JPS6367905A - Operational amplifier circuit - Google Patents

Operational amplifier circuit

Info

Publication number
JPS6367905A
JPS6367905A JP61212895A JP21289586A JPS6367905A JP S6367905 A JPS6367905 A JP S6367905A JP 61212895 A JP61212895 A JP 61212895A JP 21289586 A JP21289586 A JP 21289586A JP S6367905 A JPS6367905 A JP S6367905A
Authority
JP
Japan
Prior art keywords
current
input
voltage
circuit
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61212895A
Other languages
Japanese (ja)
Other versions
JPH0618309B2 (en
Inventor
Akira Yugawa
湯川 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61212895A priority Critical patent/JPH0618309B2/en
Priority to CA000546395A priority patent/CA1260080A/en
Priority to DE3751661T priority patent/DE3751661T2/en
Priority to US07/094,786 priority patent/US4766394A/en
Priority to EP87113261A priority patent/EP0259879B1/en
Publication of JPS6367905A publication Critical patent/JPS6367905A/en
Publication of JPH0618309B2 publication Critical patent/JPH0618309B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To expand an input voltage range up to the limit of a power supply voltage range and to prevent the generation of switching noise by combining current obtained from a pair of 1st differential amplifiers with output current obtained from a pair of 2nd differential amplifiers by a current mirror and adding the combined current to an active load when the pair of the 2nd differential amplifiers exceeds a normal operation range and circuit current is reduced. CONSTITUTION:When in-phase voltage is boosted and becomes fairly higher than a 1st reference voltage, an n-channel MOS transistor(TR) MN4 is turned off and the whole current obtain from an MN3 is allowed to flow into an MN1 and an MN2. Namely a differential amplifier circuit defining the MN1 and MN2 as input TRs and p-channel MOS transistors MP5, MP7 as loads is operated. At that time, current flowing into the MP5 and MP7 is transmitted to an the active load as current flowing into an MP6 and an MP7. Thereby, the circuit sufficiently operates up to the voltage of a terminal 4 as an input voltage. Since the sum of current transmitted to the active load always equal to the current flowing into the MN3, the generation of switching noise can be suppressed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、集積回路上に構成する演算増幅回路、特に、
入力電圧範囲が電源電圧いっばいまで安定に動作する演
算増幅回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an operational amplifier circuit configured on an integrated circuit, in particular,
The present invention relates to an operational amplifier circuit that operates stably over an input voltage range up to the power supply voltage.

(従来の技術) 従来、MO8集積回路上に構成する演算増幅回路として
、第2図に示す回路がよく知られている。この回路は、
P−チャンネルMOSトランジスタMPIOIおよびM
P102を入力トランジスタとしMP103を定電流源
とした差動対に、NチャンネルMOSトランジスタMN
IOIおよびMN102により構成される電流ミラーを
負荷とする差動増幅回路に、P−チャンネルMO8)ラ
ンジスタMP105を定電流負荷とじNチャンネルMO
8)ランジスタMN103を入力トランジスタとする反
転増幅器が接続され、この反転増幅器の入力と出力の間
にRCとCCによる位相補償回路が付加されたものであ
る。この回路は、最低入力電圧に関しては端子5に印加
される電位まで動作するが同相入力電圧の上限は次のよ
うなメカニズムできまる。
(Prior Art) Conventionally, the circuit shown in FIG. 2 is well known as an operational amplifier circuit configured on an MO8 integrated circuit. This circuit is
P-channel MOS transistors MPIOI and M
An N-channel MOS transistor MN is used as a differential pair with P102 as an input transistor and MP103 as a constant current source.
A P-channel MO8) transistor MP105 is added as a constant current load to a differential amplifier circuit whose load is a current mirror configured by IOI and MN102.
8) An inverting amplifier having the transistor MN103 as an input transistor is connected, and a phase compensation circuit using RC and CC is added between the input and output of this inverting amplifier. Regarding the lowest input voltage, this circuit operates up to the potential applied to terminal 5, but the upper limit of the common mode input voltage is determined by the following mechanism.

