step by reacting acetone and hydrogen, palladium and 40
This is a method for producing MIBK using a catalyst containing niobium pentoxide as an essential component that has been heat-treated between 0°C and 550°C.

以下に本発明方法を詳細に説明する。まず、五酸化ニオ
ブにつき説明すると、従来より含水した酸化ニオブはい
わゆる“ニオブ酸″と称され、近年、オレフィンの水和
反応等に活性な固体酸触媒として、学術的に強い興味を
持たれるようになっている。本発明者らの検討の結果、
“ニオブ酸″はケトン類を総合してα、β−不飽和ケト
ンを製造する際の触媒として極めて有効であることがわ
かり、すでに提案している。しかしながら“ニオブ酸″
はなお次の問題点を有する。すなわち、無定形固体であ
るため、固体触媒を実用プロセスに使用する際に必要な
成型に関し、十分な結果が得られず、かつ強度も弱く、
実験室段階の反応では使用可能であっても実用化にあた
ってはなお問題が残る。本発明者らはこの点について検
討を続けた結果、以外にも400’Cないし550″C
で熱処理を行ない脱水した五酸化ニオブに高いアセトン
縮合活性があることを見出し、ざらにこのものをパラジ
ウムと共に用いれば、アセトンと水素から一段で効率よ
<MIBKを製造できることが判った。
The method of the present invention will be explained in detail below. First, let's talk about niobium pentoxide. Hydrous niobium oxide has traditionally been called "niobic acid," and in recent years it has attracted strong academic interest as a solid acid catalyst active in olefin hydration reactions. It has become. As a result of the inventors' studies,
"Niobic acid" has been found to be extremely effective as a catalyst for producing α,β-unsaturated ketones by combining ketones, and has already been proposed. However, “niobic acid”
still has the following problems. In other words, since it is an amorphous solid, sufficient results cannot be obtained with respect to the molding required when solid catalysts are used in practical processes, and their strength is weak.
Even if it can be used in laboratory reactions, there are still problems in practical application. The inventors of the present invention have continued to study this point and found that there are other
It was discovered that niobium pentoxide, which had been heat-treated and dehydrated, had a high acetone condensation activity, and it was found that if this substance was used together with palladium, MIBK could be efficiently produced in one step from acetone and hydrogen.

゛ニオブ酸″は飯塚らの報告[第3回置体酸プロセス化
研究会、固体酸触媒と有機合成講演予稿集、P1〜4、
触媒学会(1983年)ある(+Nは表面Vo1.23
No、B P 471〜481 (1985)]にもあ
る通り、100〜300℃の低温で焼成したものが強い
酸強度を示し触媒活性が高いこと、一方400℃以上で
熱処理したものは固体酸強度が低下し触媒活性が低いと
されてきたことからすると、本発明者の見出した知見は
極めて意外な事実である。
Niobic acid was reported by Iizuka et al. [3rd Acid Processing Study Group, Proceedings of Solid Acid Catalysts and Organic Synthesis, P1-4,
Catalysis Society of Japan (1983) (+N is surface Vo1.23
No., B P 471-481 (1985)], those calcined at low temperatures of 100 to 300°C show strong acid strength and high catalytic activity, while those heat-treated at 400°C or higher show solid acid strength. The findings discovered by the present inventors are extremely surprising considering that it has been said that the catalytic activity is low due to a decrease in

400℃以上で熱処理した五酸化ニオブは含水しておら
ず、かつ固体の強度も高くなるため、実用的な触媒とし
て好適である。但し、熱処理温度を550℃以上とする
と、五酸化ニオブの相転移が進行し、触媒活性はいちじ
るしく低下するので好ましくない。
Niobium pentoxide heat-treated at 400° C. or higher does not contain water and has a high solid strength, so it is suitable as a practical catalyst. However, if the heat treatment temperature is 550° C. or higher, the phase transition of niobium pentoxide will proceed and the catalytic activity will be significantly reduced, which is not preferable.

五酸化ニオブを製造するには通常“ニオブ酸″を熱処理
するのがよい。原料の゛ニオブ酸″は市販品もあるが可
溶性ニオブ化合物、例えば塩化ニオブ溶液から沈澱させ
て製造したものでもよい。
To produce niobium pentoxide, it is usually best to heat-treat niobic acid. The raw material ``niobic acid'' is commercially available, but it may also be one prepared by precipitation from a soluble niobium compound, such as a niobium chloride solution.

