JPS6367363B2 - - Google Patents

Info

Publication number
JPS6367363B2
JPS6367363B2 JP6630880A JP6630880A JPS6367363B2 JP S6367363 B2 JPS6367363 B2 JP S6367363B2 JP 6630880 A JP6630880 A JP 6630880A JP 6630880 A JP6630880 A JP 6630880A JP S6367363 B2 JPS6367363 B2 JP S6367363B2
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
transducer
crystal plate
piezoelectric crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6630880A
Other languages
Japanese (ja)
Other versions
JPS56162523A (en
Inventor
Hiroaki Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP6630880A priority Critical patent/JPS56162523A/en
Publication of JPS56162523A publication Critical patent/JPS56162523A/en
Publication of JPS6367363B2 publication Critical patent/JPS6367363B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02921Measures for preventing electric discharge due to pyroelectricity

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【発明の詳細な説明】 本発明は弾性表面波素子に係り、特に焦電性を
有する圧電結晶板上に励振変換器及び受信変換器
が形成された弾性表面波素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface acoustic wave device, and more particularly to a surface acoustic wave device in which an excitation transducer and a reception transducer are formed on a piezoelectric crystal plate having pyroelectric properties.

弾性表面波素子は圧電板上に励振変換器、受信
変換器等を形成したものであり、励振変換器によ
り電気信号を弾性表面波信号に変換し、又受信変
換器により弾性表面波信号を電気信号に変換す
る。そして、かゝる弾性表面波素子はフイルタ、
遅延線、発振器等に利用されている。
A surface acoustic wave element has an excitation transducer, a reception transducer, etc. formed on a piezoelectric plate.The excitation transducer converts an electrical signal into a surface acoustic wave signal, and the reception transducer converts a surface acoustic wave signal into an electrical one. Convert to signal. Such a surface acoustic wave element is a filter,
Used in delay lines, oscillators, etc.

第1図はかゝる弾性表面波素子をフイルタに適
用した弾性表面波フイルタの構成の一例を示すも
ので、同図aは弾性表面波素子の斜視図、同図b
は弾性表面波フイルタを含む一般的フイルタ回路
を図解的に示した図である。弾性表面波フイルタ
は圧電気現象によつて圧電体を伝播する特定の振
動数の弾性表面波を利用してフイルタ機能を持た
せたもので、図中11は圧電基板であり、この圧
電基板表面にはフオトエツチング等によりアルミ
ニウム等の導電性薄膜がすだれ状に形成されてい
る。そして、一方のすだれ状薄膜は励振変換器1
2Sとして、又他方のすだれ状薄膜は受信変換器
12Rとして機能し、圧電基板11と各すだれ状
薄膜とで弾性表面波素子が形成されている。い
ま、弾性表面波フイルタ10の励振変換器12S
に接続する入力端子13inに高周波入力信号fin
が入力されたとする。このとき弾性表面波フイル
タ10の表面を伝播する弾性表面波Wの音速をu
とすれば該表面波の波長λは λ=u/ で表わされる。ただし、は前記高周波入力信号
finのうち波すべき周波数である。
Fig. 1 shows an example of the configuration of a surface acoustic wave filter in which such a surface acoustic wave element is applied to the filter, and Fig. 1a is a perspective view of the surface acoustic wave element, and Fig. 1b is a perspective view of the surface acoustic wave element.
1 is a diagram schematically showing a general filter circuit including a surface acoustic wave filter. A surface acoustic wave filter has a filter function by using surface acoustic waves of a specific frequency that propagate through a piezoelectric material due to a piezoelectric phenomenon. In the figure, 11 is a piezoelectric substrate, and the surface of this piezoelectric substrate A conductive thin film of aluminum or the like is formed in the shape of a blind by photoetching or the like. One of the interdigital thin films is the excitation converter 1.
2S and the other interdigital thin film function as a receiving transducer 12R, and the piezoelectric substrate 11 and each interdigital thin film form a surface acoustic wave element. Now, the excitation converter 12S of the surface acoustic wave filter 10
The high frequency input signal fin is connected to the input terminal 13in.
Suppose that is input. At this time, the sound speed of the surface acoustic wave W propagating on the surface of the surface acoustic wave filter 10 is u
Then, the wavelength λ of the surface wave is expressed as λ=u/. However, is the high frequency input signal
This is the frequency of fin that should be waved.

ところで励振変換器12S側において、入力電
極Sから伸びるすだれ状電極14とアース電極E
から伸びるすだれ状電極14′との間に前記高周
波入力信号が印加されるとこれら電極間に存在す
る圧電体が圧電気現象によつて伸縮し表面層に沿
つて弾性表面波を誘起する。したがつて、前式に
示すように波すべき周波数をとし、又入力電
極Sから伸びるすだれ状電極14の配列ピツチ並
びにアース電極Eから伸びるすだれ状電極14′
の配列ピツチを共にλに等しく設定すれば弾性表
面波フイルタ10の表面には波長λすなわち周波
数の弾性表面波のみが伝播することになり周波
数なる出力信号が出力端子13outより得られ、
負荷Rに送出される。
By the way, on the excitation converter 12S side, the interdigital electrode 14 extending from the input electrode S and the ground electrode E
When the high frequency input signal is applied between the transducer and the interdigital electrode 14' extending from the transducer, the piezoelectric material existing between these electrodes expands and contracts due to the piezoelectric phenomenon, inducing surface acoustic waves along the surface layer. Therefore, the frequency to be waved is set as shown in the previous equation, and the arrangement pitch of the interdigital electrodes 14 extending from the input electrode S and the interdigital electrode 14' extending from the ground electrode E are determined.
If the array pitches of both are set equal to λ, only the surface acoustic waves of the wavelength λ, that is, the frequency, will propagate on the surface of the surface acoustic wave filter 10, and an output signal of the frequency will be obtained from the output terminal 13out.
is sent to load R.

