JPS6366942B2 - - Google Patents

Info

Publication number
JPS6366942B2
JPS6366942B2 JP56036520A JP3652081A JPS6366942B2 JP S6366942 B2 JPS6366942 B2 JP S6366942B2 JP 56036520 A JP56036520 A JP 56036520A JP 3652081 A JP3652081 A JP 3652081A JP S6366942 B2 JPS6366942 B2 JP S6366942B2
Authority
JP
Japan
Prior art keywords
polyester
fiber
sheath
fibers
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56036520A
Other languages
Japanese (ja)
Other versions
JPS57154414A (en
Inventor
Ichiro Okamoto
Masatoshi Furukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP3652081A priority Critical patent/JPS57154414A/en
Publication of JPS57154414A publication Critical patent/JPS57154414A/en
Publication of JPS6366942B2 publication Critical patent/JPS6366942B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Multicomponent Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、繊維軸の方向に略直角な方向の溝
(以下、グループとも言う)を有する、表面改質
されたポリエステル複合繊維の製造方法に関す
る。 ポリエステル繊維は、衣料用繊維として非常に
優れた特性を有するが、一般に溶融紡糸法によつ
て形成されるため、他の溶融紡糸法による合成繊
維と同様に、その表面が滑らかであるという特性
も有する。この表面が滑らかであるという特性
は、天然繊維に対して大きく異なる特性の一つで
あり、風合や光沢あるいは染色した場合の色の深
味等が天然繊維のそれと異なる原因の一つになつ
ている。そのため、ポリエステル繊維の表面形態
を天然繊維のそれに近付けるような表面改質が数
多く提案され、また実施もされている。 それら従来の表面改質は、物理的な表面改質と
化学的な表面改質に大きく分類される。そして、
物理的な表面改質はグラインダによる研削法と熱
賦型法が主体であり、化学的な表面改質は溶剤処
理による方法で、目的によつてポリエステル繊維
に予め易溶性等の異なる成分をブレンドしたりす
ることが行われている。 このような従来の表面改質方法によつて得られ
る表面の改質形態を表にして示したのが第1表で
ある。
The present invention relates to a method for producing surface-modified polyester composite fibers having grooves (hereinafter also referred to as groups) extending substantially perpendicular to the direction of the fiber axis. Polyester fibers have very good properties as clothing fibers, but because they are generally formed by melt spinning, they also have the same characteristic of having a smooth surface as other synthetic fibers made by melt spinning. have This characteristic of having a smooth surface is one of the characteristics that differs greatly from that of natural fibers, and is one of the reasons why the texture, luster, and depth of color when dyed are different from those of natural fibers. There is. Therefore, many surface modifications have been proposed and implemented to bring the surface morphology of polyester fibers closer to that of natural fibers. These conventional surface modifications are broadly classified into physical surface modification and chemical surface modification. and,
Physical surface modification mainly involves grinding with a grinder and heat forming method, while chemical surface modification involves solvent treatment, in which different components such as easily soluble are blended into the polyester fiber in advance depending on the purpose. There are things being done. Table 1 shows the surface modification forms obtained by such conventional surface modification methods.