同相入力電圧が上昇して行くと、MP103のドレイン
電圧が上昇し、しまいにはMP103が定電流源として
動作しなくなり、供給される電流が減少する。すると前
記差動増幅回路は正常に動作しなくなる。さらに同相電
圧が上昇するとMPIOIおよびMP102がオフして
この回路はまったく働かなくなる。したがって、この回
路の同相入力電圧の上限は、端子4に加える電圧より入
力トランジスタMPIOIおよびMP102のしきいも
電圧だけ低い電圧からさらに通常1v程度低い電圧以下
でしか動作しない。この電圧はだいたい2vで、最近の
高集積回路に加えられる電圧が5v程度であるので、動
作範囲は非常に限られることになってしまう。
As the common-mode input voltage increases, the drain voltage of MP103 increases, and eventually MP103 stops operating as a constant current source, and the supplied current decreases. Then, the differential amplifier circuit no longer operates normally. When the common mode voltage further increases, MPIOI and MP102 are turned off and this circuit no longer works. Therefore, the upper limit of the common mode input voltage of this circuit is such that it can only operate at a voltage that is lower than the voltage applied to the terminal 4 by the threshold voltage of the input transistors MPIOI and MP102, and a voltage that is usually about 1 V lower. This voltage is approximately 2V, and since the voltage applied to recent highly integrated circuits is about 5V, the operating range is extremely limited.

動作範囲を広げる回路として第3図の回路が提案された
。この回路の入力段は、PチャンネルMO3)ランジス
タを入力とする差動増幅器と、NチャンネルMOSトラ
ンジスタを入力とする差動増幅器を組合せたのもので、
第2図の回路で片方の定電流回路が動作しなくなった時
もう一方を動作させるようにしたもので、1983年7
信−イーイー・ジャーナルオヅソ1ハトステート訃キフ
ト(IEEE  Journal  of  5oli
dstate circuit )の2月号36頁に記
載されている。この回路は、第2図の回路よりいくらか
は動作範囲が広いが、それでも電源電圧5vの時1.2
■から4,7vまでしか動作しないことが記載されてい
る。
The circuit shown in FIG. 3 was proposed as a circuit to expand the operating range. The input stage of this circuit is a combination of a differential amplifier whose input is a P-channel MO3) transistor and a differential amplifier whose input is an N-channel MOS transistor.
In the circuit shown in Figure 2, when one constant current circuit stops working, the other one starts working.
IEEE Journal of 5oli
It is described on page 36 of the February issue of dstate circuit. Although this circuit has a somewhat wider operating range than the circuit in Figure 2, it still has a 1.2
It is stated that it can only operate from ■ to 4.7V.

第4図は1985年インターナショナルソリッドステー
トサーキットコンファレンス ダイジェストオブテクニ
カルペーパーズ(ISSCC’85  DIGEST 
 0FTECHNICAL PAPER5)の137頁
に記載されている公知の回路である。この回路の入力段
も、pnpトランジスタを入力とする差動増幅器と、n
pn t−ランジスタを入力とする差動増幅器を組合せ
たもので、二つのモードで動作する。まス、第一のモー
Fは入力電圧が端子306の基準電圧より低い時で、こ
のときにはトランジスタQ5がオフとなりQ6およびQ
lにより作られる電流ミラーには電流が流れない。した
がって、I、を定電流源とし、QlおよびQlを入力ト
ランジスタとし、Q8 、 Q9 。
Figure 4 is from the 1985 International Solid State Circuit Conference Digest of Technical Papers (ISSCC'85 DIGEST).
This is a known circuit described on page 137 of 0FTECHNICAL PAPER 5). The input stage of this circuit also includes a differential amplifier with a pnp transistor as an input, and an n
It is a combination of differential amplifiers with pn T-transistor inputs and operates in two modes. The first mode F is when the input voltage is lower than the reference voltage at terminal 306, at which time transistor Q5 is turned off and Q6 and Q
No current flows through the current mirror created by l. Therefore, I, is a constant current source, Ql and Ql are input transistors, Q8, Q9.