以上のように動作する弾性表面波フイルタは高
周波数帯域におけるバンドパスフイルタとして特
に有効に利用できるものであり、又その外形寸法
は高々数mm角と小さく極めて有効である。尚、圧
電基板11としては水晶を用いることができるが
水晶の電気機械結合係数は小さいため低損失の弾
性表面波フイルタの作成が困難である。そこで一
般には電気機械結合係数の大きなLiNbO3
LiTaO3等が圧電基板に用いられている。しか
し、LiNbO3、LiTaO3には後述する焦電性とい
う性質があるため急激な温度変化があると、たと
えば3分乃至1時間程度の間に40℃程度の温度変
化があると弾性表面波フイルタの入力端子または
出力端子に放電による複数個の不要パルスが現わ
れ、該フイルタを用いる機器の誤動作を招来す
る。以上、弾性表面波フイルタについて説明した
が、弾性表面波フイルタに限らず一般に焦電性を
有する圧電結晶板を用いた弾性表面波素子の入出
力端子には、急激な温度変化があると焦電性に基
づく放電のために不要パルスが現われる。尚、こ
こで焦電性とは結晶の温度を変化させた時、該温
度変化に対する結晶の自発分極1P(1Pは温度の関
数)の変化分が結晶表面に現われて結晶上の2点
間に電位差を発生する現象をいう。
The surface acoustic wave filter that operates as described above can be used particularly effectively as a bandpass filter in a high frequency band, and its external dimensions are small, at most a few mm square, making it extremely effective. Although quartz crystal can be used as the piezoelectric substrate 11, since the electromechanical coupling coefficient of quartz crystal is small, it is difficult to create a surface acoustic wave filter with low loss. Therefore, LiNbO 3 , which has a large electromechanical coupling coefficient, is generally used.
LiTaO 3 etc. are used for piezoelectric substrates. However, since LiNbO 3 and LiTaO 3 have the property of pyroelectricity, which will be described later, if there is a sudden temperature change, for example, a temperature change of about 40°C over a period of about 3 minutes to 1 hour, the surface acoustic wave filter will fail. A plurality of unnecessary pulses due to discharge appear at the input terminal or output terminal of the filter, leading to malfunction of equipment using the filter. As explained above about surface acoustic wave filters, the input and output terminals of not only surface acoustic wave filters but also general surface acoustic wave elements using piezoelectric crystal plates with pyroelectricity are pyroelectrically generated when there is a sudden temperature change. Unwanted pulses appear due to gender-based discharges. Pyroelectricity here means that when the temperature of a crystal is changed, a change in the crystal's spontaneous polarization 1P (1P is a function of temperature) appears on the crystal surface, and a polarization occurs between two points on the crystal. A phenomenon that generates a potential difference.

急激な温度変化があつたとき焦電性の圧電結晶
板を用いた弾性表面波素子の入力端子に不要パル
スが発生するという現象は次のように説明でき
る。即ち、焦電性によつて生じた電荷が結晶の構
造的不均一のために一様ではなくなり結晶表面上
で強電界を作り、その部分の絶縁破壊電圧を越え
ることによつてせん光性を伴つた放電が起り、そ
の放電によつてパルス性の信号が入出力電極で検
出されたものである。
The phenomenon in which unnecessary pulses are generated at the input terminal of a surface acoustic wave element using a pyroelectric piezoelectric crystal plate when a sudden temperature change occurs can be explained as follows. In other words, the charge generated by pyroelectricity is not uniform due to the structural non-uniformity of the crystal, creating a strong electric field on the crystal surface, which exceeds the dielectric breakdown voltage of that area and causes the fluorescence to change. An accompanying discharge occurs, and a pulsed signal is detected at the input and output electrodes due to the discharge.

実際、弾性表面波素子基板を−30℃から50℃の
間で急冷又は急熱すると放電によるせん光が観測
され、又温度変化の勾配(時間的温度変化の割
合)を10℃/分乃至1℃/分として温度を変化さ
せるとパルスの発生回数は勾配が急であればある
程多いことが認められた。
In fact, when a surface acoustic wave device substrate is rapidly cooled or heated between -30°C and 50°C, flashing due to discharge is observed, and the gradient of temperature change (temporal temperature change rate) is increased from 10°C/min to 1°C. When the temperature was changed in degrees Celsius/min, it was found that the steeper the slope, the more pulses were generated.

第2図はかゝるせん光の発生を説明するもの
で、同図a,bは共に写真乾板上に記録したせん
光発生状態図で、aは温度サイクル1周期の間に
おける、bは温度サイクル3周期の間におけるせ
ん光発生状態図である。尚、第1図と同一部分に
は同一符号を付しその詳細な説明は省略する。
Figure 2 explains the generation of such a flash of light. Figures a and b are both diagrams of the flash light generation state recorded on a photographic plate, where a is the temperature during one temperature cycle and b is the temperature. FIG. 3 is a diagram showing a flashlight generation state during three cycles. Note that the same parts as in FIG. 1 are given the same reference numerals, and detailed explanation thereof will be omitted.

図中、21は写真乾板上に白く写つた放電部分
を示すもので、温度サイクル1周期の間では弾性
表面波素子の辺縁部で放電によるせん光が発生
し、3周期後には弾性表面素子の全面で放電によ
るせん光が発生している。
In the figure, reference numeral 21 indicates a discharge area that appears white on the photographic plate. During one temperature cycle, flashing due to discharge occurs at the edge of the surface acoustic wave element, and after three cycles, the surface acoustic wave element Flashing light due to discharge is occurring over the entire surface of the area.

このように焦電性により放電が生じれば、パル
ス性の不要信号が入出力電極で生じ機器の誤動作
を引起こす。
If discharge occurs due to pyroelectricity in this way, pulsed unnecessary signals are generated at the input/output electrodes, causing equipment malfunction.

