JPS6368249A - Method and apparatus for controlling molten surface in shifting mold type continuous caster - Google Patents
Method and apparatus for controlling molten surface in shifting mold type continuous casterInfo
- Publication number
- JPS6368249A JPS6368249A JP21243486A JP21243486A JPS6368249A JP S6368249 A JPS6368249 A JP S6368249A JP 21243486 A JP21243486 A JP 21243486A JP 21243486 A JP21243486 A JP 21243486A JP S6368249 A JPS6368249 A JP S6368249A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- molten metal
- mold space
- hot water
- water level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 7
- 239000002184 metal Substances 0.000 claims abstract description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- 238000009749 continuous casting Methods 0.000 claims description 15
- 239000000155 melt Substances 0.000 claims description 6
- 238000005266 casting Methods 0.000 claims description 5
- 239000012530 fluid Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 241000282344 Mellivora capensis Species 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、場面を一定に保持し得るようにした移動鋳型
式連鋳機の湯面制御方法及び装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method and apparatus for controlling the melt level of a moving mold type continuous casting machine, which can maintain a constant surface.
[従来の技術]
一般に移動鋳型式連鋳機は多数のブロック鋳型を無限軌
道状に連ねて鋳型を成形し、該鋳型を」二下に組合わせ
て鋳型空間を作り、該鋳型空間内の一方の開口部にタン
ディツシュノズルを挿入し、該タンディツシュノズルよ
り溶湯を供給し、且つ他方の開口端に向って、鋳型と凝
固した鋳片とを移動させて連続的に鋳造を行うものであ
り、水平移動鋳型式連鋳機や傾斜移動鋳型式連鋳機があ
る。[Prior Art] In general, a moving mold type continuous casting machine forms a mold by arranging a large number of block molds in an endless track shape, and combines the molds in two layers to create a mold space, and one side of the mold space is A tundish nozzle is inserted into the opening of the tundish nozzle, molten metal is supplied from the tundish nozzle, and the mold and solidified slab are moved toward the other open end to perform continuous casting. There are horizontal moving mold type continuous casting machines and tilting moving mold type continuous casting machines.
傾斜移動鋳型式連鋳機は、例えば第5図に示され、タン
ディツシュlに注湯された溶湯2は、タンディツシュノ
ズル3より駆動ロール4とアイドルロール5によって移
動する上下のブロック鋳型6.6間に形成された鋳型空
間7に供給され、ブロック鋳型6により、冷却、凝固さ
れ、鋳片8として機外に取出される。図中9は湯面であ
る。An inclined moving mold type continuous casting machine is shown, for example, in FIG. It is supplied to a mold space 7 formed between them, is cooled and solidified by a block mold 6, and is taken out of the machine as a slab 8. 9 in the figure is the hot water level.
[発明が解決しようとする問題点]
しかるに、上記従来装置では、タンディツシュノズル3
からの注l易量か変化する等の原因で湯面9が変動する
と、シェル発生面か変動してシェルがブレークアウトす
るおそれかあり、又ブレークアウトシたシェル片がブロ
ック鋳型6と新たに発生したシェルとの間に入り込み、
鋳片8の表面に付むしたまま機外に取出されるため、鋳
片8の表面に凹凸が生じ、製品品質が悪化する、等の問
題がある。[Problems to be Solved by the Invention] However, in the above conventional device, the tundish nozzle 3
If the melt level 9 fluctuates due to a change in the flow rate, etc., the shell generation surface may fluctuate and the shell may break out, and the shell pieces that break out may be newly formed into the block mold 6. Get between the generated shell and
Since it is taken out of the machine while still attached to the surface of the slab 8, there are problems such as unevenness on the surface of the slab 8 and deterioration of product quality.
本発明は上述の実情に鑑み、上下のブロック鋳型6.6
間に供給された溶湯の湯面を一定に制御することを目的
としてなしたものである。In view of the above-mentioned circumstances, the present invention has been developed with upper and lower block molds 6.6.
This was done for the purpose of controlling the level of the molten metal supplied during the process to a constant level.