QIO、QllおよびR8、R9、RIO、R11によ
り構成されるいわゆるフォールデッドカスコード段を負
荷する増幅回路として動作する。したがって、この増幅
回路の動作下限電圧は端子5に印加される電圧まである
。つぎに第二のモードにはいるのは、同相入力電圧が上
昇して定電流IIIが動作しなくなる前にトランジスタ
Q5が導通するときである。すると工、はQlおよびQ
lを流れずにQ5を流れ、QlおよびQlを入力とする
差動増幅回路は動作を止める。この電流はQ6およびQ
lにより構成される電流ミラーによりQ3およびQ4に
電流を流す。このときにはQ3およびQ4を入力トラン
ジスタとするいわゆるフォールデッドカスコード差動増
幅器となる。
It operates as an amplifier circuit that loads a so-called folded cascode stage composed of QIO, Qll, R8, R9, RIO, and R11. Therefore, the operating lower limit voltage of this amplifier circuit is up to the voltage applied to terminal 5. Next, the second mode is entered when the common mode input voltage rises and the transistor Q5 becomes conductive before the constant current III stops operating. Then, engineering is Ql and Q
The signal does not flow through I, but flows through Q5, and the differential amplifier circuit with Ql and Ql as inputs stops operating. This current is Q6 and Q
A current mirror formed by L causes current to flow through Q3 and Q4. In this case, it becomes a so-called folded cascode differential amplifier using Q3 and Q4 as input transistors.

したがって、この時の動作上限電圧は端子4に印加され
る電圧である。すなわち、この増幅器は電源電圧範囲い
っばいまで入力範囲を持っている。
Therefore, the upper limit voltage for operation at this time is the voltage applied to terminal 4. That is, this amplifier has an input range that extends to the entire power supply voltage range.

しかし、この回路は前述した二つのモードが切り変わる
とき問題である。すなわち、第一のモードではR10お
よびR11を流れる電流はそれぞれすべてQIOおよび
Qllに流れ、QlおよびQlを流れる電流はすべてそ
れぞれR8およびR9に流れる。したがって、R8を流
れる電流は、R10を流れる電流と01を流れる電流の
和である。次に第二のモードでは、RIOを流れる電流
は、R8を流れる電流と03を流れる電流である。この
二つのモードでR8およびRIOを流れる電流が変化す
るため入力電圧がこの電圧を横切るとき出力にスイッチ
ング雑音を発生させることが避けられない。したがって
、増幅器として動作させたとき波形歪を生ずる欠点を有
する。
However, this circuit presents a problem when switching between the two modes mentioned above. That is, in the first mode, all current flowing through R10 and R11 flows through QIO and Qll, respectively, and all current flowing through Q1 and Ql flows through R8 and R9, respectively. Therefore, the current flowing through R8 is the sum of the current flowing through R10 and the current flowing through 01. Next, in the second mode, the current flowing through RIO is the current flowing through R8 and the current flowing through 03. Since the current flowing through R8 and RIO changes in these two modes, it is inevitable that switching noise will be generated at the output when the input voltage crosses this voltage. Therefore, it has the disadvantage of causing waveform distortion when operated as an amplifier.

