JPH10126207A - Surface acoustic wave device - Google Patents

Surface acoustic wave device

Info

Publication number
JPH10126207A
JPH10126207A JP14267397A JP14267397A JPH10126207A JP H10126207 A JPH10126207 A JP H10126207A JP 14267397 A JP14267397 A JP 14267397A JP 14267397 A JP14267397 A JP 14267397A JP H10126207 A JPH10126207 A JP H10126207A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
semiconductor layer
excitation electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14267397A
Other languages
Japanese (ja)
Inventor
Miki Ito
幹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP14267397A priority Critical patent/JPH10126207A/en
Publication of JPH10126207A publication Critical patent/JPH10126207A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To protect an excitation electrode and to obtain superior characteristics and reliability by laminating an excitation electrode, which generates a surface acoustic wave and a semiconductor layer satisfying a specific relational expression and has a specific resistance value in order on a piezoelectric substrate. SOLUTION: On a piezoelectric substrate 3 of lithium tantalate single crystal, etc., an IDT electrode 4 as the excitation electrode formed of aluminum, etc., and reflectors 5 at both its ends are arranged respectively. On those IDT electrode 4 and reflectors 5, a semiconductor layer 6 as a protective film is laminated in sequentially, by using a semiconductor material such as a compound material containing conductive materials of silicon, etc. Consequently, a foreign body is prevented from sticking on the excitation electrode. Further, an electrode such as the excitation electrode or its semiconductor layer is prevented from being destroyed, owing to discharge caused by the pyroelectricity of the piezoelectric substrate. In this case, the specific resistance value of the semiconductor layer is 10<2> to 10<7> Ω.cm and 0.07<hs<he<0.15 is made to hold. Here, hs is the thickness of the semiconductor layer, and he is the thickness of the excitation electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばタンタル酸
リチウム単結晶,ニオブ酸リチウム単結晶,四ホウ酸リ
チウム単結晶等の圧電基板に励振電極を設けて成る弾性
表面波(SAW)フィルタ等の弾性表面波装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave (SAW) filter formed by providing an excitation electrode on a piezoelectric substrate such as a lithium tantalate single crystal, a lithium niobate single crystal, or a lithium tetraborate single crystal. The present invention relates to a surface acoustic wave device.

【0002】[0002]

【従来の技術とその課題】現在、タンタル酸リチウム
(LiTaO3 )等の単結晶は、一般に圧電材料の性能
評価として用いられる電気機械結合係数が大きい材料と
して大変注目されており、例えば、弾性表面波装置、バ
ルク波デバイス等の各種圧電デバイスに用いられる材料
として有望視されている。
2. Description of the Related Art At present, a single crystal such as lithium tantalate (LiTaO 3 ) has attracted a great deal of attention as a material having a large electromechanical coupling coefficient generally used for evaluating the performance of piezoelectric materials. Promising as a material used for various piezoelectric devices such as wave devices and bulk wave devices.

【0003】また、インタディジタル(以下、IDTと
略記する)電極材料としてはアルミニウム(Al)また
はアルミニウムを主体とする合金(例えば、アルミニウ
ム−銅(Al−Cu)合金等)が用いられているが、弾
性表面波装置の基本特性は、IDT電極の膜厚によって
変化するため、最適膜厚を探索・検討する必要があり、
この方面の研究が盛んに行われている。
As an interdigital (hereinafter abbreviated as IDT) electrode material, aluminum (Al) or an alloy mainly composed of aluminum (for example, an aluminum-copper (Al-Cu) alloy or the like) is used. Since the basic characteristics of the surface acoustic wave device change depending on the thickness of the IDT electrode, it is necessary to search for and study the optimum thickness.
Research in this area is being actively conducted.

【0004】例えば36°YカットX伝搬のタンタル酸
リチウム単結晶を基板として用い、アルミニウムをID
T電極材料として用いた場合、伝搬させる弾性表面波の
波長に対するIDT電極の規格化膜厚H/λを0.1以
下にすることが最適であるとされている(例えば、特開
平6−188673号公報等を参照)。
For example, a 36 ° Y-cut X-propagation lithium tantalate single crystal is used as a substrate, and aluminum is used for ID.
When used as a T electrode material, it is said that the normalized thickness H / λ of the IDT electrode with respect to the wavelength of the surface acoustic wave to be propagated is optimally set to 0.1 or less (for example, Japanese Patent Application Laid-Open No. 6-188873). Reference).