[問題点を解決するための手段]
本発明は多数のブロック鋳型を連結して所要間隔離れた
ロールに巻掛は無限軌道状の鋳型を構成し、該無限軌道
状の鋳型を相対向面か同一方向へ移動するよう上下に配
設して鋳型空間を形成せしめ、該鋳型空間に溶湯を供給
し、ブロック鋳型により溶湯を冷却、凝固させて鋳片を
鋳造する移動鋳型式連鋳機において、前記鋳型空間内の
温度を検出し、鋳型空間内の温度分布から鋳型空間内の
溶湯の湯面を求め、該湯面と設定された湯面との偏差に
基いてブロック鋳型の移動速度を制御するか或いは鋳型
空間へ供給される溶湯の流量を制御するようにしている
。[Means for Solving the Problems] The present invention connects a large number of block molds and wraps them around rolls spaced apart from each other to form an endless track mold. In a moving mold type continuous casting machine that is arranged vertically to move in the same direction to form a mold space, supplies molten metal to the mold space, cools and solidifies the molten metal using a block mold, and casts slabs. Detecting the temperature in the mold space, determining the molten metal level in the mold space from the temperature distribution in the mold space, and controlling the moving speed of the block mold based on the deviation between the molten metal level and a set molten metal level. Alternatively, the flow rate of molten metal supplied to the mold space is controlled.
[作 用]
検出された鋳型空間の温度分布から鋳型空間内溶湯の湯
面が検出され、該場面が設定された湯面と相違する場合
にはブロック鋳型駆動用のモータ回転速度若しくは溶湯
流量が制御され、鋳型空間内の溶湯の湯面が一定になる
ように制御される。[Function] The molten metal level in the mold space is detected from the detected temperature distribution in the mold space, and if the scene differs from the set molten metal level, the rotation speed of the motor for driving the block mold or the molten metal flow rate is changed. The level of the molten metal in the mold space is controlled to be constant.
[実 施 例コ
以下、本発明の実施例を添付図面を参照しつつ説明する
。[Embodiments] Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
第1図及び第2図は本発明の一実施例で、ブロック鋳型
6.6のタンディツシュノズル3挿入部近傍から下流側
へ向けて鋳型空間7に沿い所定の間隔で熱雷対やヒート
パイプ等の温度検出器10a、lOb、lOc、10d
、lOe、lor、100を配設して鋳型空間7内の温
度を検出し得るようにし、温度検出器10a−IOgで
検出した温度信号を湯面演算装置l]へ送り得るように
し、湯面演算装置11で温度信号を基に演算した場面信
号を場面演算装置11から比較器12へ送り得るように
し、比較器12で設定器】3により設定された湯面設定
信号とlu面演算装置11から送られて来た湯面信号と
を比較し得るようにし、比較演算した場面偏差信号をモ
ータ回転数調整装置14に送り得るようにし、モータ回
転数調整装置14より指令信号によって駆動ロール4駆
動用のモータ15に指令を与え得るようにする。図中1
6はし一ドル、17はレードルストツパ、18はし一ド
ル上縁に上下へ揺動し得るよう取付けられたアーム、1
9はアーム18を介し′Cシレールストッパ17を開閉
する流体圧シリンダである。1 and 2 show an embodiment of the present invention, in which thermal lightning pairs and heat pipes are placed at predetermined intervals along the mold space 7 from the vicinity of the tundish nozzle 3 insertion part of the block mold 6.6 toward the downstream side. Temperature detectors 10a, lOb, lOc, 10d, etc.
, lOe, lor, 100 are arranged so that the temperature in the mold space 7 can be detected, and the temperature signals detected by the temperature detectors 10a to IOg can be sent to the hot water level calculation device l], and the hot water level is The scene signal computed by the computing device 11 based on the temperature signal is sent from the scene computing device 11 to the comparator 12, and the comparator 12 receives the hot water level setting signal set by the setting device ]3 and the lu surface computing device 11. The scene deviation signal obtained by the comparison calculation can be sent to the motor rotation speed adjustment device 14, and the drive roll 4 is driven by a command signal from the motor rotation speed adjustment device 14. commands can be given to the motor 15 for use. 1 in the diagram
6. The first dollar, 17 is the ladle stopper, 18 is the arm attached to the upper edge of the first dollar so as to be able to swing up and down, 1.