(発明が解決しようとしている問題点)従来技術による
回路ではこのように入力動作範囲の制限もしくはスイッ
チング雑音の発生は避けられなかった。本発明の目的は
、かかる従来技術の問題点を解決し、入力動作範囲を電
源電圧いっばいまで拡大するとともに波形歪も発生しな
い演算増幅回路を提供することにある。
(Problems to be Solved by the Invention) In circuits according to the prior art, such limitations in the input operating range or generation of switching noise cannot be avoided. SUMMARY OF THE INVENTION It is an object of the present invention to provide an operational amplifier circuit which solves the problems of the prior art, expands the input operating range to the maximum power supply voltage, and does not generate waveform distortion.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する演算増
幅回路は、一対の入力端子と;これら入力端子に制御電
極がそれぞれ接続されソース電極が共通接続された第一
の極性を有するトランジスタ対からなる第一の差動対と
;前記一対の入力端子に制御電極がそれぞれ接続され、
ソース電極が共通接続された第二の極性を有するトラン
ジスタ対からなる第二の差動対と;一端が前記第一の差
動対の共通接続ソース電極に接続され他端が第一の電圧
源に接続された定電流源と;前記第一の差動対のそれぞ
れのドレイン電極を入力とし、第二の電圧源を基準電極
とし、出力をそれぞれ前記第二の差動対のドレイン電極
に入力端子に対して交叉結合の関係で接続された第一お
よび第二の電流ミラー回路と;制御電極が基準電圧源に
接続され、ソース電極が前記第一の差動対の共通接続ソ
ース電極に接続された第一の極性を有するトランジスタ
と;このトランジスタのドレイン電極を入力とし、前記
第二の電圧源を基準電極とし。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the operational amplifier circuit provided by the present invention has a pair of input terminals; control electrodes are respectively connected to these input terminals, and source electrodes are commonly connected. a first differential pair consisting of a transistor pair having a first polarity; a control electrode is respectively connected to the pair of input terminals;
a second differential pair consisting of a pair of transistors having a second polarity whose source electrodes are commonly connected; one end connected to the commonly connected source electrode of the first differential pair and the other end connected to a first voltage source; a constant current source connected to; the respective drain electrodes of the first differential pair as inputs, the second voltage source as a reference electrode, and the outputs respectively input to the drain electrodes of the second differential pair; first and second current mirror circuits connected in a cross-coupled relationship to the terminals; a control electrode connected to a reference voltage source and a source electrode connected to a common connected source electrode of said first differential pair; a transistor having a first polarity; a drain electrode of the transistor is used as an input, and the second voltage source is used as a reference electrode.

出力を前記第二の差動対の共通接続ソース電極に接続さ
れた第三の電流ミラー回路と;前記第二の差動対の一方
のドレイン電極を入力とし、その他方のドレイン電極を
出力とし、前記第一の電源を基準電位とする第四の電流
ミラー回路と;前記第四の電流ミラー回路の出力を入力
とする反転増幅器と;この反転増幅器の入力と出力の間
に介在させてある位相補償回路とを有することを特徴と
する。
a third current mirror circuit having an output connected to a commonly connected source electrode of the second differential pair; one drain electrode of the second differential pair serving as an input and the other drain electrode serving as an output; , a fourth current mirror circuit whose reference potential is the first power supply; an inverting amplifier whose input is the output of the fourth current mirror circuit; and an inverting amplifier interposed between the input and output of the inverting amplifier. It is characterized by having a phase compensation circuit.

(作用) 本回路は、第二の差動増幅対が正常動作の範囲を超え回
路電流が減少する時、その減少分相当の増幅を第一の差
動増幅対が受持ち、第一の差動増幅対の電流を電流ミラ
ーにより第二の差動増幅対の出力電流と合成してアクテ
ィブ負荷に加えて差動増幅出力電圧を得ているから、入
力電圧範囲を電源電圧範囲いっばいに拡大できる。きら
に、同相入力電圧値によらずアクティブ負荷を流れる電
流は常に一定であるから、電流ミラー回路の出力電圧に
従来回路のようなスイッチング雑音の発生することがな
い。
(Function) In this circuit, when the second differential amplifier pair exceeds the normal operating range and the circuit current decreases, the first differential amplifier pair takes over the amplification equivalent to the decrease, and the first differential amplifier pair The current of the amplifier pair is combined with the output current of the second differential amplifier pair using a current mirror to obtain the differential amplifier output voltage in addition to the active load, so the input voltage range can be expanded to the power supply voltage range at once. . Furthermore, since the current flowing through the active load is always constant regardless of the common-mode input voltage value, the output voltage of the current mirror circuit does not suffer from switching noise unlike conventional circuits.

(実施例) 以下、MO8型集積回路上に実現する実施例を挙げ本発
明を一層詳しく説明する。第1図はその実施例の回路図
である。
(Example) Hereinafter, the present invention will be described in more detail with reference to an example realized on an MO8 type integrated circuit. FIG. 1 is a circuit diagram of this embodiment.