このため、本発明者はかかる放電を防止するこ
とができる弾性表面波素子を既に提案している。
以下、この既提案の弾性表面波素子について説明
する。
For this reason, the present inventor has already proposed a surface acoustic wave element that can prevent such discharge.
This already proposed surface acoustic wave device will be explained below.

第3図は放電発生を説明する説明図、第4図は
第3図の等価回路図であり、図中、31は焦電性
を有する圧電結晶基板、32,33は単位面積を
有する電極、34,35はリード線、36は基板
上の水分、ゴミ等の汚れである。
FIG. 3 is an explanatory diagram for explaining discharge generation, and FIG. 4 is an equivalent circuit diagram of FIG. 34 and 35 are lead wires, and 36 is dirt such as moisture and dust on the substrate.

今、圧電結晶板31の単位面積当りに生じる自
発分極の大きさをPsとすると、該単位面積から
流れ出す焦電流ipは(1)式によつて表わされる。
Now, assuming that the magnitude of spontaneous polarization generated per unit area of the piezoelectric crystal plate 31 is Ps, the pyroelectric current ip flowing from the unit area is expressed by equation (1).

ip=dPs/dt=dPs/dT・dT/dt (1) 周囲状況が理想的な誘導体で囲まれている場合
にはこの成分は電気変位Dの変化として蓄えられ
るが、実際には結晶面上の汚れや水分によつて
除々に放電されると考えられる。第4図は第3図
の等価回路図であり、rLは水分、汚れ等による抵
抗、Cxは沿面放電経路の容量、Cdは電極32,
33間の結晶の静電容量である。
ip=dPs/dt=dPs/dT・dT/dt (1) If the surroundings are surrounded by an ideal dielectric, this component is stored as a change in electrical displacement D, but in reality it is stored on the crystal plane. It is thought that the discharge is gradually caused by dirt and moisture on the battery. Fig. 4 is an equivalent circuit diagram of Fig. 3, where rL is the resistance due to moisture, dirt, etc., Cx is the capacitance of the creeping discharge path, Cd is the electrode 32,
33 is the capacitance of the crystal.

(1)式中dPs/dTはLiNbO3の場合、0℃〜400℃間 では一定であり、単位面積当り−4×10-5(q/
m2)/℃である。従つて、(1)式より温度変化が急
激な程、換言すればdT/dtが大きい程、焦電流ipが 大きくなり、電極32,33間の電位差VLが大
きくなる。そして、この電位差VLが沿面放電電
位Vc(Cxの耐圧電圧に相当する)を越えるとCx
が絶縁破壊を起して急激な放電が起る。以下、こ
の事情を第4図の等価回路を用いて解析する。
In the formula (1), dPs/dT is constant between 0℃ and 400℃ in the case of LiNbO 3 , and -4×10 -5 (q/
m 2 )/°C. Therefore, according to equation (1), the more rapid the temperature change is, in other words, the larger dT/dt is, the larger the pyroelectric current ip becomes, and the larger the potential difference V L between the electrodes 32 and 33 becomes. When this potential difference V L exceeds the creeping discharge potential Vc (corresponding to the breakdown voltage of Cx), Cx
causes dielectric breakdown and rapid discharge occurs. This situation will be analyzed below using the equivalent circuit shown in FIG.

等価回路より明らかなように過渡的な電圧VL
(t)は次式の微分方程式の解として得られる。
As is clear from the equivalent circuit, the transient voltage V L
(t) is obtained as a solution to the following differential equation.

(Cd+Cx)・dVL/dt+VL/rL=dPs/dt=ip (2) ここで、dPs/dtは次式で表わせる。 (Cd+Cx)・dV L /dt+V L /r L = dPs/dt=ip (2) Here, dPs/dt can be expressed by the following formula.

dPs/dt=dPs/dT・dT/dt=Pc・dT/dt (3) 尚、Pcは焦電性定数で、キユーリ点より離れ
た温度において一定値となる。
dPs/dt=dPs/dT・dT/dt=Pc・dT/dt (3) Note that Pc is a pyroelectric constant and becomes a constant value at temperatures far from the Kiuri point.

一般式に(2)式を解くとその解は複雑になるか
ら、以後温度変化が直線的な場合、即ち dT/dt=α(一定) (4) の場合を考える。従つて、Toを基準温度、α
(℃/sec)を時間公配とすればt秒後の温度Tは T=αt+To (5) で表現できる。
If we solve equation (2) in the general equation, the solution will be complicated, so we will consider the case where the temperature change is linear, that is, dT/dt = α (constant) (4). Therefore, To is the reference temperature, α
If (°C/sec) is a time distribution, the temperature T after t seconds can be expressed as T=αt+To (5).

(3)、(4)式を(2)式へ代入すると (Cd+Cx)・dVL/dt+VL/rL=Pc・α (6) となる。 Substituting equations (3) and (4) into equation (2) yields (Cd+Cx)・dV L /dt+V L /r L =Pc・α (6).

初期条件VL(o)=oを考慮して(6)式を解けば、 VL(t)=Pc・α・rL {1―exp(−t/(Cd+Cx)rL)} (7) となる。 If we solve equation (6) considering the initial condition V L (o)=o, we get V L (t)=Pc・α・r L {1−exp(−t/(Cd+Cx)r L )} (7 ) becomes.

尚、特別な場合として、汚れがなく完全な結晶
の場合即ちrL→∞の理想的な場合にはVL(t)は
次の微分方程式 (Cd+Cx)・dVL/dt=Pc・α (8) の解として得られ、VL(o)=oなる初期条件の
もとで、 VL=Pc・α・t/(Cd+Cx) (9) となる。これは理想的な系では焦電気成分が静電
変位成分としてCdおよびCxに蓄えられることを
意味しており、静電気学の教えることに他ならな
い。
As a special case, in the case of a clean and perfect crystal, that is, in the ideal case of r L →∞, V L (t) is expressed as the following differential equation (Cd + Cx)・dV L /dt=Pc・α ( 8), and under the initial condition of V L (o) = o, V L = Pc・α・t/(Cd+Cx) (9). This means that in an ideal system, the pyroelectric component is stored in Cd and Cx as an electrostatic displacement component, which is nothing but what electrostatics teaches.