アセトンからMIBKを製造する場合、触媒には水添機
能が必要である。五酸化ニオブ自体の水添機能はあまり
高くないが、パラジウム、ロジウムのごとき白金属元素
と併用することにより有効な触媒となり、本発明ではパ
ラジウムを用いる。パラジウムの使い方としては五酸化
ニオブに担持させてもよく、あるいはパラジウム−炭素
、パラジウム−アルミナのごとき状態で五酸化ニオブと
物理的に混合して用いてもよい。五酸化ニオブの熱処理
はパラジウムと担持−混合前でもあるいはその後でもさ
しつかえない。パラジウムの使用量は五酸化ニオブに対
し重量比で0.001ないし10%、好ましくはo、 
oiないし5%程度がよい。パラジウムを五酸化ニオブ
に担持するのは公知の方法で行なえばよく、例えば可溶
性パラジウム化合物を含浸させた後、水素、ヒドラジン
等で還元すればよい。
When producing MIBK from acetone, the catalyst requires a hydrogenation function. Although niobium pentoxide itself does not have a very high hydrogenation function, it becomes an effective catalyst when used in combination with a platinum metal element such as palladium or rhodium, and palladium is used in the present invention. Palladium may be supported on niobium pentoxide, or may be physically mixed with niobium pentoxide in a state such as palladium-carbon or palladium-alumina. The heat treatment of niobium pentoxide can be carried out either before or after the support-mixing with palladium. The amount of palladium used is 0.001 to 10% by weight relative to niobium pentoxide, preferably o,
oi to about 5% is preferable. Palladium may be supported on niobium pentoxide by a known method, such as by impregnating it with a soluble palladium compound and then reducing it with hydrogen, hydrazine, or the like.

反応は気相でも液相でも行なうことができるが液相で行
なうのが好ましい。液相の場合の反応温度はアセトンの
臨界温度(235°C)以下がよい。あまり低温では触
媒活性が発現されないので好ましくは100℃ないし2
00℃の間がよい。反応圧力はアセトンの自然発生圧以
上150kg/cm2以下、より好ましくは8ki;l
/Cm2ないし50kg/cm 2の間で水素で加圧し
て設定される。触媒は懸濁床、固定床いずれの形態で用
いてもよい。アセトンの転化率は50%以下に抑えるの
が好ましい。
The reaction can be carried out in either gas phase or liquid phase, but is preferably carried out in liquid phase. In the case of liquid phase, the reaction temperature is preferably below the critical temperature of acetone (235°C). Since catalytic activity is not expressed at too low a temperature, the temperature is preferably between 100°C and 2°C.
The temperature should be between 00°C. The reaction pressure is higher than the natural generation pressure of acetone and lower than 150 kg/cm2, more preferably 8 ki;
The pressure is set between /Cm2 and 50kg/cm2 using hydrogen. The catalyst may be used in either suspended bed or fixed bed form. It is preferable to suppress the conversion rate of acetone to 50% or less.

[実施例] 以下に実施例により本発明をざらに具体的に説明するが
、本発明はその要旨を越えない限りこれらの実施例に限
定されるものではない。
[Examples] The present invention will be briefly and concretely explained using Examples below, but the present invention is not limited to these Examples unless the gist thereof is exceeded.

実施例に オブ酸粉末を400℃で焼成して得た五酸化ニオブに、
Pdとして0.3%となるように塩化パラジウム水溶液
を含浸し、水素気流中200℃で還元して触媒を調製し
た。
In the example, niobium pentoxide obtained by baking acid powder at 400°C,
A catalyst was prepared by impregnating a palladium chloride aqueous solution to a Pd concentration of 0.3% and reducing it at 200° C. in a hydrogen stream.

この触媒2.2g、アセトン40m lをオートクレー
ブに仕込み、140℃に加熱し、20kg/Cm ’に
水素で加圧して反応を実施した。反応の進行により消費
される水素は連続的に供給し全圧は常に一定に保った。
2.2 g of this catalyst and 40 ml of acetone were placed in an autoclave, heated to 140°C, and pressurized to 20 kg/cm' with hydrogen to carry out a reaction. Hydrogen consumed as the reaction progressed was continuously supplied, and the total pressure was always kept constant.

反応液は冷却後触媒を分離し分析した。結果を後記第1
表に示す。
After the reaction solution was cooled, the catalyst was separated and analyzed. The results are shown below in Part 1.
Shown in the table.

実施例2 ニオブ酸の焼成温度を500℃、反応圧力を10kg/
cm2とした他は実施例1と同様に反応させた。
Example 2 Calcination temperature of niobic acid was 500°C, reaction pressure was 10kg/
The reaction was carried out in the same manner as in Example 1, except that the volume was changed to cm2.

実施例3 ニオブ酸を500℃で焼成して得た五酸化ニオブ3.5
gと1%パラジウム−炭素(日本エンゲルハルト社Iu
)1.Oaを仕込み、実施例2と同じ条件で反応させた
Example 3 Niobium pentoxide 3.5 obtained by calcining niobic acid at 500°C
g and 1% palladium-carbon (Japan Engelhard Co., Ltd. Iu
)1. Oa was charged and reacted under the same conditions as in Example 2.