【表】 すなわち、第1表から明らかなように、従来の
ポリエステル繊維には、羊毛のスケールに近いよ
うな、表面に繊維軸と直角な方向のグループがあ
るようなものはなかつた。なお、物理的表面改質
の熱賦型法として押込捲縮を挙げたのは、捲縮賦
与方法ではあるが表面の改質効果が比較的大きい
からであり、一方、加熱型により繊維軸と直角な
方向にくぼみを与える方法も提案されているが効
果の得られる実用的な方法ではなく、また、異型
紡糸口金等熱ダイスや熱ロールを用いる方法ある
いは仮撚捲縮法等は表面が変形しても、それは断
面変形に伴うものであつて表面の改質効果が小さ
いからである。 本発明は、表面に繊維軸と直角な方向のグルー
プがある新規なポリエステル繊維の製造方法を提
供するものであり、本発明の方法によつて得られ
るポリエステル繊維は、繊維軸と直角な方向のグ
ループがあつてもなお、使用に耐えるだけの十分
な強度を保有するように、グループの生じた表面
部に対してグループの生じない芯部があるような
鞘−芯型複合繊維の構造をとつている。 本発明は、アミン系溶剤に対する抵抗性が異な
る2種類のポリエステルから成つていて前記溶剤
に対する低抗性が小さいポリエステルを表面に配
した鞘−芯型複合繊維を前記溶剤で処理して、鞘
部のポリエステルの表面に繊維軸に略直角な方向
の溝が繊維軸の方向に並んで生じさせることを特
徴とする表面改質ポリエステル複合繊維の製造方
法にある。 本発明の方法は、アミン系溶剤に対する抵抗性
の小さいポリエステルとを鞘部に、抵抗性の大き
いポリエステルを芯部に配した鞘−芯型複合繊維
を適当な上記溶剤で処理すること方法であり、鞘
−芯型複合繊維のアミン系溶剤に対する抵抗性が
大きいポリエステルとしては、通常の延伸繊維に
した場合に必要な物性を満たすような固有粘度の
ものよりも高い固有粘度のホモポリエステルが主
として用いられるが、共重合ポリエステルも用い
られ、その場合は共重合割合の小さいポリエステ
ルが好ましい。また、アミン系溶剤に対する抵抗
性が小さいポリエステルとしては、上記のポリエ
ステルとは逆に、固有粘度の低いホモポリエステ
ルや共重合割合の大きい共重合ポリエステルが用
いられる。すなわち、このような2種類のポリエ
ステルを用いると、アミン系の溶剤に対して、固
有粘度の高いあるいは共重合割合の小さいポリエ
ステルは大なる抵抗性を示し、固有粘度の低いあ
るいは共重合割合の大きいポリエステルは小さい
抵抗性を示すことになる。なお、鞘−芯型複合繊
維の形成は従来公知の紡糸、延伸方法を用いて行
われる。 このような鞘−芯型複合繊維を処理する溶剤と
しては、モノメチルアミン、モノエチルアミン、
n−プロピルアミン、ブチルアミン等のアルキル
アミンの水溶液やヒドラジンヒドラートの水溶液
等が用いられる。これらの溶剤によるポリエステ
ルの分解反応の機構は未だ明確には解明されてい
ないが、繊維形成されたポリエステルには残留応
力の影響等によつて非晶領域が存在し、ポリエス
テル中のジエチレングリコール成分がアルキルア
ミン等の溶剤の浸透し易い非晶領域に多く分布し
ているので、アルキルアミン等の溶剤が非晶領域
を選択的に分解してグループが生ずると考えられ
る。さらに、上述のグループが繊維軸と直角な方
向に生ずるという理由も明確でないが、高分子の
マクロ的な組織の欠陥ないしは非晶部が繊維形成
によつて繊維軸と直角の方向に集中するようにな
るため、その集中が繊維軸方向に規則的に分布し
て、その分布した集中部分がアミン系溶剤によつ
て外側から選択的に分解される結果、繊維軸と直
角の方向のグループが繊維軸方向に並んで生ずる
ものと考えられる。 以上述べたように、アミン系溶剤に対する抵抗
性の小さい鞘部のポリエステルに繊維軸と直角な
方向のグループが繊維軸方向に並んで生ずること
は一応説明され、グループの溝幅や深さや繊維軸
方向の並びのピツチは、ポリエステルの種類およ
び繊維形成条件等によつて異なる繊維の微細構造
や、アミン系溶剤の種類、処理濃度、処理温度、
処理時間等の処理条件によつて変化する。そし
て、アミン系溶剤に対する抵抗性の大きい芯部の
ポリエステルには、そのようなグループを殆んど
生じさせないようにして、強度を負担させること
ができるし、また、2種類のポリエステルの選択
や繊維形成条件の設定を適当に行い、偏心した鞘
−芯型複合繊維とすることによつて、さらに捲縮
を発生するものも得ることができる。このように
捲縮まで発生させるようにすると、本発明の方法
によつて得られるポリエステル複合繊維は一段と
羊毛に類似して性能を示すようになる。 すなわち、鞘−芯型複合繊維の2種類のポリエ
ステルや繊維形成条件および溶剤処理条件等を適
当に選択することによつて、アミン系溶剤に対す
る抵抗性の小さい鞘部ポリエステルの表面に繊維
軸と直角な方向のグループが繊維軸の方向に並ん
だ、十分な強度を保有する繊維を得ることがで
き、しかもさらに、潜在捲縮をもつたものも得る
ことができる。 なお、鞘−芯型複合繊維をポリエステルとポリ
エステル以外のポリマーとの複合にすれば、アミ
ン系溶剤に対する抵抗性や繊維形成後の熱収縮等
に大きな差があるものを選ぶことが容易である
が、それではポリエステル繊維の優れた特性が減
殺されるし、また一般に、ポリエステルとポリエ
ステル以外のポリマーの組合せでは相溶性が悪く
て剥離し易く、そのために表面改質効果が発揮さ
れないという欠点が生ずる。 その点、本発明は、ポリエステル同志の鞘−芯
型複合繊維でも十分な表面改質効果を与える繊維
軸と直角方向のグループが得られることを見出し
てなされたものであり、本発明の方法によつて得
られる表面改質された複合繊維は、グループを有
する表面が脱落することがないという耐久性に優
れた特長も有する。 既に述べた通り、本発明の方法によつて得られ
る複合繊維におけるグループの溝幅や、深さおよ
び繊維軸方向の並びのピツチは、ポリエステルの
アミン系溶剤に対する抵抗性や繊維形成条件およ
び溶剤処理の条件によつて変るが、そのうちで、
グループの溝幅に対しては主として溶剤処理条件
が、従としてポリエステルの種類や繊維形成条件
が影響し、深さに対しては溶剤処理条件が強く影
響し、並びのピツチに対してはポリエステルの種
類と繊維形成条件が支配的であることが確められ
ている。したがつて、それら条件の影響の強弱を
考慮すれば、かなり自由にグループの溝幅や、深
さや並びのピツチの異なる繊維を得ることができ
る。 そこで、アミン系溶剤に対する抵抗性の小さい
鞘部のポリエステルの厚さが異なる種々の鞘−芯
型複合繊維について、鞘部のポリエステルの表面
に溝幅や深さや並びのピツチが異なる繊維軸と直
角な方向のグループがあるものを種々作つて検討
した結果、複合繊維の直径をDとして、鞘部のポ
リエステルの厚さが0.05D〜0.5Dの範囲にあり、
個々のグループの溝幅が0.01D〜1.0Dの範囲、深
さが0.01D〜0.5Dの範囲にあつて、繊維軸方向の
並びのピツチが0.01D〜10.0Dの範囲にあるよう
なものが表面改質効果に優れて、しかも十分な繊
維強度を保有することから好ましいということが
分つた。 すなわち、鞘部のポリエステルの厚さはグルー
プの最大深さに関係するから、それが0.05Dより
も薄いとグループの深さも0.01Dより浅いものが
多くなつてグループの効果が現われなくなるし、
複合繊維が殆んど鞘部だけになつてグループの深
さが0.5Dにも達すると繊維強度が低下して使用
に耐えられなくなる。また、グループの溝幅が
0.01Dより小さいとグループの効果が現われない
し、1.0Dより大きくなつてもグループの効果が
減殺されるようになるし、繊維強度も低下する。
さらにグループの並びのピツチは、溝幅や深さと
も関係するが、0.01Dより小さくても10.0Dより
大きくてもグループの効果を減殺する。そして、
グループの溝幅や深さおよび並びのピツチが上述
の範囲内であれば、例えば、ポリエステルの種類
や繊維形成条件によつて並びのピツチの粗いもの
については、溶剤処理条件によつて溝幅や深さを
大きくするといつた工合に、互いに補うようにし
てグループの効果が現われるようにできる。 なお、ポリエステルの種類や繊維形成条件によ
つては、繊維軸に直角な方向のグループだけでは
なく、繊維軸方向のグループも発生することがあ
るが、その場合でも繊維軸に直角な方向のグルー
プによる表面改質効果は発揮される。 また、本発明の方法によつて得られる表面改質
された複合繊維がグループを生ぜしめるアミン系
溶剤処理のほかに、例えば表面を全般的に粗面化
するような、アルカリ処理等他の溶剤処理を受け
た、または受けるようなものであつてもよい。 以下、本発明を実施例に基づいて説明する。 実施例 1 固有粘度0.400のポリエチレンテレフタレート
が鞘部に、固有粘度0.640のポリエチレンテレフ
タレートが芯部になり、鞘部と芯部の重量比が
1:2になるように、溶融温度290℃、紡出速度
3000m/minで複合繊維よりなる糸条を作り、該
糸条に仮撚捲縮加工を施して捲縮糸とした。その
捲縮糸に200〜300T/Mの範囲の撚を与えて、製
織し、加工糸織物を作つた。その加工糸織物をモ
ノエチルアミン60%水溶液30℃中に12時間浸漬処
理し、次いでエチルアルコールで洗浄した後、水
洗、乾燥して、処理織物を得た。 この処理織物は、モノエチルアミン処理前の加
工糸織物に較べて、一段と羊毛に近い風合を示す
ものであつた。そして、この処理織物を構成して
いる捲縮加工糸の複合繊維の表面には溝幅約0.5
〜1.0μ、深さ約2〜5μの繊維軸に直角な方向のグ
ループが繊維軸の方向にピツチ約5〜8μで並ん
で生じていた。 実施例 2 ナトリウム・スルホ・イソフタル酸成分を2.6
モル%共重合した固有粘度0.485の共重合ポリエ
チレンテレフタレートが鞘部に、固有粘度0.640
のポリエチレンテレフタレートが芯部になり、鞘
部と芯部の重量比が1:2になるように溶融温度
290℃で紡出し、延伸して複合繊維よりなる糸条
を作り、この糸条を用いて織物および編物を作つ