Reference numeral 9 denotes a fluid pressure cylinder that opens and closes the cylinder stopper 17 via the arm 18.
モータ15か駆動されることにより駆動ロール4を介し
てブロック鋳型6が矢印方向へ移動する。又流体圧シリ
ンダ19を作動させることによりし一ドルストッパ17
が開き、溶湯2がタンデイソシュ1内に注湯され、タン
ディツシュノズル3を経て鋳型空間7に供給され、冷却
、凝固して鋳片として機外に取出される。By driving the motor 15, the block mold 6 is moved in the direction of the arrow via the drive roll 4. Also, by operating the fluid pressure cylinder 19, the dollar stopper 17
is opened, and the molten metal 2 is poured into the tundish sosh 1, supplied to the mold space 7 through the tundish nozzle 3, cooled and solidified, and taken out of the machine as a slab.
鋳造時には、温度検出器10a〜10(Iにより鋳型空
間7内の温度が検出され、その信号は湯面演算装置11
へ送られて鋳型空間7内の温度分布が求められ、温度分
布から場面9が求められる。During casting, the temperature inside the mold space 7 is detected by the temperature detectors 10a to 10 (I), and the signal is sent to the hot water level calculation device 11.
The temperature distribution in the mold space 7 is determined, and the scene 9 is determined from the temperature distribution.
例えば湯面演算装置11で求めた温度分布が第3図の点
線のようになれば湯面9は温度検出器10dの位置とな
る。このように、温度検出器10a〜10dで検出した
温度を基に求めた温度分布のうち最高温度の位置を湯面
と判断するのは、湯面9上方は空間になっているため熱
伝導率が低くてブロック鋳型6を通り伝達される熱量か
少なく、又湯面9より下方ではシェル厚さh(第2図参
照)か増加するにつれてブロック鋳型6に与える熱量が
徐々に減少するためである。For example, if the temperature distribution determined by the hot water level calculating device 11 is as shown by the dotted line in FIG. 3, the hot water level 9 will be at the position of the temperature detector 10d. In this way, the position of the highest temperature in the temperature distribution determined based on the temperatures detected by the temperature detectors 10a to 10d is determined to be the hot water surface because there is a space above the hot water surface 9, so the thermal conductivity This is because the amount of heat transferred through the block mold 6 is low, and the amount of heat given to the block mold 6 gradually decreases below the hot water level 9 as the shell thickness h (see Figure 2) increases. .
例えば、設定器13て設定した湯面9か第3図の温度検
出器10bの位置であり、温度検出器10a〜lOdて
検出した温度から算出した湯面9が温度検出器11Mの
位置である場合、場面演算装置11て演算された湯面信
号は比較器12へ送られ、比較器12て湯面設定信号と
の偏差、4Lか求められ、場面偏差信号はモータ回転数
調整装置14に与えられ、モータ回転数調整装置14か
ら湯面偏差信号に対応した指令信号が出力され、モータ
15の回転速度が減少させられる。従って、駆動ロール
4延いてはブロック鋳型6の移動速度が下り、鋳造速度
が減少するため湯面9は上昇する。湯面9が設定された
湯面と同じになれば、比較器12からの出力は零となる
ため、モータ回転数調整装置14から指令信号が出力さ
れなくなり、モータI5の回転速度は変更されず定速運
転が行われる。検出された湯面9が設定された湯面より
も高い場合はモータ15は偏差に対応して増速される。For example, the hot water level 9 set by the setting device 13 is the position of the temperature detector 10b in FIG. 3, and the hot water level 9 calculated from the temperatures detected by the temperature detectors 10a to lOd is the position of the temperature detector 11M. In this case, the hot water level signal calculated by the scene calculating device 11 is sent to the comparator 12, and the comparator 12 calculates the deviation from the hot water level setting signal, 4L, and the scene deviation signal is given to the motor rotation speed adjusting device 14. Then, a command signal corresponding to the hot water level deviation signal is output from the motor rotation speed adjusting device 14, and the rotation speed of the motor 15 is decreased. Therefore, the moving speed of the driving roll 4 and the block mold 6 decreases, and the casting speed decreases, so that the molten metal level 9 rises. When the hot water level 9 becomes the same as the set hot water level, the output from the comparator 12 becomes zero, so the command signal is no longer output from the motor rotation speed adjustment device 14, and the rotation speed of the motor I5 remains unchanged. Constant speed operation is performed. If the detected hot water level 9 is higher than the set hot water level, the speed of the motor 15 is increased in accordance with the deviation.