【0005】しかしながら、例えばセルラー電話、PH
S(Personal Handy-phone System)等の移動体通信用
電話に使用されるフロントエンドSAWフィルタ(アナ
ログ:900MHz 帯,デジタル:15GHz 帯)を構
成するには、例えばAMPS(Advanced Mobile Phone
Service)方式であれば、20dB以上の大きな帯域外減
衰量が最低でも必要とされるにもかかわらず、特性的に
優れたタンタル酸リチウム単結晶を基板材料に適用しよ
うとしても、上述のような帯域外減衰量を備え、しかも
挿入損失が小さいものはなかった。
However, for example, cellular phones, PH
To configure a front-end SAW filter (analog: 900 MHz band, digital: 15 GHz band) used for a mobile communication phone such as S (Personal Handy-phone System), for example, an AMPS (Advanced Mobile Phone)
Service) method, even if a large out-of-band attenuation of 20 dB or more is required at least, even if an attempt is made to apply a lithium tantalate single crystal excellent in characteristics to a substrate material, Nothing has an out-of-band attenuation and a small insertion loss.

【0006】この原因の一つとして以下のことが考えら
れる。すわわち、基板及び励振電極上に導電性の異物が
製造工程中などで付着し、これにより特性劣化が生じる
ためと考えられる。特に上記したような高周波帯域の周
波数を利用する弾性表面波装置においては、励振電極の
電極指間の距離が非常に狭く微細なため、このような異
物の付着が、完成品の特性のばらつきや特性不良の発生
を誘発するという問題が生じていたのである。例えば、
弾性表面波フィルタの場合、フィルタ特性である通過帯
域幅が小さくなったり、挿入損失が大きくなることがあ
ったのである。このため、励振電極上にSiO2 等の絶
縁膜を被覆して励振電極を異物から保護する方法が提案
されているが(例えば、特開昭59−210708号公
報等を参照)、このような絶縁膜を焦電性の有る圧電基
板上に形成させると絶縁破壊が生じやすくなり非常に問
題である。
The following is considered as one of the causes. That is, it is considered that a conductive foreign matter adheres to the substrate and the excitation electrode during the manufacturing process or the like, which causes deterioration of characteristics. In particular, in the surface acoustic wave device using the frequency in the high-frequency band as described above, since the distance between the electrode fingers of the excitation electrode is very narrow and fine, such adhesion of foreign matter may cause variations in the characteristics of the finished product and the like. This has caused a problem of inducing the occurrence of characteristic failure. For example,
In the case of a surface acoustic wave filter, the pass band width, which is a filter characteristic, may be reduced or the insertion loss may be increased. For this reason, a method has been proposed in which an insulating film such as SiO 2 is coated on the excitation electrode to protect the excitation electrode from foreign substances (see, for example, JP-A-59-210708). When an insulating film is formed on a pyroelectric piezoelectric substrate, dielectric breakdown easily occurs, which is a serious problem.

【0007】そこで、励振電極の保護を行うとともに、
従来のような特性劣化がなくむしろ特性を向上させ、信
頼性の非常に優れた弾性表面波装置を提供することを本
発明の目的とする。
Therefore, while protecting the excitation electrode,
It is an object of the present invention to provide a surface acoustic wave device which is improved in characteristics without deterioration in characteristics as in the prior art, and which has extremely excellent reliability.

【0008】[0008]

【課題を解決するための手段】上記目的を達成させるた
めに、本発明の弾性表面波装置は、圧電基板上に、弾性
表面波を発生させる励振電極、及び下記式を満足し且つ
比抵抗値が102 〜107 Ω・cmの半導体層を順次積
層して成る。
In order to achieve the above object, a surface acoustic wave device according to the present invention comprises: an excitation electrode for generating a surface acoustic wave on a piezoelectric substrate; Is formed by sequentially stacking semiconductor layers of 10 2 to 10 7 Ω · cm.