しかし、一般には結晶表面にわずかな汚れ等が
あり、rLを無視することが出来ないから以後(7)式
に従つて説明する。
However, since there is generally a slight stain on the crystal surface and r L cannot be ignored, the explanation will be given below using equation (7).

(7)式において(t/(Cd+Cx)rL)を独立変
数としてVLの変化を図示すると第5図のように
なる。今rL=rL0VLnax=Pc・α・rL0とし、沿面放
電電位Vcを Vc=0.393・VLnax=0.393・Pc・α・rL0 (10) とすればt/(Cd+Cx)rL0=0.5の時に沿面放電
が生じる。尚、第5図において実線は沿線放電が
生じないとした場合のVLであり、Vc=
0.393VLnaxで沿面放電が生じるものとすれば(Cd
+Cx)への充放電が繰り返えされてVLは図中一
点鎖線の如く変化する。
When the change in V L is illustrated using (t/(Cd+Cx)r L ) as an independent variable in equation (7), it becomes as shown in FIG. 5. Now r L = r L0 V Lnax = Pc・α・r L0 , and creeping discharge potential Vc is Vc=0.393・V Lnax =0.393・Pc・α・r L0 (10) then t/(Cd+Cx) r L0 Creeping discharge occurs when = 0.5. In addition, in Fig. 5, the solid line is V L when lineside discharge does not occur, and Vc =
If creeping discharge occurs at 0.393V Lnax (Cd
+Cx) is repeatedly charged and discharged, and V L changes as shown by the dashed line in the figure.

以上から沿面放電経路が不変であり、従つて沿
面放電電位Vcが0.393Pc・α・rL0と一定であるも
のとすれば、抵抗rLを積極的に小さくすることに
よりVLを常に沿面放電電位Vc以下にすることが
でき、沿面放電の発生を防止することができると
いえる。即ち、抵抗rLの値を何等かの方法でrL1
(<rL0)とし、しかも|Pc・α・rL1|<|Vc|
を満足するようにすればVLは第5図中2点鎖線
のように変化してVcを越えることがなく沿面放
電が生じることはない。しかし|Pc・α・rL1
<|Vc|を満足するような状態を作り出すのは
理想であつて、簡単には実現することはできな
い。たとえば、圧電結晶基板の表面全体を導体を
覆う形にすると目的は達成するが弾性表面波素子
として利用することができない。
From the above, if we assume that the creeping discharge path remains unchanged and therefore the creeping discharge potential Vc is constant at 0.393Pc・α・r L0 , then by actively reducing the resistance r L , we can always reduce the creeping discharge It can be said that the potential can be lowered to below Vc, and the occurrence of creeping discharge can be prevented. That is, the value of the resistance r L can be changed to r L1 by some method.
(<r L0 ), and |Pc・α・r L1 |<|Vc|
If the following is satisfied, V L will change as shown by the two-dot chain line in Fig. 5, and will not exceed Vc, and creeping discharge will not occur. However, | Pc・α・r L1 |
Creating a state that satisfies <|Vc| is an ideal, but cannot be easily achieved. For example, if the entire surface of a piezoelectric crystal substrate is covered with a conductor, the purpose is achieved, but it cannot be used as a surface acoustic wave device.

ところが実際にはある限られた温度範囲での時
間的変化に耐えられゝば|Sc・α・rL1|>|Vc
|であつてもさしつかえない場合が殆どである。
というのは、以下の理由による。
However, in reality, if it can withstand temporal changes within a limited temperature range, |Sc・α・r L1 |>|Vc
| In most cases, it is acceptable.
This is because of the following reasons.

今、仮りに温度変化開始10分後(to=10)に60
℃の変化があつたものとすれば(α=0.1℃/
sec)、時間to後の電圧VL(to)(このVL(to)はα
=0.1℃/sec、rL=rL1として(7)式から求めること
ができる)が沿面放電電位Vcより小さければ、|
Pc・α・rL1|>|Vc|となる抵抗rL1でも沿面放
電は生じないからである。
Now, if 10 minutes after the temperature change starts (to=10), 60
Assuming that there is a change in temperature (α=0.1℃/
sec), the voltage V L (to) after time to (this V L (to) is α
= 0.1℃/sec, r L = r L1 , which can be obtained from equation (7)) is smaller than the creeping discharge potential Vc, |
This is because creeping discharge does not occur even if the resistance r L1 is such that Pc・α・r L1 |>|Vc|.

従つて、既提案の弾性表面波素子においては、
励振変換器及び受信変換器を含む領域を、沿面放
電を発生せしめない程度の高さの抵抗値を有する
抵抗膜で覆い、その他の領域表面を、前記抵抗膜
の抵抗値より低い抵抗値を有し、金属或いは抵抗
体からなる電気的導体層にて覆うことによりrL
小さくして温度変化に起因する焦電性電圧結晶基
板上に生じる放電を抑圧している。
Therefore, in the previously proposed surface acoustic wave device,
The region including the excitation transducer and the reception transducer is covered with a resistive film having a resistance value high enough not to cause creeping discharge, and the surface of the other region is covered with a resistive film having a resistance value lower than the resistance value of the resistive film. However, by covering it with an electrically conductive layer made of metal or a resistor, r L is reduced and discharge generated on the pyroelectric voltage crystal substrate due to temperature changes is suppressed.

第6図は該既提案の弾性表面波素子の斜視図で
あり、第1図を同一部分には同一符号を付し、そ
の詳細な説明は省略する。
FIG. 6 is a perspective view of the previously proposed surface acoustic wave device, and the same parts as those in FIG. 1 are given the same reference numerals, and detailed explanation thereof will be omitted.