た。それらの織、編物をそれぞれモノエチルアミ
ン40%水溶液30℃中10時間浸漬処理し、次いでエ
チルアルコールで洗浄後、水洗、乾燥した。 得られた織、編物は、それぞれモノエチルアミ
ンで処理する前の織、編物に比較すると、それら
とは異なつた特殊なドライタツチの風合を有する
ものであつた。そして、モノエチルアミンで処理
された織、編物の構成糸条の複合繊維には、表面
に繊維軸と直角な方向のグループが繊維軸の方向
に並んで生じていた。
[Table] That is, as is clear from Table 1, none of the conventional polyester fibers had groups on the surface in a direction perpendicular to the fiber axis, similar to the scale of wool. The reason why indentation crimping was selected as a heat forming method for physical surface modification is because although it is a crimp imparting method, it has a relatively large surface modification effect. Methods of creating indentations in the right angle direction have been proposed, but these are not practical methods that provide an effective effect, and methods that use heat dies or heated rolls such as a modified spinneret, or false twist crimp methods cause the surface to deform. However, this is due to cross-sectional deformation and the surface modification effect is small. The present invention provides a novel method for producing polyester fibers having groups on the surface in a direction perpendicular to the fiber axis. In order to maintain sufficient strength to withstand use even with groups, the structure of the sheath-core composite fiber is such that there is a core area where groups do not form and a surface area where groups form. It's on. In the present invention, a sheath-core composite fiber made of two types of polyesters having different resistances to amine solvents and having a polyester having a low resistance to the solvents arranged on the surface is treated with the solvent, and the sheath is A method for producing a surface-modified polyester composite fiber, characterized in that grooves are formed in a direction substantially perpendicular to the fiber axis on the surface of the polyester. The method of the present invention is a method of treating a sheath-core type composite fiber in which a polyester having low resistance to amine solvents is arranged in the sheath part and a polyester having high resistance in the core part, with an appropriate solvent. As polyesters that have high resistance to amine solvents for sheath-core composite fibers, homopolyesters with a higher intrinsic viscosity than those that satisfy the physical properties required when made into ordinary drawn fibers are mainly used. However, copolymerized polyesters may also be used, and in that case, polyesters with a small copolymerization ratio are preferred. Further, as the polyester having low resistance to amine solvents, homopolyesters having a low intrinsic viscosity and copolymerized polyesters having a high copolymerization ratio are used, contrary to the above-mentioned polyesters. In other words, when these two types of polyesters are used, the polyester with a high intrinsic viscosity or a low copolymerization ratio shows great resistance to amine solvents, and the polyester with a low intrinsic viscosity or a high copolymerization ratio shows great resistance to amine solvents. Polyester will exhibit less resistance. The sheath-core composite fibers are formed using conventionally known spinning and drawing methods. Solvents for treating such sheath-core composite fibers include monomethylamine, monoethylamine,
Aqueous solutions of alkylamines such as n-propylamine and butylamine, aqueous solutions of hydrazine hydrate, and the like are used. Although the mechanism of polyester decomposition reactions caused by these solvents has not yet been clearly elucidated, amorphous regions exist in the polyester formed into fibers due to the influence of residual stress, and the diethylene glycol component in the polyester is alkyl. Since it is mostly distributed in amorphous regions that are easily penetrated by solvents such as amines, it is thought that solvents such as alkylamines selectively decompose the amorphous regions to form groups. Furthermore, although the reason why the above-mentioned groups occur in the direction perpendicular to the fiber axis is not clear, it seems that defects or amorphous parts in the macroscopic structure of the polymer are concentrated in the direction perpendicular to the fiber axis due to fiber formation. As a result, the concentration is distributed regularly in the direction of the fiber axis, and the distributed concentrated