第4図は本発明の他の実施例で、比較器12から湯面偏
差信号をサーボ弁20へ与え得るようにし流体圧ポンプ
21から流体圧シリンダ19へ送られる流体量を制御し
得るようにする。図中第1図に示す符号と同一の符号の
ものは同一のものを示す。FIG. 4 shows another embodiment of the present invention, in which a comparator 12 can give a hot water level deviation signal to a servo valve 20, so that the amount of fluid sent from a fluid pressure pump 21 to a fluid pressure cylinder 19 can be controlled. do. In the figure, the same reference numerals as those shown in FIG. 1 indicate the same parts.
比較器12からの場面偏差信号はサーボ弁20に与えら
れ、流体圧ポンプ21からの流体はサーボ弁20で制御
され、所定口の流体か流体圧シリンダ19へ導入される
。このため、レードルストツパ17の開度が場面偏差信
号に対応した開度となり、レードル16から流出してタ
ンディツシュ1へ供給される溶湯2の流量が制御される
。このためタンディツシュ1の湯面か変動してヘッド圧
か変化するため、タンディツシュノズル3から鋳型空間
7へ供給される溶湯流量が変化し、湯面9も昇降する。The scene deviation signal from the comparator 12 is applied to the servo valve 20, and the fluid from the fluid pressure pump 21 is controlled by the servo valve 20, and the fluid at a predetermined port is introduced into the fluid pressure cylinder 19. Therefore, the opening degree of the ladle stopper 17 corresponds to the scene deviation signal, and the flow rate of the molten metal 2 flowing out from the ladle 16 and being supplied to the tundish 1 is controlled. As a result, the molten metal level in the tundish 1 fluctuates and the head pressure changes, so the flow rate of molten metal supplied from the tundish nozzle 3 to the mold space 7 changes, and the molten metal level 9 also rises and falls.
例えば、湯面9が設定された場面よりも低い場合には、
レートルストツパ17の開度は大きくなり、設定された
場面よりも高い場合にはレードルストツパ17の開度は
小さくなるよう制御される。For example, if the hot water level 9 is lower than the set scene,
The opening degree of the ladle stopper 17 is controlled to be large, and when it is higher than the set scene, the opening degree of the ladle stopper 17 is controlled to be small.
なお、本発明は上述の実施例に限定されるものではなく
、温度検出器は複数なら何本設けても良いこと、その他
、本発明の要旨を逸脱しない範囲内で種々変更を加え得
ること、等は勿論である。Note that the present invention is not limited to the above-described embodiments, and that any number of temperature detectors may be provided, and that various changes may be made without departing from the gist of the present invention. Of course, etc.
[発明の効果コ
本発明の移動鋳型式連鋳機の湯面制御方法及びその装置
によれば、鋳型空間内の湯面を一定に制御できるため発
生したシェルか湯面の変動によりブレークアウトするお
それがなく、又ンエル片がブロック鋳型とシェルとの間
に入り込むおそれがないため鋳片の品質が良好になる、
等種々の優れた効果を奏し得る。[Effects of the Invention] According to the method and device for controlling the melt level in a moving mold type continuous casting machine of the present invention, the melt level in the mold space can be controlled at a constant level, so breakouts occur due to fluctuations in the shell or melt level. There is no risk of the casting pieces getting into the gap between the block mold and the shell, so the quality of the casting pieces is good.