41は焦電性の圧電結晶板であり、励振変換器
12S及び受信変換器12Rを除き結晶表面には
電気的導体層42が蒸着等により均一に形成され
ている。又、励振変換器12s及び受信変換器1
2Rの全面にはクロムCr、ニツケルクロムNiCr
或はタングステンW等の抵抗膜43が同様に蒸着
等により均一に形成されている。
41 is a pyroelectric piezoelectric crystal plate, and an electric conductor layer 42 is uniformly formed on the crystal surface by vapor deposition or the like, except for the excitation transducer 12S and the reception transducer 12R. Moreover, the excitation converter 12s and the reception converter 1
The entire surface of 2R is covered with chromium Cr and nickel chromium NiCr.
Alternatively, a resistive film 43 made of tungsten W or the like is similarly formed uniformly by vapor deposition or the like.

第7図は既提案の弾性表面波素子の別の実施例
斜視図であり、第6図と同一部分には同一符号を
付している。第6図と異なる点は抵抗膜43を励
振変換器12Sと受信変換器12R間にも存在さ
せた点である。尚、電気的導体層42に替えて低
抵抗の抵抗膜を付着してもよく、又圧電結晶板4
1の全結晶表面に抵抗膜43を付着してもよい。
FIG. 7 is a perspective view of another embodiment of the previously proposed surface acoustic wave device, and the same parts as in FIG. 6 are given the same reference numerals. The difference from FIG. 6 is that a resistive film 43 is also present between the excitation converter 12S and the reception converter 12R. Note that a low-resistance resistive film may be attached instead of the electrical conductor layer 42, and the piezoelectric crystal plate 4
A resistive film 43 may be attached to the entire surface of the crystal 1.

第8図は更に別の既提案に係る弾性表面波素子
の実施例断面図、全結晶表面に抵抗膜43を付着
後、底面及び側面に電気的導体層42を付着した
ものである。
FIG. 8 is a cross-sectional view of another embodiment of a previously proposed surface acoustic wave device, in which a resistive film 43 is attached to the entire crystal surface, and then an electrical conductor layer 42 is attached to the bottom and side surfaces.

放電現象の解析は結晶板のある特定の2点間
(第3図)について行つたものであるが、実際に
は結晶の不完全性のためには放電は結晶板のいた
るところで生じていると考えられる。従つて、定
量的に放電現象を解明することが困難であるので
実験的に抵抗rLを少なくすることによる効果を検
討した。
The analysis of the discharge phenomenon was carried out between two specific points on the crystal plate (Figure 3), but in reality, due to the imperfections of the crystal, discharge occurs throughout the crystal plate. Conceivable. Therefore, since it is difficult to quantitatively elucidate the discharge phenomenon, the effect of reducing the resistance r L was experimentally investigated.

そして、実験結果によれば60℃/hour程度の
温度勾配ではσ/h=1012Ω以下の抵抗膜43
(但しσ及びhはそれぞれ抵抗膜43の比抵抗及
び膜厚である)をつけ、又12℃/min程度の温度
勾配ではσ/h=10″Ω以下の抵抗膜をつけ、こ
れ以上の急冷急熱状態ではσ/h=1010Ω以下の
抵抗膜を被着せしめれば放電が著しく抑圧され
た。
According to experimental results, at a temperature gradient of about 60°C/hour, the resistance film 43 with a resistance of σ/h = 10 12 Ω or less
(However, σ and h are the specific resistance and film thickness of the resistive film 43, respectively.) Also, at a temperature gradient of about 12°C/min, a resistive film with σ/h = 10″Ω or less is attached, and rapid cooling is not possible. In a rapidly heated state, if a resistive film of σ/h=10 10 Ω or less was applied, discharge was significantly suppressed.

しかしながら、この既提案の弾性表面波素子に
おいては抵抗膜43のσ/hをいくら小さくして
も放電が完全に消滅せず、依然として残留してお
り、機器の誤動作の原因になつている。
However, in this previously proposed surface acoustic wave element, no matter how small the σ/h of the resistive film 43 is, the discharge does not completely disappear and still remains, causing equipment malfunction.

従つて、本発明は放電を完全に除去することが
できる弾性表面波素子を提供することを目的と
し、この目的は焦電性を有する圧電結晶板上に励
振変換器及び受信変換器が形成されてなる弾性表
面波素子において、表面をケミカルポリツシユさ
れ、該表面を除く面と該面に生じたクラツク内壁
面をエツチング溶液によりエツチングされた圧電
結晶板と、前記圧電結晶板の表面に形成された励
振変換器と、前記励振変換器に対応して該圧電結
晶板表面に設けられた受信変換器と、前記励振変
換器及び受信変換器の領域を覆い、かつ圧電結晶
板上に沿面放電を発生せしめない程度の高さの抵
抗値を有する抵抗膜と、前記励振変換器及び受信
変換器の領域を除く領域を覆い、かつ前記抵抗膜
より低い抵抗値と有する電気的導体層と、を有す
ることを特徴とする弾性表面波素子を提供するこ
とにより達成される。
Therefore, an object of the present invention is to provide a surface acoustic wave element that can completely eliminate discharge, and this object is achieved by forming an excitation transducer and a reception transducer on a piezoelectric crystal plate having pyroelectric properties. A surface acoustic wave element comprising: a piezoelectric crystal plate whose surface is chemically polished, and a surface other than the surface and an inner wall surface of a crack formed on the surface are etched with an etching solution; a receiving converter provided on the surface of the piezoelectric crystal plate in correspondence with the exciting converter; a resistive film having a resistance value high enough to prevent generation of electricity; and an electrically conductive layer covering an area other than the areas of the excitation transducer and the receiving transducer and having a resistance value lower than that of the resistive film. This is achieved by providing a surface acoustic wave element characterized by the following.