第1図実施例は、入力端子1.2にゲート電極がそれぞ
れ接続されソース電極が共通接続されたNチャンネルM
O3)ランジスタMNIおよびMN2からなる第一の差
動対と、ゲート電極が入力端子1,2にそれぞれ接続さ
れソース電極が共通接続されたPチャンネルMO3)ラ
ンジスタMPIおよびMP2からなる第二の差動対と、
ドレイン電極が第一の差動対の共通ソースに接続され、
ソース電極が第一の電圧源5に接続され、ゲート電極が
定電流源ICI、MNIOおよびMNllの直列接続に
よりなる基準電圧発生回路により作られる第一および第
二の基準電圧のうち第二の基準電圧に接続されてできる
定電流源MN3と、前記第一の差動対のそれぞれのドレ
イン電極を入力とし第二の電圧源4を基準電極としMP
6のドレイン電極がMP2のドレイン電極に、MP8の
ドレイン電極がMPIのドレイン電極に交差結合で接続
され、P型MO8)ランジスタMP5゜MP6およびM
P7.MP8からそれぞれなる第一および第二の電流ミ
ラー回路と、ゲート電極が前記第一の基準電圧に接続さ
れソース電極が前記第一の差動対の共通接続ソース電極
に接続されたN型MOSトランジスタMN4と、MN4
のドレイン電極を入力とし前記第二の差動対の共通ソー
スを出力とするP型MO8)ランジスタMP3およびM
P4からなる第三の電流ミラー回路と、前記第二の差動
対の一方のドレイン電極を入力とし他方のドレイン電極
を出力とするNチャンネルMO8)ランジスタMN5お
よびMN6からなる第四の電流ミラー回路と、定電流−
fllXI C2を負荷としMN6のドレイン電極を入
力とするNチャンネルMO3)ランジスタMN7を駆動
トランジスタとする反転増幅器と、この反転増幅器の入
力と出力の間に直列接続された抵抗RCおよび蓄電器C
Cからなる位相補償回路とにより成立っている。
The embodiment shown in FIG.
O3) A first differential pair consisting of transistors MNI and MN2, and a P-channel MO whose gate electrodes are connected to input terminals 1 and 2, respectively, and whose source electrodes are commonly connected.3) A second differential pair consisting of transistors MPI and MP2. vs.
a drain electrode is connected to a common source of the first differential pair;
A second reference voltage of the first and second reference voltages is generated by a reference voltage generation circuit whose source electrode is connected to the first voltage source 5 and whose gate electrode is made up of a series connection of constant current sources ICI, MNIO, and MNll. A constant current source MN3 connected to a voltage and a drain electrode of each of the first differential pair are used as inputs, and a second voltage source 4 is used as a reference electrode.
The drain electrode of 6 is connected to the drain electrode of MP2, the drain electrode of MP8 is connected to the drain electrode of MPI by cross-coupling, and the P-type MO8) transistors MP5, MP6 and M
P7. first and second current mirror circuits each consisting of an MP8; and an N-type MOS transistor having a gate electrode connected to the first reference voltage and a source electrode connected to the common connection source electrode of the first differential pair. MN4 and MN4
The P-type MO8) transistors MP3 and M
a third current mirror circuit consisting of P4; and a fourth current mirror circuit consisting of transistors MN5 and MN6; N-channel MO8) having one drain electrode of the second differential pair as input and the other drain electrode as output; and constant current −
N-channel MO3) with fllXI C2 as the load and the drain electrode of MN6 as the input; an inverting amplifier with the transistor MN7 as the driving transistor; a resistor RC and a capacitor C connected in series between the input and output of this inverting amplifier;
It is realized by a phase compensation circuit consisting of C.