portion is selectively decomposed from the outside by the amine solvent. As a result, the groups in the direction perpendicular to the fiber axis are It is thought that they occur side by side in the axial direction. As mentioned above, it has been explained that groups perpendicular to the fiber axis are formed in the polyester sheath, which has low resistance to amine solvents, and are aligned in the fiber axis direction. The pitch of the directional alignment depends on the fine structure of the fibers, which varies depending on the type of polyester and fiber formation conditions, the type of amine solvent, treatment concentration, treatment temperature, etc.
It varies depending on processing conditions such as processing time. In addition, the core polyester, which has high resistance to amine solvents, can be made to have almost no such groups and be given strength, and the selection of two types of polyester and the fiber By appropriately setting the formation conditions and producing an eccentric sheath-core type composite fiber, it is also possible to obtain a fiber that is even more crimpable. By causing crimp to occur in this manner, the polyester composite fiber obtained by the method of the present invention will exhibit performance more similar to wool. In other words, by appropriately selecting the two types of polyester in the sheath-core composite fiber, the fiber forming conditions, the solvent treatment conditions, etc., the surface of the sheath polyester, which has low resistance to amine solvents, is coated at right angles to the fiber axis. It is possible to obtain a fiber having sufficient strength, in which groups in the same direction are arranged in the direction of the fiber axis, and furthermore, it is possible to obtain a fiber having latent crimp. In addition, if the sheath-core composite fiber is made of polyester and a polymer other than polyester, it is easy to select one that has a large difference in resistance to amine solvents and heat shrinkage after fiber formation. In this case, the excellent properties of polyester fibers are diminished, and in general, combinations of polyester and polymers other than polyester have poor compatibility and are easily peeled off, resulting in the disadvantage that the surface modification effect is not exhibited. In this regard, the present invention was made based on the discovery that groups in the direction perpendicular to the fiber axis that provide a sufficient surface modification effect can be obtained even with sheath-core composite fibers made of polyester. The surface-modified composite fiber thus obtained also has the feature of excellent durability in that the surface having groups does not fall off. As already mentioned, the groove width, depth, and pitch of the group grooves in the composite fiber obtained by the method of the present invention in the axial direction of the fibers depend on the resistance of the polyester to amine solvents, fiber formation conditions, and solvent treatment. Although it varies depending on the conditions,
The groove width of the group is mainly influenced by the solvent treatment conditions, followed by the type of polyester and fiber formation conditions, the depth is strongly influenced by the solvent treatment conditions, and the pitch of the rows is influenced by the polyester. It has been established that the type and fiber formation conditions are dominant. Therefore, if the strength of the influence of these conditions is considered, fibers with different group groove widths, depths, and arrangement pitches can be obtained with considerable freedom. Therefore, regarding various sheath-core type composite fibers with different thicknesses of polyester in the sheath part, which has low resistance to amine solvents, we investigated the problem of using fibers with different groove widths, depths, and pitches perpendicular to the fiber axis on the surface of the polyester in the sheath part. As a result of making and examining various products with groups in the same direction, we found that, where the diameter of the composite fiber is D, the thickness of the polyester in the sheath is in the range of 0.05D to 0.5D.