【0009】0.07 < hS /he < 0.15 (ただし、hS :半導体層の厚さ、he :励振電極の厚
さ) また、圧電基板がタンタル酸リチウム単結晶であり、半
導体層がシリコンであることを特徴とする。
0.07 <hS / he <0.15 (hs: thickness of semiconductor layer, he: thickness of excitation electrode) Further, the piezoelectric substrate is a single crystal of lithium tantalate, and the semiconductor layer is silicon. It is characterized by being.

【0010】ここで、半導体層とは上記シリコン以外
に、樹脂又はガラス等に炭素や金属材料などの導電材料
を含有させた複合材料等をいうものとする。
Here, the semiconductor layer refers to a composite material or the like in which a conductive material such as carbon or a metal material is added to resin or glass in addition to silicon.

【0011】[0011]

【発明の実施の形態】以下、本発明に係る実施の形態に
ついて図面に基づき詳細に説明する。本発明の弾性表面
波装置Sは、例えば図1に示すように、直列接続された
複数の弾性表面波共振器1と並列接続された複数の弾性
表面波共振器2から構成され、いわゆるバランス型フィ
ルタなどの弾性表面波フィルタ等をいうが、特にこれに
限定されるものではない。
Embodiments of the present invention will be described below in detail with reference to the drawings. A surface acoustic wave device S of the present invention is composed of a plurality of surface acoustic wave resonators 1 connected in series and a plurality of surface acoustic wave resonators 2 connected in parallel, as shown in FIG. A surface acoustic wave filter such as a filter is referred to, but is not particularly limited to this.

【0012】図1に示す弾性表面波装置Sは、複数の直
列接続された弾性表面波共振器1でもってローパスフィ
ルタを構成し、並列接続された弾性表面波共振器2でも
ってハイパスフィルタを構成して所望の特性を得るもの
である。
In the surface acoustic wave device S shown in FIG. 1, a low-pass filter is constituted by a plurality of surface acoustic wave resonators 1 connected in series, and a high-pass filter is constituted by a surface acoustic wave resonator 2 connected in parallel. Thus, desired characteristics are obtained.

【0013】ここで、図2(a)に示すように、弾性表
面波共振器1又は2は、それぞれタンタル酸リチウム単
結晶、ニオブ酸リチウム単結晶、又は四ホウ酸リチウム
単結晶などの圧電性の基板3上に、アルミニウムやアル
ミニウムを主成分とする合金(Al−Si系,Al−C
u系,Al−Ti系等)から成る励振電極であるIDT
電極4を配置するとともに、IDT電極4の両端にID
T電極4と同様な材質から成る反射器5をそれぞれ配置
し、さらに、図2(b)に示すように、これらIDT電
極4及び反射器5上にシリコン等や、樹脂又はガラス等
に炭素や金属材料などの導電材料を含有させた複合材料
等の半導体材料(比抵抗値が102 〜107 Ω・cmの
範囲内)であり、保護膜となる半導体層6を順次積層さ
せている。そして、このようにして構成された基板3に
波長λの弾性表面波をX方向に伝搬させるようにしたも
のである。なお、図2(a)では簡単のため半導体層6
の図示を省略しており、弾性表面波共振器の一部を図示
したものである。
As shown in FIG. 2A, the surface acoustic wave resonator 1 or 2 is made of a piezoelectric material such as a lithium tantalate single crystal, a lithium niobate single crystal, or a lithium tetraborate single crystal. Aluminum or an alloy containing aluminum as a main component (Al-Si based, Al-C
IDT which is an excitation electrode composed of u-based, Al-Ti-based, etc.
The electrode 4 is arranged, and IDTs are provided at both ends of the IDT electrode 4.
A reflector 5 made of the same material as that of the T electrode 4 is disposed, and further, as shown in FIG. 2B, silicon or the like, carbon or resin or glass on the IDT electrode 4 and the reflector 5. A semiconductor material such as a composite material containing a conductive material such as a metal material (having a specific resistance in the range of 10 2 to 10 7 Ω · cm), and a semiconductor layer 6 serving as a protective film is sequentially laminated. Then, the surface acoustic wave having the wavelength λ is propagated in the X direction to the substrate 3 configured as described above. In FIG. 2A, the semiconductor layer 6 is shown for simplicity.
Is omitted and a part of the surface acoustic wave resonator is illustrated.