Various excellent effects can be achieved.
第1図は本発明の移動鋳型式連鋳機の場面制御方法およ
びその装置の一実廁例の説明図、第2図は第1図の温度
検出器の部分の詳細図、第3図は温度検出器番号とfR
度との関係を表わすグラフ、第4図は本発明の移動鋳型
式連鋳機の湯面制御方法及びその装置の他の実施例の説
明図、第5図は移動鋳型式連鋳機の一般的な説明図であ
る。
図中1はタンディツシュ、2はl容l易、3はりンディ
ッシュノズル、6はブロック鋳型、7は鋳型空間、8は
鋳片、9は湯面、loa−10gは温度検出器、11は
湯面演算装置、12は比較器、13は設定器、14はモ
ータ回転数調整装置、15はモータ、16はレートル、
17はし一ドルストッパ、19は流体圧シリンダ、20
はサーボ弁、21は流体圧ポンプを示す。Fig. 1 is an explanatory diagram of an actual example of the scene control method and device for a moving mold type continuous casting machine of the present invention, Fig. 2 is a detailed view of the temperature detector portion of Fig. 1, and Fig. 3 is Temperature sensor number and fR
Fig. 4 is an explanatory diagram of another embodiment of the method and device for controlling the melt level of a moving mold type continuous casting machine of the present invention, and Fig. 5 is a general diagram of a moving mold type continuous casting machine. It is an explanatory diagram. In the figure, 1 is a tundish, 2 is a lubricant, 3 is a mold dish nozzle, 6 is a block mold, 7 is a mold space, 8 is a slab, 9 is a hot water surface, loa-10g is a temperature detector, 11 is a hot water 12 is a comparator, 13 is a setting device, 14 is a motor rotation speed adjustment device, 15 is a motor, 16 is a ratel,
17 is a dollar stopper, 19 is a fluid pressure cylinder, 20
21 represents a servo valve, and 21 represents a fluid pressure pump.
Claims (1)
ルに巻掛け無限軌道状の鋳型を構成し、該無限軌道状の
鋳型を相対向面が同一方向へ移動するよう上下に配設し
て鋳型空間を形成せしめ、該鋳型空間に溶湯を供給し、
ブロック鋳型により溶湯を冷却、凝固させて鋳片を鋳造
する移動鋳型式連鋳機において、前記鋳型空間内の温度
を検出し、鋳型空間内の温度分布から鋳型空間内の溶湯
の湯面を求め、該湯面と設定された湯面との偏差に基い
てブロック鋳型の移動速度を制御するか或いは鋳型空間
へ供給される溶湯の流量を制御することを特徴とする移
動鋳型式連鋳機の湯面制御方法。 2)多数のブロック鋳型を連結して所要間隔離れたロー
ルに巻掛け無限軌道状の鋳型を構成し、該無限軌道状の
鋳型を相対向面が同一方向へ移動するよう上下に配設し
て鋳型空間を形成せしめ、該鋳型空間に溶湯を供給し、
ブロック鋳型により溶湯を冷却、凝固させて鋳片を鋳造
する移動鋳型式連鋳機において、前記鋳型空間に沿い鋳
型空間内の温度を測定するために配設された複数の温度
検出器と、該温度検出器からの信号を基に鋳型空間内の
湯面を求める湯面演算装置と、該湯面演算装置で求めら
れた湯面と設定された湯面の偏差を求める比較器と、該
比較器からの偏差信号によりブロック鋳型駆動用のモー
タの回転速度若しくは溶湯の流量を制御する制御装置を
設けたことを特徴とする移動鋳型式連鋳機の湯面制御装
置。[Claims] 1) A large number of block molds are connected and wound around rolls separated by a required interval to form an endless track mold, and the endless track mold is made such that opposing surfaces thereof move in the same direction. arranged above and below to form a mold space, supplying molten metal to the mold space,
In a moving mold continuous casting machine that cools and solidifies molten metal using a block mold to cast slabs, the temperature in the mold space is detected, and the surface of the molten metal in the mold space is determined from the temperature distribution in the mold space. , a moving mold continuous casting machine characterized in that the moving speed of the block mold is controlled based on the deviation between the molten metal level and a set molten metal level, or the flow rate of molten metal supplied to the mold space is controlled. Hot water level control method. 2) A large number of block molds are connected and wound around rolls separated by a required interval to form an endless track mold, and the endless track molds are arranged one above the other so that their opposing surfaces move in the same direction. forming a mold space and supplying molten metal to the mold space;