The groove width of each group is in the range of 0.01D to 1.0D, the depth is in the range of 0.01D to 0.5D, and the pitch in the fiber axis direction is in the range of 0.01D to 10.0D. It was found that this material is preferable because it has an excellent surface modification effect and also has sufficient fiber strength. In other words, since the thickness of the polyester in the sheath is related to the maximum depth of the group, if it is thinner than 0.05D, the depth of the group will be shallower than 0.01D in many cases, and the group effect will no longer appear.
When the composite fibers become almost only sheath parts and the depth of the group reaches 0.5D, the fiber strength decreases and the fiber becomes unusable. Also, the groove width of the group
If it is smaller than 0.01D, the group effect will not appear, and if it is larger than 1.0D, the group effect will be diminished and the fiber strength will also decrease.
Furthermore, the pitch of the group arrangement is also related to the groove width and depth, but if it is smaller than 0.01D or larger than 10.0D, the effect of the group will be diminished. and,
If the group groove width, depth, and alignment pitch are within the ranges mentioned above, for example, if the groove pitch is coarse depending on the type of polyester and fiber forming conditions, the groove width and depth may vary depending on the solvent treatment conditions. When the depth is increased, the effect of the group can be made to appear by complementing each other. Depending on the type of polyester and fiber formation conditions, groups in the direction perpendicular to the fiber axis may occur as well as groups in the direction perpendicular to the fiber axis. The surface modification effect is exhibited. In addition to the amine-based solvent treatment that causes the surface-modified composite fibers obtained by the method of the present invention to form groups, the surface-modified composite fibers obtained by the method of the present invention may also be treated with other solvents, such as alkaline treatment, to generally roughen the surface. It may be something that has undergone or is about to undergo treatment. Hereinafter, the present invention will be explained based on examples. Example 1 Polyethylene terephthalate with an intrinsic viscosity of 0.400 was used as the sheath, and polyethylene terephthalate with an intrinsic viscosity of 0.640 was used as the core. Spinning was carried out at a melting temperature of 290°C so that the weight ratio of the sheath and core was 1:2. speed
A yarn made of composite fiber was produced at 3000 m/min, and the yarn was subjected to false twisting and crimping to obtain a crimped yarn. The crimped yarn was twisted in a range of 200 to 300 T/M and woven to produce a textured yarn fabric. The processed yarn fabric was immersed in a 60% monoethylamine aqueous solution at 30° C. for 12 hours, then washed with ethyl alcohol, washed with water, and dried to obtain a treated fabric. This treated fabric had a texture more similar to wool than the processed yarn fabric before monoethylamine treatment. The surface of the composite fibers of the crimped yarn that makes up this treated fabric has a groove width of approximately 0.5.
-1.0μ, depth of about 2-5μ in the direction perpendicular to the fiber axis, the groups were lined up in the direction of the fiber axis with a pitch of about 5-8μ. Example 2 Sodium, sulfo, isophthalic acid component: 2.6
Mol% copolymerized polyethylene terephthalate with an intrinsic viscosity of 0.485 is used in the sheath, and the inner viscosity is 0.640.
of polyethylene terephthalate becomes the core, and the melting temperature is adjusted so that the weight ratio of the sheath and core is 1:2.
The yarn was spun at 290°C and drawn to make a composite fiber yarn, and this yarn was used to make woven and knitted fabrics. The woven and knitted fabrics were each immersed in a 40% monoethylamine aqueous solution at 30°C for 10 hours, then washed with ethyl alcohol, water, and dried. The obtained woven and knitted fabrics had a special dry-touch feel that was different from the woven and knitted fabrics before being treated with monoethylamine. In addition, in the composite fibers of the constituent threads of the woven and knitted fabrics treated with monoethylamine, groups in the direction perpendicular to the fiber axis were formed on the surface of the composite fibers, aligned in the direction of the fiber axis.