以下、本発明の実施例を図面に従つて詳細に説
明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

まず、第6図乃至第8図の弾性表面波素子にお
いて放電が完全に消滅しない理由を検討する。
First, we will examine the reason why the discharge does not completely disappear in the surface acoustic wave elements shown in FIGS. 6 to 8.

第6図に示す弾性表面波素子に関し、放電の発
生箇所を検討すると圧電結晶基板41の裏面にお
いて放電が発生していることが観測された。これ
は次の理由によるものである。
Regarding the surface acoustic wave element shown in FIG. 6, when examining the location where discharge occurs, it was observed that discharge occurred on the back surface of the piezoelectric crystal substrate 41. This is due to the following reason.

LiNbO3結晶、LiTaO3結晶等はチヨコラルス
キー法と呼ばれる引上げ法により得られるが、引
上げ時の固液界面の温度分布の不均一さによつて
結晶中にはデイスロケーシヨン層や不純物層とい
つた不完全結晶部分が存在する。このような状態
で自発分極の向きをそろえるための分極処理がな
されても完全な単分域構造とはならず、微視的局
所的には不完全な分域部分が存在していると考え
られる。この不完全結晶部分が放電の電源になつ
ていると考えられるので大小を問わず全ての結晶
表面で放電の可能性がある。
LiNbO 3 crystals, LiTaO 3 crystals, etc. can be obtained by a pulling method called the Czyochoralski method, but due to the uneven temperature distribution at the solid-liquid interface during pulling, dislocation layers and impurity layers may be formed in the crystals. There are some imperfect crystal parts. Even if polarization processing is performed to align the direction of spontaneous polarization in such a state, a perfect single-domain structure will not result, and it is thought that there are microscopically incomplete domain parts. It will be done. Since it is thought that this incomplete crystal part serves as a power source for discharge, there is a possibility of discharge occurring on all crystal surfaces, regardless of size.

圧電結晶基板41はこれらの圧電結晶を表面波
励振に適した切断角度で切断し整形することによ
つて得られているが機械的研摩だけ用いたものは
その面上に加工層と呼ばれる無数のクラツク(割
れ目)が入つていることが知られている。通常、
励振変換器12S、受信変換器12Rが形成され
る面(以後表面という)は最終的にケミカルポリ
ツシユにより平滑に研摩されるためクラツクは残
存せず、微視的にも加工層のないなだらかな面と
なつている。しかるに、各変換器12S,12R
が形成されていない面(裏面及び側面)はバルク
波を乱反射させるために粗面に形成されており、
大小のクラツクが無数に存在している。このため
クロム等の電気的導体層を被着しても該電気的導
体層が裏面に存在する非常に細いクラツク内に浸
透して該クラツクを覆うことができず、急激な温
度変化があると焦電性によりクラツク内で局所的
な放電が生じるのである。
The piezoelectric crystal substrate 41 is obtained by cutting and shaping these piezoelectric crystals at a cutting angle suitable for surface wave excitation, but those using only mechanical polishing have countless layers called processed layers on the surface. It is known to have cracks. usually,
The surface on which the excitation transducer 12S and the reception transducer 12R are formed (hereinafter referred to as the surface) is finally polished smooth by chemical polishing, so no cracks remain, and microscopically it is smooth with no processed layer. It has become a face. However, each converter 12S, 12R
The surfaces (back surface and side surfaces) that are not formed are rough to diffusely reflect bulk waves.
There are countless cracks of all sizes. For this reason, even if an electrically conductive layer such as chromium is deposited, the electrically conductive layer cannot penetrate into the very thin cracks on the back side and cover the cracks, and if there is a sudden temperature change, Pyroelectricity causes localized electrical discharge within the crack.

第9図は電気的導体層を被着した後における弾
性表面波素子の要部断面拡大図で、第6図と同一
部分には同一符号を付している。図中、51a〜
51cはクラツクであり、クラツク内壁には電気
的導体層42が被着されておらず、このため前述
の如く、該クラツク51a〜51c内で局所的な
放電が生じる。
FIG. 9 is an enlarged cross-sectional view of the main parts of the surface acoustic wave element after the electrically conductive layer has been deposited, and the same parts as in FIG. 6 are given the same reference numerals. In the figure, 51a~
Numeral 51c is a crack, and the inner wall of the crack is not coated with the electrically conductive layer 42. Therefore, as described above, local discharge occurs within the cracks 51a to 51c.

従つて、クラツクの孔径を大きくなだらかな面
にしてやれば電気的導体層にてクラツクの内壁面
をも覆うことができ、前述の理由で放電が完全に
消滅することが推測される。
Therefore, it is presumed that if the hole diameter of the crack is made large and the surface is smooth, the inner wall surface of the crack can be covered with the electrically conductive layer, and the discharge will be completely extinguished for the above-mentioned reason.

そこで、本発明においては圧電結晶板たとえば
LiNbO3、LiTaO3結晶板の表面をケミカルポリ
ツシユして平滑に研摩し、しかも裏面を粗面化し
た後に、該結晶板の少なくとも裏面をフツ化アン
モニウム(NH4F)水溶液とフツ化水素(HF)
の混合液、あるいは硝酸(HNO3)水溶液とHF
の混合液等のエツチング液に10分乃至30分浸漬し
てエツチングを施して加工層を除去し、ついで各
変換器12S,12Rを表面に形成し、しかる後
蒸着により電気的導体層42及び抵抗膜43を被
着して、第6図乃至第8図に示す弾性表面波素子
を得た。尚、エツチング処理に際して、予め表面
にレジストたとえばAu―Crの蒸着薄膜を被着し、
これにより表面を保護し、しかる後結晶板全体を
エツチング液に浸漬して加工層を除去するように
してもよい。
Therefore, in the present invention, a piezoelectric crystal plate, for example,
After chemically polishing the surface of the LiNbO 3 or LiTaO 3 crystal plate to make it smooth and roughening the back surface, at least the back surface of the crystal plate was coated with an aqueous solution of ammonium fluoride (NH 4 F) and hydrogen fluoride ( HF)
or a mixture of nitric acid (HNO 3 ) and HF.
The processed layer is removed by immersion in an etching solution such as a mixed solution for 10 to 30 minutes, and then each transducer 12S, 12R is formed on the surface, and then the electrical conductor layer 42 and the resistor are formed by vapor deposition. A film 43 was deposited to obtain the surface acoustic wave device shown in FIGS. 6 to 8. In addition, during the etching process, a resist such as a vapor-deposited thin film of Au-Cr is deposited on the surface in advance.
This may protect the surface, and then the entire crystal plate may be immersed in an etching solution to remove the processed layer.