A moving mold continuous casting machine that cools and solidifies molten metal using a block mold to cast slabs, includes a plurality of temperature detectors arranged along the mold space to measure the temperature within the mold space; A hot water level calculation device that calculates the hot water level in the mold space based on the signal from the temperature detector, a comparator that calculates the deviation between the hot water level calculated by the hot water level calculation device and a set hot water level, and the comparison device. 1. A melt level control device for a moving mold type continuous casting machine, characterized in that a control device is provided for controlling the rotational speed of a motor for driving a block mold or the flow rate of molten metal based on a deviation signal from the casting machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21243486A JPS6368249A (en) | 1986-09-09 | 1986-09-09 | Method and apparatus for controlling molten surface in shifting mold type continuous caster |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21243486A JPS6368249A (en) | 1986-09-09 | 1986-09-09 | Method and apparatus for controlling molten surface in shifting mold type continuous caster |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6368249A true JPS6368249A (en) | 1988-03-28 |
Family
ID=16622538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21243486A Pending JPS6368249A (en) | 1986-09-09 | 1986-09-09 | Method and apparatus for controlling molten surface in shifting mold type continuous caster |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6368249A (en) |
-
1986
- 1986-09-09 JP JP21243486A patent/JPS6368249A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030145976A1 (en) | Method and device for producing slabs of steel | |
US5242010A (en) | Method for controlling the taper of narrow faces of a liquid-cooled mold | |
JP4499927B2 (en) | Strip casting equipment | |
JPH01154850A (en) | Method for controlling plate thickness in twin roll type continuous casting machine | |
JPS6368249A (en) | Method and apparatus for controlling molten surface in shifting mold type continuous caster | |
JPH06264B2 (en) | Level control method in continuous casting | |
JP3117337B2 (en) | Spray cooling mold equipment for continuous casting | |
JPS61232044A (en) | Continuous casting method for thin sheet | |
JPS63104754A (en) | Method for controlling water volume of spray cooled mold | |
JPH07132349A (en) | Twin roll type continuous casting method | |
JPH0747199B2 (en) | Continuous casting method and its mold | |
JPS63224846A (en) | Method and apparatus for continuously casting metal strip | |
JPH0616923B2 (en) | Thin plate continuous casting machine | |
KR100544658B1 (en) | Control method for mold taper of short side plate in continuous casting of slab | |
JPH02137655A (en) | Method for measuring fluctuation in molten steel surface and method for controlling such fluctuation | |
JPH10249492A (en) | Mold for continuously casting steel | |
JPS61195764A (en) | Method and device for controlling pouring rate of continuous casting machine for thin sheet | |
JPH0615415A (en) | Method and device for twin roll continuous casting | |
JPH0526583B2 (en) | ||
JPS58221646A (en) | Method for controlling spacing between partition wall and roll for cooling in continuous casting device for steel plate | |
JP2825988B2 (en) | Method of preventing longitudinal cracks in continuous casting of thin cast slab | |
JPH0390250A (en) | Method for controlling roll temperature in twin roll type continuous casting machine | |
JPH0195854A (en) | Device for controlling molten metal surface level in mold | |
JPS62110844A (en) | Method for sealing nozzle of moving type continuous casting machine | |
JPS5835050A (en) | Tundish for continuous casting having heating function for molten metal |