本回路の動作は、まず同相入力電圧が電源5に加えられ
る電圧に近い場合から述べる。このときには、MHIお
よびMN2はオフとなるから定電流源MN3の電流はM
N4を通ってMP4に流れる。すると電流ミラー作用に
よりMP3にもMP4に流れる電流に等しい電流が流れ
る。入力電圧が端子1と2で等しい場合にはMP3に流
れる電流の半分ずつがMPIとMP2に流れ、MPIと
MP2を入力トランジスタとし、MN5およびMN6を
アクティブ負荷とする差動増幅器とじて働く。次段の反
転増幅器は演算増幅器としての利得をさらに増加させる
ためのもので必ずしもこの回路である必要はない。また
、位相補償回路は利得段2段の演算増幅器として安定に
動作きせるためのものである。同相電圧が上昇すると、
MNIおよびMN2に電流が流れ始める。MN3を流れ
る電流は一定であるのでこの流れる電流値だけMP4に
流れる電流は減少する。MNlおよびMN2に流れる電
流はそれぞれMP5とMP6およびMP7とMP8によ
り構成される電流ミラー回路によりMP2およびMPI
のドレイン電流と合成される。したがって合成された電
流値はそれぞれMN3に流れる電流値の半分でかわらな
い。
The operation of this circuit will be described first when the common mode input voltage is close to the voltage applied to the power supply 5. At this time, MHI and MN2 are turned off, so the current of constant current source MN3 is M
It flows through N4 to MP4. Then, due to the current mirror effect, a current equal to the current flowing through MP4 also flows through MP3. When the input voltages are equal at terminals 1 and 2, half of the current flowing through MP3 flows through MPI and MP2, which functions as a differential amplifier with MPI and MP2 as input transistors and MN5 and MN6 as active loads. The inverting amplifier in the next stage is for further increasing the gain as an operational amplifier, and does not necessarily have to be this circuit. Further, the phase compensation circuit is intended to operate stably as an operational amplifier with two gain stages. When the common mode voltage increases,
Current begins to flow through MNI and MN2. Since the current flowing through MN3 is constant, the current flowing through MP4 decreases by the value of this current flowing. The currents flowing through MNl and MN2 are connected to MP2 and MPI by current mirror circuits composed of MP5 and MP6 and MP7 and MP8, respectively.
is combined with the drain current of Therefore, the combined current value remains unchanged at half of the current value flowing through MN3.

同相電圧がさらに上昇して第一の基準電圧よりかなり高
くなると、MN4はオフとなり、MN3の電流はすべて
MNIとMN2に流れる。すなわちMNIとMN2を入
力トランジスタとし、MP5とMP7を負荷とする差動
増幅回路として動作する。この時、MP5とMP7に流
れる電流は、MP6とMP8を流れる電流として前記ア
クティプ負荷に伝達される。したがってこの回路は入力
電圧として端子4の電圧まで十分動作する。さらに、こ
のアクティブ負荷に伝達される電流の和は常にMN3に
流れる電流と等しいことが保証されており、従来技術の
ようなスイッチング雑音が発生することもない。
When the common mode voltage increases further and becomes significantly higher than the first reference voltage, MN4 is turned off and all of the current in MN3 flows through MNI and MN2. That is, it operates as a differential amplifier circuit with MNI and MN2 as input transistors and MP5 and MP7 as loads. At this time, the current flowing through MP5 and MP7 is transmitted to the active load as current flowing through MP6 and MP8. Therefore, this circuit operates satisfactorily up to the voltage at terminal 4 as the input voltage. Furthermore, the sum of the currents transmitted to this active load is always guaranteed to be equal to the current flowing through MN3, and switching noise unlike the prior art does not occur.

なお、本発明では、第1図実施例におけるNチャンネル
MOSトランジスタとPチャンネルMOSトランジスタ
を入替えた回路にしても差支えない。また、この実施例
では、MOSトランジスタを用いたが、これをバイポー
ラトランジスタに置き換えても本発明は実現できる。バ
イポーラトランジスタを用いる場合には、望ましくは電
圧源4および電圧源5に直接接続されるエミッタ電極に
はエミッタ電極と電圧源の間に数十オームから数百オー
ムの抵抗を直列に接続するのがよい。
In the present invention, a circuit may be used in which the N-channel MOS transistor and the P-channel MOS transistor in the embodiment of FIG. 1 are exchanged. Furthermore, although a MOS transistor is used in this embodiment, the present invention can be realized even if this is replaced with a bipolar transistor. When using bipolar transistors, it is preferable to connect a resistor of several tens of ohms to several hundred ohms in series between the emitter electrodes directly connected to the voltage sources 4 and 5 and between the emitter electrodes and the voltage sources. good.