Claims (1)

【特許請求の範囲】[Claims] 1 アミン系溶剤に対する抵抗性が異なる2種類
のポリエステルから成つていて前記溶剤に対する
抵抗性が小さいポリエステルを表面に配した鞘−
芯型複合繊維を前記溶剤で処理して、鞘部のポリ
エステルの表面に繊維軸に略直角な方向の溝を繊
維軸の方向に並んで生じさせることを特徴とする
表面改質ポリエステル複合繊維の製造方法。
1. A sheath made of two types of polyesters with different resistances to amine solvents and having a polyester with low resistance to the solvents arranged on the surface.
A surface-modified polyester conjugate fiber characterized in that the core-type conjugate fiber is treated with the solvent to form grooves in a direction substantially perpendicular to the fiber axis on the surface of the polyester of the sheath portion, which are lined up in the direction of the fiber axis. Production method.
JP3652081A 1981-03-16 1981-03-16 Polyester conjugated fiber with modified surface Granted JPS57154414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3652081A JPS57154414A (en) 1981-03-16 1981-03-16 Polyester conjugated fiber with modified surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3652081A JPS57154414A (en) 1981-03-16 1981-03-16 Polyester conjugated fiber with modified surface

Publications (2)

Publication Number Publication Date
JPS57154414A JPS57154414A (en) 1982-09-24
JPS6366942B2 true JPS6366942B2 (en) 1988-12-22