上記エツチングによりクラツクの孔径は大きく
なり、電気的導体層42あるいは抵抗膜43をし
てクラツクの内壁面をカバーせしめることができ
た。そして、実験によれば60℃/hourの温度勾
配に対しσ/h=1012Ω以下の、12℃/minの温
度勾配に対してはσ/h=1011Ω以下の、それ以
上の急冷急熱状態ではσ/h=1010Ω以下の抵抗
膜43をそれぞれ被着することにより放電を完全
に除去することができた。
As a result of the above-described etching, the pore diameter of the crack was enlarged, and the inner wall surface of the crack could be covered with the electrically conductive layer 42 or the resistive film 43. According to experiments, σ/h = 10 12 Ω or less for a temperature gradient of 60°C/hour, and σ/h = 10 11 Ω or less for a temperature gradient of 12°C/min. In the rapidly heated state, discharge could be completely removed by depositing a resistive film 43 having a resistance of σ/h=10 10 Ω or less.

第10図はエツチング後に蒸着により電気的導
体層を被着した場合における本発明に係る弾性表
面波素子の要部拡大図で、第9図と同一部分には
同一符号を付している。第10図から明らかなよ
うにクラツク51a〜51cの孔径は第9図のも
のに比らべ大きくなつており、その内壁に電気的
導体層42が被着している。
FIG. 10 is an enlarged view of the main parts of a surface acoustic wave device according to the present invention in which an electric conductor layer is deposited by vapor deposition after etching, and the same parts as in FIG. 9 are given the same reference numerals. As is clear from FIG. 10, the hole diameters of the cracks 51a to 51c are larger than those of FIG. 9, and the electrically conductive layer 42 is adhered to the inner walls thereof.

以上詳細に説明したように、本発明は、圧電結
晶板の表面を除く面と、これらの面に生じたクラ
ツク内壁面をエツチング溶液によりエツチングし
ているのでクラツクが大きくなり、このため圧電
結晶板に被着せしめる電気的導体層がクラツク内
にまで侵入して内壁面に被着される。そして、、
励振変換器及び受信変換器の領域を覆う抵抗膜は
圧電結晶板上に沿面放電を発生せしめない程度の
高さの抵抗値を有しており、また励振変換器及び
受信変換器の領域を除く領域を覆う電気的導体層
は前記抵抗膜の抵抗値より低い抵抗値を有してい
るので、弾性表面波素子のどの面においても温度
の急変による焦電性に基づく放電が発生せず、こ
のため弾性表面波素子から雑音が発生しない。し
たがつて、これを使用する機器が従来のように誤
動作するようなことがない。
As explained in detail above, in the present invention, since the surfaces other than the surface of the piezoelectric crystal plate and the inner wall surface of the cracks formed on these surfaces are etched with an etching solution, the cracks become larger, and as a result, the piezoelectric crystal plate An electrically conductive layer applied to the crack penetrates into the crack and is applied to the inner wall surface. and,,
The resistive film covering the areas of the excitation transducer and reception transducer has a resistance value high enough not to generate creeping discharge on the piezoelectric crystal plate, and excludes the area of the excitation transducer and reception transducer. Since the electrically conductive layer covering the area has a resistance value lower than that of the resistive film, no discharge due to pyroelectricity occurs on any surface of the surface acoustic wave element due to a sudden change in temperature. Therefore, no noise is generated from the surface acoustic wave element. Therefore, equipment using this device will not malfunction as in the past.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は弾性表面波フイルタの一例を示す説明
図で、同図aは概略斜視図、同図bは弾性表面波
フイルタを含む一般的なフイルタ回路を図解的に
示した図、第2図はせん光の発生を説明する説明
図で、同図a,bは写真乾板上に記録したせん光
発生状態図、第3図は放電発生を説明する説明
図、第4図は第3図の等価回路図、第5図は焦電
性の圧電基板上の2点間の電位差VL―時間特性
図、第6図、第7図及び第8図は既提案の弾性表
面波素子の斜視図又は断面図、第9図は既提案の
弾性表面波素子の要部断面拡大図、第10図は本
発明に係る弾性表面波素子の要部断面拡大図であ
る。 11…圧電基板、12s…励振変換器、12R
…受信変換器、14,14′…すだれ状電極、2
1…写真乾板上の放電部分、31…焦電性を有す
る圧電結晶基板、32,33…電極、34,35
…リード線、36…汚れ、41…圧電結晶板、4
2…電気的導体層、43…抵抗膜、51a〜51
c…クラツク。
Fig. 1 is an explanatory diagram showing an example of a surface acoustic wave filter, in which Fig. 1a is a schematic perspective view, Fig. 1b is a diagram schematically showing a general filter circuit including a surface acoustic wave filter, and Fig. 2 These are explanatory diagrams explaining the generation of flashing light. Figures a and b are diagrams of the occurrence of flashing light recorded on a photographic plate, Figure 3 is an explanatory diagram explaining the generation of electric discharge, and Figure 4 is a diagram of the occurrence of flashing light recorded on a photographic plate. Equivalent circuit diagram, Figure 5 is a potential difference V L -time characteristic diagram between two points on a pyroelectric piezoelectric substrate, and Figures 6, 7, and 8 are perspective views of previously proposed surface acoustic wave elements. 9 is an enlarged cross-sectional view of a main part of a previously proposed surface acoustic wave element, and FIG. 10 is an enlarged cross-sectional view of a main part of a surface acoustic wave element according to the present invention. 11...Piezoelectric substrate, 12s...Excitation converter, 12R
...Receiving transducer, 14, 14'...Bib-shaped electrode, 2
1... Discharge portion on photographic plate, 31... Piezoelectric crystal substrate having pyroelectricity, 32, 33... Electrode, 34, 35
...Lead wire, 36...Dirty, 41...Piezoelectric crystal plate, 4
2... Electric conductor layer, 43... Resistive film, 51a to 51
c... Kratsk.