(発明の効果) 本発明の回路によれば従来MO8技術によれば不可能で
あった電極電圧一杯までの動作が可能となる。さらに、
バイポーラの従来技術では動作モードが切り変わる時ス
イッチング雑音の発生することが避けられなかったが、
本発明によれば発生しない。
(Effects of the Invention) According to the circuit of the present invention, operation up to the full electrode voltage, which was impossible with the conventional MO8 technology, is possible. moreover,
Conventional bipolar technology inevitably generates switching noise when switching between operating modes.
According to the present invention, this does not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路図、第2図は従来
一般的に用いられていたCMO8演算増幅回路を示す回
路図、第3図は入力範囲を第2図より広げた従来技術に
よるCMO8演算増幅回路の回路図、第4図は入力範囲
が電源電圧一杯まで取れる公知のバイポーラ演算増幅回
路を示す回路図である。
Fig. 1 is a circuit diagram showing an embodiment of the present invention, Fig. 2 is a circuit diagram showing a CMO8 operational amplifier circuit commonly used in the past, and Fig. 3 is a conventional circuit diagram showing an input range wider than that in Fig. 2. FIG. 4 is a circuit diagram of a known bipolar operational amplifier circuit whose input range can be extended to the full power supply voltage.

Claims (1)

【特許請求の範囲】[Claims] 一対の入力端子と;これら入力端子に制御電極がそれぞ
れ接続されソース電極が共通接続された第一の極性を有
するトランジスタ対からなる第一の差動対と;前記一対
の入力端子に制御電極がそれぞれ接続され、ソース電極
が共通接続された第二の極性を有するトランジスタ対か
らなる第二の差動対と;一端が前記第一の差動対の共通
接続ソース電極に接続され他端が第一の電圧源に接続さ
れた定電流源と;前記第一の差動対のそれぞれのドレイ
ン電極を入力とし、第二の電圧源を基準電極とし、出力
をそれぞれ前記第二の差動対のドレイン電極に入力端子
に対して交叉結合の関係で接続された第一および第二の
電流ミラー回路と;制御電極が基準電圧源に接続され、
ソース電極が前記第一の差動対の共通接続ソース電極に
接続された第一の極性を有するトランジスタと;このト
ランジスタのドレイン電極を入力とし、前記第二の電圧
源を基準電極とし、出力を前記第二の差動対の共通接続
ソース電極に接続された第三の電流ミラー回路と;前記
第二の差動対の一方のドレイン電極を入力とし、その他
方のドレイン電極を出力とし、前記第一の電源を基準電
位とする第四の電流ミラー回路と;前記第四の電流ミラ
ー回路の出力を入力とする反転増幅器と;この反転増幅
器の入力と出力の間に介在させてある位相補償回路とを
有することを特徴とする演算増幅回路。
a pair of input terminals; a first differential pair consisting of a pair of transistors having a first polarity, each of which has a control electrode connected to these input terminals and whose source electrode is commonly connected; a first differential pair having a control electrode connected to the pair of input terminals; a second differential pair consisting of a pair of transistors having a second polarity, which are connected to each other, and whose source electrodes are commonly connected; one end is connected to the commonly connected source electrode of the first differential pair and the other end is a constant current source connected to one voltage source; the respective drain electrodes of the first differential pair are used as inputs, the second voltage source is used as a reference electrode, and the outputs are respectively connected to the second differential pair; first and second current mirror circuits connected to the drain electrode in a cross-coupled relationship to the input terminal; a control electrode connected to the reference voltage source;
a transistor having a first polarity, the source electrode of which is connected to the commonly connected source electrode of the first differential pair; the drain electrode of this transistor is the input, the second voltage source is the reference electrode, and the output is a third current mirror circuit connected to the commonly connected source electrodes of the second differential pair; having one drain electrode of the second differential pair as an input and the other drain electrode as an output; a fourth current mirror circuit whose reference potential is the first power supply; an inverting amplifier whose input is the output of the fourth current mirror circuit; and a phase compensation interposed between the input and output of the inverting amplifier. An operational amplifier circuit comprising:
JP61212895A 1986-09-10 1986-09-10 Operational amplifier circuit Expired - Lifetime JPH0618309B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61212895A JPH0618309B2 (en) 1986-09-10 1986-09-10 Operational amplifier circuit
CA000546395A CA1260080A (en) 1986-09-10 1987-09-09 Operational amplifier circuit having wide operating range
DE3751661T DE3751661T2 (en) 1986-09-10 1987-09-10 Operational amplifier circuit with a wide operating range
US07/094,786 US4766394A (en) 1986-09-10 1987-09-10 Operational amplifier circuit having wide operating range
EP87113261A EP0259879B1 (en) 1986-09-10 1987-09-10 Operational amplifier circuit having wide operating range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61212895A JPH0618309B2 (en) 1986-09-10 1986-09-10 Operational amplifier circuit