【0014】このような弾性表面波装置では、異物が励
振電極上に付着することが防止されるので、異物付着に
よる特性劣化が極力防止される。また、圧電基板の焦電
性から生じる放電により、励振電極等の電極やその半導
体層の破壊が極力防止される。そして、このような効果
は半導体層の比抵抗値が102 〜107 Ω・cmの範囲
内でかつ0.07 < hS /he < 0.15(ただ
し、hS :半導体層の厚さ、he :励振電極の厚さ)を
満足しなければならない。すなわち、この数値より比抵
抗値が小さいと特性が劣化し、逆に大きいと絶縁破壊が
生じやすくなるのである。また、hS /he が0.07
より小さい場合や0.15より大きくなる場合は通過帯
域幅の変化量が負側に変化するだけでなく、挿入損失の
変化量が増大するからである。
In such a surface acoustic wave device, foreign matter is prevented from adhering to the excitation electrode, so that characteristic deterioration due to foreign matter adhesion is prevented as much as possible. In addition, the discharge caused by the pyroelectricity of the piezoelectric substrate prevents the electrodes such as the excitation electrodes and the semiconductor layers thereof from being broken as much as possible. Such an effect is obtained when the specific resistance of the semiconductor layer is in the range of 10 2 to 10 7 Ω · cm and 0.07 <hS / he <0.15 (where hS is the thickness of the semiconductor layer, he : Thickness of excitation electrode) must be satisfied. That is, if the specific resistance value is smaller than this value, the characteristics are degraded, and if it is larger, the dielectric breakdown is likely to occur. Hs / he is 0.07
This is because, when it is smaller than 0.15 or larger than 0.15, not only the change amount of the pass band width changes to the negative side, but also the change amount of the insertion loss increases.

【0015】なお、弾性表面波装置は上記の形態に限定
されるものではなく、圧電基板上に励振電極等の電極が
配設され、少なくとも励振電極上に半導体層が被覆され
るようにしたものであればよく、圧電基板、励振電極、
半導体層等の材質についても上記のものに限定されず、
要旨を逸脱しない範囲で適宜変更し実施が可能である。
The surface acoustic wave device is not limited to the above-described embodiment, but includes an electrode such as an excitation electrode disposed on a piezoelectric substrate and a semiconductor layer coated on at least the excitation electrode. As long as the piezoelectric substrate, the excitation electrode,
The material of the semiconductor layer and the like is not limited to those described above,
The present invention can be appropriately changed and implemented without departing from the scope.

【0016】[0016]

【実施例】次に、具体的な実施例について説明する。図
1に示すように、直列及び並列の弾性表面波共振器の数
はそれぞれ4以下のものを用意した。また、基板3の材
料として36°回転Yカットのタンタル酸リチウム単結
晶を使用し、IDT電極4及び反射器5として、アルミ
ニウムから成る金属膜を成膜し、図2(b)に示すよう
に、励振電極であるIDT電極4及び反射器5の上に半
導体層である非単結晶質のシリコン膜6(比抵抗が約4
×105 Ω・cm)を所定の厚さで被着形成した。ここ
で、上記金属膜を成膜後、レジストをパターニングし
て、次いでシリコン膜を蒸着し、最後にリフトオフ法に
より引出し電極以外の領域をシリコン膜6で被着させ
た。そして、得られた弾性表面波装置についてフィルタ
の測定を行った。また、上記シリコン膜6を被着させな
いもの、及びシリコンの代わりにSiO2 を積層したも
のも作製して、シリコン膜6を被着させたものと比較を
行った。なお、絶縁破壊について検討するために、サン
プルを150℃で約2時間加熱した後、イオン化された
空気を流しながら室温まで冷却させた。
Next, specific embodiments will be described. As shown in FIG. 1, four or less series and parallel surface acoustic wave resonators were prepared. Further, a 36 ° rotation Y-cut lithium tantalate single crystal is used as a material of the substrate 3, and a metal film made of aluminum is formed as the IDT electrode 4 and the reflector 5, as shown in FIG. A non-single-crystal silicon film 6 (having a specific resistance of about 4) is formed as a semiconductor layer on the IDT electrode 4 as an excitation electrode and the reflector 5.
× 10 5 Ω · cm) with a predetermined thickness. Here, after forming the metal film, the resist was patterned, then a silicon film was deposited, and finally, a region other than the extraction electrode was covered with the silicon film 6 by a lift-off method. Then, a filter was measured for the obtained surface acoustic wave device. In addition, those without the silicon film 6 and those on which SiO 2 was laminated instead of silicon were also prepared, and compared with those with the silicon film 6 deposited. In order to examine the dielectric breakdown, the sample was heated at 150 ° C. for about 2 hours, and then cooled to room temperature while flowing ionized air.

【0017】ここで、弾性表面波共振器1のIDT電極
4の対数Nを40〜120,交差幅Wを10(λ)〜4
0(λ)、弾性表面波共振器2のIDT対数Nも弾性表
面波共振器1のIDT電極と同様とした。なお、λは弾
性表面波の波長である。
Here, the logarithm N of the IDT electrode 4 of the surface acoustic wave resonator 1 is 40 to 120, and the intersection width W is 10 (λ) to 4
0 (λ) and the IDT logarithm N of the surface acoustic wave resonator 2 were the same as those of the IDT electrode of the surface acoustic wave resonator 1. Here, λ is the wavelength of the surface acoustic wave.

【0018】次に、IDT電極4及び反射器5の膜厚h
e を150〜200nm、IDT電極4及び反射器5の
上に成膜させるシリコン膜6の膜厚hs を10〜40nm
の範囲とした条件で、弾性表面波装装置Sを30個作製
し、フィルタ特性を測定しその平均値から評価を行った
結果について説明する。なお、中心周波数は1900M
Hz±250MHzでフィルタ特性の測定を行った。
Next, the film thickness h of the IDT electrode 4 and the reflector 5
e is 150 to 200 nm, and the thickness hs of the silicon film 6 formed on the IDT electrode 4 and the reflector 5 is 10 to 40 nm.
A description will be given of the results of producing thirty surface acoustic wave devices S under the conditions described above, measuring the filter characteristics, and evaluating from the average value. The center frequency is 1900M
The filter characteristics were measured at Hz ± 250 MHz.

【0019】まず、シリコン膜の膜厚と通過帯域幅の変
化量との関係について、シリコン膜を積層させない場合
と比較した変化量を調べたところ、図3に示すように、
上記条件でシリコン膜の膜厚比が0.07 < hS /
he < 0.15(ただし、hS :半導体層の厚さ、h
e :IDT電極の厚さ)では、通過帯域幅の変化量が0
〜7MHzの範囲で増加する(広帯域となる)ことが判
明し、それ以外の膜厚では減少することが判明した。
First, regarding the relationship between the thickness of the silicon film and the variation of the pass band width, the variation was compared with the case where the silicon film was not stacked, and as shown in FIG.
Under the above conditions, the thickness ratio of the silicon film is 0.07 <hS /
he <0.15 (hs: thickness of the semiconductor layer, h
e: thickness of the IDT electrode), the change amount of the pass band width is 0
It was found to increase (becomes broadband) in the range of 77 MHz, and to decrease at other film thicknesses.

【0020】また、シリコン膜の膜厚と挿入損失の変化
量との関係について、シリコン膜を積層させない場合と
比較した変化量を調べたところ、図4に示すように、上
記条件でシリコン膜の膜厚比hS /he が0.08〜
0.14では、挿入損失の変化量がマイナスとなること
が判明し、それ以外の膜厚では増加することが判明し
た。
Further, the relationship between the thickness of the silicon film and the amount of change in the insertion loss was examined in comparison with the case where the silicon film was not laminated. As shown in FIG. The film thickness ratio hs / he is 0.08 to
At 0.14, it was found that the amount of change in insertion loss was negative, and it was found to increase at other film thicknesses.

【0021】また、放電による絶縁破壊の発生率につい
て多数のサンプルを用いて調べたところ、絶縁材料であ
る酸化シリコン(SiO2 )膜を積層させた場合は、シ
リコン膜を積層させた場合より4倍以上もの発生率であ
った。すなわち、本実施例ではシリコン膜を積層させた
場合は0.1%以下の発生率であったのに対して、Si
2 膜を積層させた場合は0.4%の発生率であった。
Further, when the occurrence rate of dielectric breakdown due to electric discharge was examined using a large number of samples, it was found that when a silicon oxide (SiO 2 ) film as an insulating material was laminated, it was 4 times larger than when a silicon film was laminated. The incidence was more than doubled. That is, in the present embodiment, when the silicon film was laminated, the incidence rate was 0.1% or less,
When the O 2 film was laminated, the incidence was 0.4%.

【0022】また、金属異物による特性変化を検討する
ために、銀粉を基板及び励振電極上に付着させ、付着前
後の特性を比較したところ、図5に示すように、シリコ
ン膜を形成した弾性表面波装置は銀粉付着後も特性変化
がなかったのに対して、シリコン膜を形成していない弾
性表面波装置では図6に示すように、銀粉付着後は挿入
損失が増大し、付着前に比べ著しい特性変化が生じた。
Further, in order to examine the change in characteristics due to the metallic foreign matter, silver powder was deposited on the substrate and the excitation electrode, and the characteristics before and after the deposition were compared. As shown in FIG. The wave device did not change its characteristics even after the silver powder was deposited, whereas the surface acoustic wave device without the silicon film had an increased insertion loss after the silver powder was deposited, as shown in FIG. Significant property changes occurred.

【0023】以上の結果より、シリコン膜の膜厚比hS
/he を0.07〜0.15とすることで、通過帯域幅
の変化量がプラス側に増大し、特性の優れた好適な弾性
表面波装置を提供できることが判明した。さらに、シリ
コン膜の膜厚比hS /he を0.08〜0.14とする
ことで、挿入損失がより小さくなりいっそう特性の優れ
た弾性表面波装置を提供できることが判明した。さらに
また、上記構成によれば絶縁破壊による発生も皆無とな
る。
From the above results, the silicon film thickness ratio hs
By setting / he to be 0.07 to 0.15, the amount of change in the pass band width increases to the positive side, and it has been found that a suitable surface acoustic wave device having excellent characteristics can be provided. Further, it has been found that by setting the thickness ratio hS / he of the silicon film to 0.08 to 0.14, it is possible to provide a surface acoustic wave device having a smaller insertion loss and more excellent characteristics. Furthermore, according to the above configuration, there is no occurrence due to dielectric breakdown.

【0024】[0024]

【発明の効果】以上説明したように、本発明の弾性表面
波装置によれば、異物が励振電極等の電極上に付着する
ことが極力防止されるので、異物付着による特性劣化が
極力防止される。また、圧電基板の焦電性から生じる放
電により、励振電極等の電極や半導体層の破壊が極力防
止され、非常に高信頼性の弾性表面波装置を提供でき
る。
As described above, according to the surface acoustic wave device of the present invention, it is possible to prevent foreign substances from adhering to electrodes such as the excitation electrode as much as possible. You. In addition, the discharge caused by the pyroelectricity of the piezoelectric substrate prevents breakage of the electrodes such as the excitation electrodes and the semiconductor layer as much as possible, so that a highly reliable surface acoustic wave device can be provided.

【0025】また、特に圧電基板をタンタル酸リチウム
単結晶、半導体層をシリコン膜とした場合に、半導体層
の膜厚比を0.07〜0.15とすることで、通過帯域
幅の変化量が増加し、特性の優れた好適な弾性表面波装
置を提供できる。さらに、シリコン膜の膜厚比を0.0
8〜0.14とすることで、挿入損失が非常に小さく、
よりいっそう特性の優れた弾性表面波装置を提供でき
る。
In particular, when the piezoelectric substrate is a single crystal of lithium tantalate and the semiconductor layer is a silicon film, the thickness of the semiconductor layer is set to 0.07 to 0.15 to change the pass band width. And a suitable surface acoustic wave device having excellent characteristics can be provided. Further, the thickness ratio of the silicon film is set to 0.0
By setting it to 8 to 0.14, the insertion loss is very small,
A surface acoustic wave device having more excellent characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る一実施例の弾性表面波装置を示す
平面図。
FIG. 1 is a plan view showing a surface acoustic wave device according to one embodiment of the present invention.

【図2】(a)は本発明に係る弾性表面波装置を構成す
る弾性表面波共振器を示す平面図、(b)はII−II
線断面図。
FIG. 2A is a plan view showing a surface acoustic wave resonator constituting a surface acoustic wave device according to the present invention, and FIG.
Line sectional view.

【図3】シリコン半導体層の膜厚と通過帯域幅の変化量
との関係について、シリコン半導体層を積層させない場
合と比較した変化量を示すグラフ。
FIG. 3 is a graph showing the relationship between the thickness of a silicon semiconductor layer and the variation of the passband, as compared to the case where no silicon semiconductor layer is stacked.

【図4】シリコン半導体層の膜厚と挿入損失の変化量と
の関係について、シリコン半導体層を積層させない場合
と比較した変化量を示すグラフ。
FIG. 4 is a graph showing the relationship between the thickness of a silicon semiconductor layer and the amount of change in insertion loss as compared to the case where no silicon semiconductor layer is stacked.

【図5】本発明の銀粉付着前後における周波数と減衰量
との関係を示すグラフ。
FIG. 5 is a graph showing the relationship between the frequency and the amount of attenuation before and after silver powder adhesion of the present invention.

【図6】比較例の銀粉付着前後における周波数と減衰量
との関係を示すグラフ。
FIG. 6 is a graph showing the relationship between frequency and attenuation before and after silver powder adhesion in a comparative example.

【符号の説明】[Explanation of symbols]

1 ・・・ 弾性表面波共振器(直列用) 2 ・・・ 弾性表面波共振器(並列用) 3 ・・・ 基板 4 ・・・ IDT電極(励振電極) 5 ・・・ 反射器 6 ・・・ 半導体層 S ・・・ 弾性表面波装置 DESCRIPTION OF SYMBOLS 1 ... Surface acoustic wave resonator (for series) 2 ... Surface acoustic wave resonator (for parallel) 3 ... Substrate 4 ... IDT electrode (excitation electrode) 5 ... Reflector 6 ...・ Semiconductor layer S ・ ・ ・ Surface acoustic wave device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧電基板上に、弾性表面波を発生させる
励振電極、及び下記式を満足し且つ比抵抗値が102
107 Ω・cmの半導体層を順次積層して成る弾性表面
波装置。 0.07 < hS /he < 0.15 (ただし、hS :半導体層の厚さ、he :励振電極の厚
さ)
1. An excitation electrode for generating a surface acoustic wave on a piezoelectric substrate, and a specific resistance value satisfying the following expression and having a specific resistance value of 10 2 or more:
A surface acoustic wave device formed by sequentially laminating semiconductor layers of 10 7 Ω · cm. 0.07 <hS / he <0.15 (hs: thickness of semiconductor layer, he: thickness of excitation electrode)
【請求項2】 前記圧電基板がタンタル酸リチウム単結
晶であり、前記半導体層がシリコンであることを特徴と
する請求項1に記載の弾性表面波装置。
2. The surface acoustic wave device according to claim 1, wherein the piezoelectric substrate is a single crystal of lithium tantalate, and the semiconductor layer is silicon.
JP14267397A 1996-08-29 1997-05-30 Surface acoustic wave device Pending JPH10126207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14267397A JPH10126207A (en) 1996-08-29 1997-05-30 Surface acoustic wave device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-229099 1996-08-29
JP22909996 1996-08-29
JP14267397A JPH10126207A (en) 1996-08-29 1997-05-30 Surface acoustic wave device

Publications (1)

Publication Number Publication Date
JPH10126207A true JPH10126207A (en) 1998-05-15

Family

ID=26474600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14267397A Pending JPH10126207A (en) 1996-08-29 1997-05-30 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JPH10126207A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6720845B2 (en) * 2000-11-09 2004-04-13 Nrs Technologies Inc. Saw filter device and package for accommodating the same
JP2006086701A (en) * 2004-09-15 2006-03-30 Kyocera Corp Surface acoustic wave device, manufacturing method therefor, and communication apparatus
US7504759B2 (en) 2004-03-09 2009-03-17 Tdk Corporation Surface acoustic wave element, surface acoustic wave device, duplexer, and method of making surface acoustic wave element
US7538636B2 (en) * 2002-12-25 2009-05-26 Panasonic Corporation Electronic part with a comb electrode and protective film and electronic equipment including same
US7589606B2 (en) * 2004-06-30 2009-09-15 Panasonic Corporation Electronic part utilizing a protective film on a comb-shaped electrode
US20170250673A1 (en) * 2016-02-29 2017-08-31 Avago Technologies General Ip (Singapore) Pte. Ltd Surface acoustic wave (saw) resonator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6720845B2 (en) * 2000-11-09 2004-04-13 Nrs Technologies Inc. Saw filter device and package for accommodating the same
US7538636B2 (en) * 2002-12-25 2009-05-26 Panasonic Corporation Electronic part with a comb electrode and protective film and electronic equipment including same
US7855619B2 (en) 2002-12-25 2010-12-21 Panasonic Corporation Electronic part and electronic equipment with electronic part
US7504759B2 (en) 2004-03-09 2009-03-17 Tdk Corporation Surface acoustic wave element, surface acoustic wave device, duplexer, and method of making surface acoustic wave element
US7589606B2 (en) * 2004-06-30 2009-09-15 Panasonic Corporation Electronic part utilizing a protective film on a comb-shaped electrode
JP2006086701A (en) * 2004-09-15 2006-03-30 Kyocera Corp Surface acoustic wave device, manufacturing method therefor, and communication apparatus
US20170250673A1 (en) * 2016-02-29 2017-08-31 Avago Technologies General Ip (Singapore) Pte. Ltd Surface acoustic wave (saw) resonator
US10177735B2 (en) * 2016-02-29 2019-01-08 Avago Technologies International Sales Pte. Limited Surface acoustic wave (SAW) resonator

Similar Documents

Publication Publication Date Title
US11469736B2 (en) Acoustic wave device, filter, multiplexer, radio-frequency front-end circuit, and communication device
US9124243B2 (en) Surface acoustic wave filter device
JP5099151B2 (en) Method for manufacturing boundary acoustic wave device
US7688161B2 (en) Acoustic wave device and filter using the same
JP4552931B2 (en) Elastic wave device, mobile communication device and sensor using the same
EP1391988B1 (en) Surface acoustic wave apparatus and manufacturing method therefor
KR100312001B1 (en) Surface acoustic wave device
WO2005083881A1 (en) Surface acoustic wave device
WO2005034347A1 (en) Surface acoustic wave device
US6580198B2 (en) Surface acoustic wave device having a thin metal oxide film fully covering at least the electrodes and method of fabricating same
US9584088B2 (en) Method for manufacturing acoustic wave device
WO2007094368A1 (en) Surface acoustic wave device, surface acoustic wave filter employing same and antenna duplexer, and electronic apparatus employing same
JPH09223944A (en) Surface acoustic wave element and its manufacture
US20190379353A1 (en) Extractor
WO2007145056A1 (en) Surface acoustic wave device
JP2007235711A (en) Surface acoustic wave apparatus
JP2003060476A (en) Surface-acoustic wave device
JP2001044787A (en) Surface acoustic wave device
JPH10126207A (en) Surface acoustic wave device
JP3659455B2 (en) Surface acoustic wave device
JP2018196028A (en) Acoustic wave filter and multiplexer
JP2001345675A (en) Surface acoustic wave filter
JPH10107573A (en) Surface acoustic wave device
JP2007295504A (en) Surface acoustic-wave substrate and acoustic-wave substrate using ultra-low speed thin-film, and surface acoustic-wave function element and acoustic-wave function element using the substrate
JPH10163802A (en) Surface acoustic wave device