Claims (1)

【特許請求の範囲】 1 焦電性を有する圧電結晶板上に励振変換器及
び受信変換器が形成されてなる弾性表面波素子に
おいて、 表面をケミカルポリツシユされ、該表面を除く
面と該面に生じたクラツク内壁面をエツチング溶
液によりエツチングされた圧電結晶板と、 前記圧電結晶板の表面に形成された励振変換器
と、 前記励振変換器に対応して該圧電結晶板表面に
設けられた受信変換器と、 前記励振変換器及び受信変換器の領域を覆い、
かつ圧電結晶板上に沿面放電を発生せしめない程
度の高さの抵抗値を有する抵抗膜と、 前記励振変換器及び受信変換器の領域を除く領
域を覆い、かつ前記抵抗膜の抵抗値より低い抵抗
値を有する電気的導体層と、 を有することを特徴とする弾性表面波素子。 2 励振変換器及び受信変換器に挾まれた圧電結
晶板表面部分を抵抗膜にて覆つたことを特徴とす
る特許請求の範囲第1項記載の弾性表面波素子。
[Claims] 1. In a surface acoustic wave device in which an excitation transducer and a reception transducer are formed on a piezoelectric crystal plate having pyroelectric properties, the surface is chemically polished, and the surface excluding the surface and the surface a piezoelectric crystal plate whose inner wall surface of the crack formed in the crack is etched with an etching solution; an excitation transducer formed on the surface of the piezoelectric crystal plate; and a piezoelectric crystal plate provided on the surface of the piezoelectric crystal plate corresponding to the excitation transducer. a receiving transducer; covering areas of the excitation transducer and the receiving transducer;
and a resistive film having a high resistance value that does not cause creeping discharge on the piezoelectric crystal plate, and a resistive film that covers an area excluding the areas of the excitation converter and the receiving converter, and has a resistance value lower than the resistance value of the resistive film. A surface acoustic wave device comprising: an electrically conductive layer having a resistance value; 2. The surface acoustic wave device according to claim 1, wherein a surface portion of the piezoelectric crystal plate sandwiched between the excitation transducer and the reception transducer is covered with a resistive film.
JP6630880A 1980-05-19 1980-05-19 Elastic surface wave device Granted JPS56162523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6630880A JPS56162523A (en) 1980-05-19 1980-05-19 Elastic surface wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6630880A JPS56162523A (en) 1980-05-19 1980-05-19 Elastic surface wave device

Publications (2)

Publication Number Publication Date
JPS56162523A JPS56162523A (en) 1981-12-14
JPS6367363B2 true JPS6367363B2 (en) 1988-12-26

Family

ID=13312048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6630880A Granted JPS56162523A (en) 1980-05-19 1980-05-19 Elastic surface wave device

Country Status (1)

Country Link
JP (1) JPS56162523A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982001790A1 (en) * 1980-11-17 1982-05-27 Lewis Meirion F Improvements in or relating to methods of producing devices comprising metallised regions on dielectric substrates
JPS59144391A (en) * 1983-02-03 1984-08-18 Tokyo Electric Co Ltd Electric cleaner
JPH0758876B2 (en) * 1990-10-12 1995-06-21 日本無線株式会社 Surface acoustic wave device
DE19758198A1 (en) * 1997-12-30 1999-08-19 Siemens Ag Surface wave (SAW) device on pyroelectric single crystal substrate
DE10142789C1 (en) * 2001-08-31 2003-05-28 Advalytix Ag Movement element for small amounts of liquid

Also Published As

Publication number Publication date
JPS56162523A (en) 1981-12-14

Similar Documents

Publication Publication Date Title
EP0064506B2 (en) Improvements in or relating to methods of producing devices comprising metallised regions on dielectric substrates
US6239536B1 (en) Encapsulated thin-film resonator and fabrication method
US4906885A (en) Electrode material for surface acoustic wave devices and surface acoustic wave device using the same
JPH0218614B2 (en)
FR2799906A1 (en) Mobile telephone communications/remote car door opening acoustic filter construction having two solid structures with exponentially decreasing acoustic power perpendicular central interdigital acoustic region and single plane propagating.
EP1521362B1 (en) Method of producing surface acoustic wave device and the surface acoustic wave device
Faizan et al. Fabrication of lithium niobate bulk acoustic resonator for 5G filters
JPS6367363B2 (en)
US4209725A (en) Selenium layer piezoelectric device
JPS6219089B2 (en)
JPH05183373A (en) Electrode material for surface acoustic wave element
JPH0112419Y2 (en)
GB2088167A (en) Preventing Damaging Electric Fields, e.g. in SAW Devices
JPH10107573A (en) Surface acoustic wave device
JPH10163802A (en) Surface acoustic wave device
JP2515622B2 (en) Manufacturing method of surface acoustic wave sensor
JPH10126207A (en) Surface acoustic wave device
Kirchner Deposited transducer technology for use with acousto-optic bulk wave devices
JPH025331B2 (en)
JPH10303681A (en) Surface acoustic wave device
JPH11163662A (en) Surface acoustic wave filter
JP2001102898A (en) Surface acoustic wave device
JP2000059165A (en) Surface acoustic wave device and manufacture therefor
JPH025329B2 (en)
JPS60240207A (en) Surface acoustic wave element