Publications (2)

Publication Number Publication Date
JPS6367905A true JPS6367905A (en) 1988-03-26
JPH0618309B2 JPH0618309B2 (en) 1994-03-09

Family

ID=16630043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61212895A Expired - Lifetime JPH0618309B2 (en) 1986-09-10 1986-09-10 Operational amplifier circuit

Country Status (1)

Country Link
JP (1) JPH0618309B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608352A (en) * 1993-12-22 1997-03-04 Kabushiki Kaisha Toshiba Differential input circuit capable of broadening operation range of input common mode potential
US5963084A (en) * 1997-06-11 1999-10-05 Philips Electronics North America Corporation Gm-C cell with two-stage common mode control and current boost
JP2005303664A (en) * 2004-04-12 2005-10-27 Ricoh Co Ltd Differential amplifying circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554515A (en) * 1984-07-06 1985-11-19 At&T Laboratories CMOS Operational amplifier
US4555673A (en) * 1984-04-19 1985-11-26 Signetics Corporation Differential amplifier with rail-to-rail input capability and controlled transconductance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4555673A (en) * 1984-04-19 1985-11-26 Signetics Corporation Differential amplifier with rail-to-rail input capability and controlled transconductance
US4554515A (en) * 1984-07-06 1985-11-19 At&T Laboratories CMOS Operational amplifier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608352A (en) * 1993-12-22 1997-03-04 Kabushiki Kaisha Toshiba Differential input circuit capable of broadening operation range of input common mode potential
US5963084A (en) * 1997-06-11 1999-10-05 Philips Electronics North America Corporation Gm-C cell with two-stage common mode control and current boost
JP2005303664A (en) * 2004-04-12 2005-10-27 Ricoh Co Ltd Differential amplifying circuit
US7183852B2 (en) 2004-04-12 2007-02-27 Ricoh Company, Ltd. Differential amplifying method and apparatus operable with a wide range input voltage

Also Published As

Publication number Publication date
JPH0618309B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
US4766394A (en) Operational amplifier circuit having wide operating range
US6265941B1 (en) Balanced differential amplifier having common mode feedback with kick-start
US6556081B2 (en) Single-ended, ultra low voltage class AB power amplifier architecture having a common-mode feedback quiescent current control circuit
US6437645B1 (en) Slew rate boost circuitry and method
US5703497A (en) Current source responsive to supply voltage variations
US5475343A (en) Class AB complementary output stage
US5805021A (en) High swing low power general purpose operational amplifier
JP3422706B2 (en) Startup circuit of reference voltage generator
JPS6367905A (en) Operational amplifier circuit
US6822513B1 (en) Symmetric and complementary differential amplifier
JP3971605B2 (en) Gain boost operational amplification circuit
JPH0828630B2 (en) Operational amplifier circuit
JPS6367906A (en) Operational amplifier circuit
JPH0685570A (en) Operational amplifier circuit device
US6078220A (en) Complementary class AB current amplifier
JPH0630416B2 (en) Operational amplifier circuit
JPH0595231A (en) Output circuit
JP3119221B2 (en) Operational amplifier
JP2001060832A (en) Differential amplifier
KR100243336B1 (en) Differential amplifier
JPH1188075A (en) Cmos operational amplifier
JPH01188008A (en) Operational amplifier circuit
JPH10178320A (en) Differential amplifier in semiconductor integrated circuit
JPH04117010A (en) Amplifier circuit
CN113922766A (en) Rail-to-rail operational amplifier and method for constant transconductance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term