結果をいずれも第1表に併せ示す。All results are also shown in Table 1.

第1表 tPA:イソプロビルアルコール DISKニジイソブチルケトン [発明の効果] 以上、本発明方法によればアセトンと水素から一段でM
IBKを製造するに際し、パラジウムおよび特定の五酸
化ニオブを必須成分とする高活性、高選択性、高安定性
、高強度の触媒を用いることにより、有利に反応を進め
ることができる。
Table 1 tPA: Isopropyl Alcohol DISK Nidiisobutyl Ketone [Effects of the Invention] As described above, according to the method of the present invention, M
When producing IBK, the reaction can be carried out advantageously by using a highly active, highly selective, highly stable, and highly strong catalyst containing palladium and a specific niobium pentoxide as essential components.

Claims (1)

【特許請求の範囲】 アセトンと水素を触媒の存在下反応させて 一段でメチルイソブチルケトンを製造するに際し、パラ
ジウムおよび400℃以上550℃以下で熱処理された
五酸化ニオブを必須成分とする触媒を用いることを特徴
とするメチルイソブチルケトンの製造方法。
[Claims] When acetone and hydrogen are reacted in the presence of a catalyst to produce methyl isobutyl ketone in one step, a catalyst containing palladium and niobium pentoxide heat-treated at a temperature of 400°C to 550°C as essential components is used. A method for producing methyl isobutyl ketone, characterized by:
JP61212598A 1986-09-11 1986-09-11 Method for producing methyl isobutyl ketone Expired - Fee Related JPH0737408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61212598A JPH0737408B2 (en) 1986-09-11 1986-09-11 Method for producing methyl isobutyl ketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61212598A JPH0737408B2 (en) 1986-09-11 1986-09-11 Method for producing methyl isobutyl ketone

Publications (2)

Publication Number Publication Date
JPS6368538A true JPS6368538A (en) 1988-03-28
JPH0737408B2 JPH0737408B2 (en) 1995-04-26

Family

ID=16625344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61212598A Expired - Fee Related JPH0737408B2 (en) 1986-09-11 1986-09-11 Method for producing methyl isobutyl ketone

Country Status (1)

Country Link
JP (1) JPH0737408B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445159U (en) * 1990-08-21 1992-04-16
US6706928B2 (en) 2000-05-18 2004-03-16 Johnson Matthey Plc Aldol condensation reaction and catalyst therefor
JPWO2018225737A1 (en) * 2017-06-06 2020-04-09 エヌ・イーケムキャット株式会社 Catalyst for debenzylation reaction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445159U (en) * 1990-08-21 1992-04-16
US6706928B2 (en) 2000-05-18 2004-03-16 Johnson Matthey Plc Aldol condensation reaction and catalyst therefor
JPWO2018225737A1 (en) * 2017-06-06 2020-04-09 エヌ・イーケムキャット株式会社 Catalyst for debenzylation reaction

Also Published As

Publication number Publication date
JPH0737408B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
CN107721821B (en) Method for preparing 1, 3-propylene glycol
CN108191635B (en) Method for preparing gluconic acid by catalytic oxidation
JPS5852696B2 (en) Arakajime Seizou Shita Matrix No Ganshinnioru Sugreta Shiyokubai
US4503249A (en) Hydrogenation catalysts
JPS6368538A (en) Production of methyl isobutyl ketone
US4122096A (en) Maleic anhydride production
CN108640829B (en) Method for preparing pyruvic acid by catalyzing and oxidizing lactic acid in water phase
JPH05177141A (en) Preparation of methacrylic acid
US4394298A (en) Hydrogenation catalyst
CN109251126A (en) A kind of method of cyclohexane oxidation KA oil
JPH026414A (en) Preparation of isobutylene
CN114433127B (en) Hydrogenation catalyst, preparation method and application thereof, and method for preparing succinic acid by maleic anhydride hydrogenation
JPS62258335A (en) Production of methyl isobutyl ketone
CN108440289B (en) Method for preparing pyruvate by water-phase catalytic oxidation of lactate
JP3485622B2 (en) Ammonia synthesis catalyst and ammonia synthesis method
JPH06263668A (en) Production of phenol
JP2003327551A (en) Method for producing indane
CN108114731A (en) For the carbon monoxide-olefin polymeric of oxidation reaction
JPH0737410B2 (en) Method for producing methyl isobutyl ketone
US4401640A (en) Hydrogenation catalysts
JPS6368539A (en) Production of methyl isobutyl ketone
JPS6160621A (en) Production of carbonyl compound
SU1797993A1 (en) Method for nickel oxide production
JP2965354B2 (en) Method for producing trans-3,3,5-trimethylcyclohexylethyl ether
SU829164A1 (en) Method of preparing substrate for ammonia synthesis process

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees