JPH06263668A - Production of phenol - Google Patents

Production of phenol

Info

Publication number
JPH06263668A
JPH06263668A JP5052291A JP5229193A JPH06263668A JP H06263668 A JPH06263668 A JP H06263668A JP 5052291 A JP5052291 A JP 5052291A JP 5229193 A JP5229193 A JP 5229193A JP H06263668 A JPH06263668 A JP H06263668A
Authority
JP
Japan
Prior art keywords
phenol
magnesium oxide
catalyst
cyclohexanone
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5052291A
Other languages
Japanese (ja)
Inventor
Fumio Nozaki
文男 野崎
Tomoji Sato
智司 佐藤
Kozo Hirozawa
耕造 広沢
Yasuhiko Toda
靖彦 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP5052291A priority Critical patent/JPH06263668A/en
Publication of JPH06263668A publication Critical patent/JPH06263668A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To provide a new process for the production of phenol in high yield by the dehydrogenation reaction of cyclohexanone in the presence of a catalyst having high activity and selectivity. CONSTITUTION:Cyclohexanone is subjected to dehydrogenation reaction in the presence of a catalyst composed of magnesium oxide and elemental palladium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、合成樹脂、界面活性
剤、医薬品などの合成中間体として広く用いられている
フェノールの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing phenol, which is widely used as a synthetic intermediate for synthetic resins, surfactants, pharmaceuticals and the like.

【0002】[0002]

【従来技術及びその問題点】従来フェノールの製造方法
としては、種々の方法が知られているが、クメンを酸素
酸化してクメンヒドロペルオキシドを合成し、このクメ
ンヒドロペルオキシドを酸によって分解してフェノール
とアセトンとを製造するクメン法が主として行われてい
る。しかし、このクメン法においては、アセトンが併産
されるという特徴があり、近年アセトンが供給過剰にな
りつつあるために、アセトンを副生しないフェノールの
製造方法の開発が望まれてる。
2. Description of the Related Art Conventionally, various methods have been known as a method for producing phenol. Cumene is oxidized with oxygen to synthesize cumene hydroperoxide, and the cumene hydroperoxide is decomposed with an acid to produce phenol. The cumene method for producing benzene and acetone is mainly used. However, this cumene method is characterized in that acetone is co-produced, and since the supply of acetone is becoming excessive in recent years, development of a method for producing phenol that does not by-produce acetone is desired.

【0003】一方、米国特許4,021,490号には、シクロ
ヘキシルベンゼンを自動酸化して一旦シクロヘキシルベ
ンゼンヒドロペルオキシドを製造し、次いでこれを酸分
解させてフェノールとシクロヘキサノンを製造する方法
が提案されている。さらに、シクロヘキサノンを脱水素
してフェノールに転化する方法が知られており、これら
の方法を用いれば、副生物を併産することなくフェノー
ルを製造することができる。しかしながら、シクロヘキ
サノンの脱水素反応の触媒として種々のものが検討され
ているが、いずれも活性、選択性、触媒寿命等に問題が
あり、有効な触媒は見い出されていない。
On the other hand, US Pat. No. 4,021,490 proposes a method of autoxidizing cyclohexylbenzene to once produce cyclohexylbenzene hydroperoxide, and then acid-decomposing it to produce phenol and cyclohexanone. Furthermore, methods for dehydrogenating cyclohexanone to convert it to phenol are known, and by using these methods, phenol can be produced without co-production of by-products. However, various catalysts for the dehydrogenation reaction of cyclohexanone have been investigated, but all have problems in activity, selectivity, catalyst life, etc., and no effective catalyst has been found.

【0004】[0004]

【発明の目的】本発明の目的は、前記問題点を解決し、
活性・選択性が高い触媒を用いて高い収率でフェノール
を製造することができる方法を提供するものである。
The object of the present invention is to solve the above problems,
It is intended to provide a method capable of producing phenol in high yield using a catalyst having high activity and selectivity.

【問題点を解決するための手段】本発明は、シクロヘキ
サノンを酸化マグネシウムとパラジウム元素からなる触
媒の存在下に脱水素反応させることを特徴とするフェノ
ールの製造方法に関するものである。
The present invention relates to a method for producing phenol, which comprises subjecting cyclohexanone to a dehydrogenation reaction in the presence of a catalyst composed of magnesium oxide and palladium element.

【0005】本発明で用いる酸化マグネシウムとパラジ
ウム元素からなる触媒は、酸化マグネシウムにパラジウ
ム元素の化合物を混合した後、パラジウム元素の化合物
の分解温度以上で加熱処理することにより調製する。酸
化マグネシウムとしては、BET比表面積が5〜170
m2/g(比表面積径0.01〜0.2μm)、純度9
9.9%以上の高純度超微粉単結晶酸化マグネシウムが
好ましい。このような高純度超微粉単結晶酸化マグネシ
ウムは、特公平2−289号公報に開示された方法、即
ちマグネシウム蒸気と酸素含有ガスを乱流拡散状態で酸
化させる方法により合成することができる。BET比表
面積が170m2/gを超えた酸化マグネシウムを製造す
ることも可能であり、本発明にも有用であるが、製造コ
ストがきわめて高くなること、通常の粉末の取扱いが困
難になることなどから現状では実用性が低い。また、比
表面積が5m2/g未満となると、触媒活性が低下するた
め好ましくない。
The catalyst composed of magnesium oxide and elemental palladium used in the present invention is prepared by mixing magnesium oxide with a compound of elemental palladium and then heating it at a temperature not lower than the decomposition temperature of the compound of elemental palladium. The magnesium oxide has a BET specific surface area of 5 to 170.
m 2 / g (specific surface area diameter 0.01 to 0.2 μm), purity 9
High-purity ultrafine single crystal magnesium oxide of 9.9% or more is preferable. Such high-purity ultrafine single crystal magnesium oxide can be synthesized by the method disclosed in Japanese Examined Patent Publication No. 2-289, that is, a method of oxidizing magnesium vapor and an oxygen-containing gas in a turbulent diffusion state. It is possible to produce magnesium oxide having a BET specific surface area of more than 170 m 2 / g, and it is also useful in the present invention, but the production cost is extremely high, and it is difficult to handle ordinary powders. Therefore, the practicality is low at present. On the other hand, if the specific surface area is less than 5 m 2 / g, the catalytic activity will decrease, which is not preferable.

【0006】パラジウム元素の化合物としては、アセチ
ルアセトナト塩、硝酸塩、アルコキシド、酢酸塩、カル
ボニル化合物等が用いられる。酸化マグネシウムに対す
るパラジウム元素の割合は、0.1〜10wt%が好ま
しい。その下限未満では、触媒活性が低く、上限値を超
えると、金属によるシンタリング傾向が見られるように
なり、活性が低下すると同時に経済的にも不利である。
このようにして調製された触媒を反応容器に充填し、水
素による還元処理を300℃以上で行って活性化した
後、シクロヘキサノンを流通して脱水素反応を行わせ
る。反応温度は、通常300〜450℃、好ましくは3
50〜400℃である。
As the compound of palladium element, acetylacetonato salt, nitrate, alkoxide, acetate, carbonyl compound and the like are used. The ratio of palladium element to magnesium oxide is preferably 0.1 to 10 wt%. If it is less than the lower limit, the catalytic activity is low, and if it exceeds the upper limit, sintering tends to be observed due to the metal, which lowers the activity and is economically disadvantageous.
The catalyst prepared in this manner is charged into a reaction vessel, reduction treatment with hydrogen is performed at 300 ° C. or higher for activation, and then cyclohexanone is circulated to carry out a dehydrogenation reaction. The reaction temperature is usually 300 to 450 ° C., preferably 3
It is 50 to 400 ° C.

【0007】[0007]

【実施例】以下に実施例を示し、本発明をさらに具体的
に説明する。 実施例1 高純度超微粉単結晶酸化マグネシウム(BET比表面積
140m2/g)に硝酸パラジウム水溶液を含浸させ、蒸
発乾固させた後、550℃で3時間焼成した。得られた
PdO/MgO触媒を常圧固定床流通系反応装置に充填
し、水素による還元処理を表1に示す反応温度で2時間
行った。この際のパラジウムの添加量は、1wt%であ
った。次いで、シクロヘキサノンを表1に示す温度で供
給して反応を行った。生成物をFID−GCで分析した
結果を表1に示す。
EXAMPLES The present invention will be described more concretely with reference to the following examples. Example 1 High-purity ultrafine single crystal magnesium oxide (BET specific surface area 140 m 2 / g) was impregnated with an aqueous palladium nitrate solution, evaporated to dryness, and then calcined at 550 ° C. for 3 hours. The obtained PdO / MgO catalyst was filled in a normal pressure fixed bed flow system reactor, and reduction treatment with hydrogen was carried out at the reaction temperature shown in Table 1 for 2 hours. The amount of palladium added at this time was 1 wt%. Then, cyclohexanone was supplied at the temperature shown in Table 1 to carry out the reaction. The results of FID-GC analysis of the product are shown in Table 1.

【0008】[0008]

【表1】 [Table 1]

【0009】比較例1 Pd/MgO触媒に代えて表2に記載の触媒を用いたほ
かは、実施例1と同様にして反応温度400℃で反応を
行った。結果を表2に示す。
Comparative Example 1 The reaction was carried out at a reaction temperature of 400 ° C. in the same manner as in Example 1 except that the catalyst shown in Table 2 was used instead of the Pd / MgO catalyst. The results are shown in Table 2.

【0010】[0010]

【表2】 [Table 2]

【0011】実施例2 実施例1において、パラジウムの添加量を表3に示す量
としたほかは実施例1と同様にして反応温度350℃で
反応を行った。生成物をFID−GCで分析して転化率
と選択率の経時変化を調べた結果を表3及び表4に示
す。
Example 2 A reaction was carried out at a reaction temperature of 350 ° C. in the same manner as in Example 1 except that the amount of palladium added was changed to the amount shown in Table 3. Tables 3 and 4 show the results of analysis of the products by FID-GC to examine changes with time in conversion rate and selectivity.

【0012】[0012]

【表3】 [Table 3]

【0013】[0013]

【表4】 [Table 4]

【0014】実施例3 実施例1において、高純度超微粉単結晶酸化マグネシウ
ムに代えて市販の水酸化マグネシウムを用いたほかは実
施例1と同様にして反応温度350℃で反応を行った。
生成物をFID−GCで分析して転化率と選択率の経時
変化を調べた結果を表3及び表4に示す。
Example 3 A reaction was carried out at a reaction temperature of 350 ° C. in the same manner as in Example 1 except that commercially available magnesium hydroxide was used instead of the high-purity ultrafine single crystal magnesium oxide.
Tables 3 and 4 show the results of analysis of the products by FID-GC to examine changes with time in conversion rate and selectivity.

【0015】[0015]

【発明の効果】本発明によれば、シクロヘキサノンを脱
水素反応させてフェノールを製造するに際し、活性及び
選択性が高い酸化マグネシウムとパラジウム元素からな
る触媒を用いることにより高い収率でフェノールを製造
することができる。
INDUSTRIAL APPLICABILITY According to the present invention, when a cyclohexanone is subjected to a dehydrogenation reaction to produce phenol, a catalyst comprising magnesium oxide and palladium element, which has high activity and selectivity, is used to produce phenol in a high yield. be able to.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シクロヘキサノンを酸化マグネシウムと
パラジウム元素からなる触媒の存在下に脱水素反応させ
ることを特徴とするフェノールの製造方法。
1. A method for producing phenol, which comprises subjecting cyclohexanone to a dehydrogenation reaction in the presence of a catalyst comprising magnesium oxide and palladium element.
JP5052291A 1993-03-12 1993-03-12 Production of phenol Pending JPH06263668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5052291A JPH06263668A (en) 1993-03-12 1993-03-12 Production of phenol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5052291A JPH06263668A (en) 1993-03-12 1993-03-12 Production of phenol