Family

ID=12472088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3652081A Granted JPS57154414A (en) 1981-03-16 1981-03-16 Polyester conjugated fiber with modified surface

Country Status (1)

Country Link
JP (1) JPS57154414A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123922A (en) * 1974-03-22 1975-09-29
JPS55107512A (en) * 1979-02-05 1980-08-18 Kuraray Co Ltd Polyester synthetic fibers and their production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123922A (en) * 1974-03-22 1975-09-29
JPS55107512A (en) * 1979-02-05 1980-08-18 Kuraray Co Ltd Polyester synthetic fibers and their production

Also Published As

Publication number Publication date
JPS57154414A (en) 1982-09-24

Similar Documents

Publication Publication Date Title
DE2909188C2 (en)
US4008344A (en) Multi-component fiber, the method for making said and polyurethane matrix sheets formed from said
EP3933080A1 (en) Crimped polester-based fiber, method for producing same, pile fabric including same, and method for producing pile fabric
JPS6366942B2 (en)
JPS6366941B2 (en)
JP2970350B2 (en) Manufacturing method of woven or knitted fabric using mixed yarn of different fineness
JP2002054036A (en) Crimped polyester fiber and method for producing the same
JP2000314036A (en) Hollow false twist textured yarn and its production
JP2000328359A (en) Production of polyester blended yarn
JPH05106111A (en) Ethylene-vinyl alcohol copolymer hollow fiber and its production
JPH073554A (en) Production of false-twisted hollow polyester yarn
JP2818117B2 (en) Method for producing a fabric comprising a polyester mixed yarn having fluff
JPS621004B2 (en)
JPH10158928A (en) Splittable acrylic synthetic yarn and its production
KR100226190B1 (en) Process for mixed yarn having different shrinkage
JP3501012B2 (en) Composite yarn and woven / knitted fabric comprising the composite yarn
JPWO2005071149A1 (en) Polyester different shrinkage mixed yarn and method for producing the same
JPS59228052A (en) Knitted fabric having pile with flat cross area
JPS5860035A (en) Blended spun yarn
JPS5938330B2 (en) Manufacturing method of split-fiber processed yarn
JPS61160477A (en) Production of fabric
JP2744573B2 (en) Silk spinning fabric
JP3081741B2 (en) New microfiber fabric
JPH07102420A (en) Composite fiber
JPS63315667A (en) Production of silky cloth