Publications (1)

Publication Number Publication Date
JPH06263668A true JPH06263668A (en) 1994-09-20

Family

ID=12910707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5052291A Pending JPH06263668A (en) 1993-03-12 1993-03-12 Production of phenol

Country Status (1)

Country Link
JP (1) JPH06263668A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525196A (en) * 2008-08-29 2011-09-15 エクソンモービル・ケミカル・パテンツ・インク Method for producing phenol
US8222459B2 (en) 1997-06-13 2012-07-17 Exxonmobil Chemical Patents Inc. Process for producing cyclohexanone
US9061270B2 (en) 2010-02-05 2015-06-23 Exxonmobil Chemical Patents Inc. Cyclohexanone dehydrogenation catalyst and process
US9242227B2 (en) 2010-02-05 2016-01-26 Exxonmobil Chemical Patents Inc. Dehydrogenation catalyst and process
US9249077B2 (en) 2009-07-14 2016-02-02 Exxonmobil Chemical Patents Inc. Dehydrogenation process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8222459B2 (en) 1997-06-13 2012-07-17 Exxonmobil Chemical Patents Inc. Process for producing cyclohexanone
JP2011525196A (en) * 2008-08-29 2011-09-15 エクソンモービル・ケミカル・パテンツ・インク Method for producing phenol
US8487140B2 (en) 2008-08-29 2013-07-16 Exxonmobil Chemical Patents Inc. Process for producing phenol
US9249077B2 (en) 2009-07-14 2016-02-02 Exxonmobil Chemical Patents Inc. Dehydrogenation process
US9061270B2 (en) 2010-02-05 2015-06-23 Exxonmobil Chemical Patents Inc. Cyclohexanone dehydrogenation catalyst and process
US9242227B2 (en) 2010-02-05 2016-01-26 Exxonmobil Chemical Patents Inc. Dehydrogenation catalyst and process

Similar Documents

Publication Publication Date Title
US4764498A (en) Silica-containing shaped articles and a process for their preparation
US4990655A (en) Alcohols production by hydrogenation of carboxylic acids
JPS6045938B2 (en) Method for producing oxalic acid diester hydrogenation catalyst
US3198748A (en) Refractory oxide-alkaline earth carbonate supported catalyst
EP1017495B1 (en) Process for the preparation of high activity carbon monoxide hydrogenation catalysts; the catalyst compositions, and their use
US4564642A (en) Process for the manufacture of unsaturated hydrocarbons
US4476250A (en) Catalytic process for the production of methanol
US2307421A (en) Silver catalyst and method of making the same
JP3237365B2 (en) Method for producing phenol
US4310703A (en) Process for the preparation of cyclohexanone
JPH06263668A (en) Production of phenol
JP3901220B2 (en) Method for dehydrogenating secondary cyclic alcohols
US3987101A (en) Process for preparing cycloalkanones and cycloalkanols
JPH0325224B2 (en)
US3804902A (en) Process for producing acetone
US3260683A (en) Method of preparing a catalyst composition consisting of the oxides of cobalt and magnesium and the product thereof
RU2190468C2 (en) Catalyst for dehydrogenation of cyclohexanol into cyclohexanone and method of its production
JPH1180059A (en) Production of catechol monoether or catechol
US2552300A (en) Catalytic conversion of cyclohexyl formate to cyclohexanone
JPH01294646A (en) Production of cyclohexanol and cyclohexanone
JP2958994B2 (en) Methanol dehydrogenation catalyst
US3065057A (en) Method of preparing cyanogen
JPS60257837A (en) Catalyst for decomposing/reforming methanol and its preparation
JPH08127545A (en) Production of methane from carbon dioxide
JPH07232069A (en) Preparation of hydrogenation catalyst for preparing alcohol