JPS6366837B2 - - Google Patents

Info

Publication number
JPS6366837B2
JPS6366837B2 JP55008775A JP877580A JPS6366837B2 JP S6366837 B2 JPS6366837 B2 JP S6366837B2 JP 55008775 A JP55008775 A JP 55008775A JP 877580 A JP877580 A JP 877580A JP S6366837 B2 JPS6366837 B2 JP S6366837B2
Authority
JP
Japan
Prior art keywords
catalyst
silver
temperature
carbon dioxide
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55008775A
Other languages
Japanese (ja)
Other versions
JPS56108533A (en
Inventor
Masashi Mitsuhata
Fumio Watanabe
Toshihiko Kumazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP877580A priority Critical patent/JPS56108533A/en
Publication of JPS56108533A publication Critical patent/JPS56108533A/en
Publication of JPS6366837B2 publication Critical patent/JPS6366837B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、エチレンを分子状酸素により接触気
相酸化してエチレンオキシドを製造するに際し使
用される銀触媒に関するものである。 工業的にエチレンを分子状酸素により接触気相
酸化してエチレンオキシドを製造するに際し使用
される触媒には、その性能としては高活性、高選
択性および耐久性が要求される。 これらの要求に対しその性能を改善する目的で
今日まで種々検討がなされており、反応促進剤、
担体、銀化合物等の改良に多くの努力が払われて
きた。中でも反応促進剤に関する報告は特公昭40
−4605号、特開昭49−30285号、特開昭50−74889
号など数多く提案されており、それらは限定され
た範囲内のアルカリ金属を添加することにより性
能の向上を計つているものである。 しかしながらこれ等の大部分は確に選択率に関
してはある程度改良されているが、活性、耐久性
についてはまだまだ検討すべき点が多い。特にア
ルカリ金属添加触媒の使用期間中の活性及び選択
性の低下に関する耐久性の問題に対し種々努力が
なされているようであるが、まだ解決するに至つ
ていない。 担体についてもいくつかの報告が出されている
が、不明な点も多く改良すべき点が多々ある。 たとえば、担体の比表面積、細孔径、細孔分
布、比細孔容積、気孔率等の物理的性質、また、
α−アルミナ、シリコンカーバイド、シリカ、ジ
ルコニア等担体材料のもつ化学的性質等の触媒性
能に対する影響の解明とその最適化等である。特
にその中でも担体の比表面積は細孔径にも関係し
触媒性能に与える影響は大きく留意しなければな
らない。その点で最近工業規模で使用され出した
担体の比表面積が以前に比べ増大化したことは一
つの進歩である。 しかしながら、これとても担体比表面積の増加
の割合に対する触媒有効表面積の増加の少さから
生ずる。銀粒子の分離微粒化と被毒の受け易さが
解決すべき問題として新に出てきた。 本発明者等はこれ等のことを鋭意検討した結
果、アルカリ金属添加触媒の使用期間中の劣化を
極力少くし触媒の初期の被毒による性能の低下を
なくし、長期にわたり安定的に高活性、高選択性
を示す触媒を見出した。 以下そのことを詳細に述べる。 前述したように、これまでのアルカリ金属添加
触媒は、使用期間中にその性能特に選択率の劣化
が著しく使用期間の短縮を余儀なくしている。 この改良の為に種々努力がなされているが、た
とえば劣化した触媒に再度アルカリ金属を添着し
再生させる方法が特開昭52−35193号等に開示さ
れている。 このことを見ると触媒に添加されたアルカリ金
属は使用期間中に少しずつ飛散しているのかもし
れないし、銀中又は担体中に移動してその働きを
衰えさせていくのかもしれない。また、銀粒子の
シンタリングによる効果もあるかもしれない、が
いずれも確証はない。 本発明者等はこれ等の点を熟慮検討した結果ア
ルカリ金属化合物を添加した触媒を調製する過程
において、最終的に賦活化後の触媒を炭酸ガス処
理をすることにより、被毒効果の少い、長期安定
的な高活性、高選択性の触媒が得られることを見
出し本発明を完成した。 すなわち、比表面積が0.1〜5m2/gの担体に
完成された触媒に対し5〜25重量%の銀含有率に
なるように、分解性銀塩により金属銀微粒子を担
持させ、アルカリ金属化合物を銀と同時にまたは
銀を担持する前に完成触媒1キログラムあたり
0.001〜0.03グラム当量を担持させ、次いで空気
流により240〜400℃の温度で賦活した後さらに炭
酸ガス流により50〜350℃の温度で固定化して得
られる触媒が本発明のエチレンオキシド製造用銀
触媒である。 斯の如く、アルカリ金属添加触媒を空気により
賦活化後炭酸ガスで処理することにより、アルカ
リ金属化合物の添加効果がより長く持続されるこ
とは驚くべきことである。 特に銀の含有量の少い触媒にその効果は著し
い。本発明者等はこれが何に基いているかは分ら
ない。ただ次のようなことに対応していることも
驚かされる。それはアルカリ金属化合物が炭酸ガ
ス処理により触媒中に固定化されるということで
ある。そのことはアルカリ金属化合物添加触媒の
炭酸ガス処理の有無でアルコールでのアルカリ金
属化合物の抽出量の相違にある。 すなわち後述の実施例の表−1に示されるよう
に炭酸ガス処理の有無により明らかに抽出量が違
つている。 このことは単に溶解度からだけでは説明がつか
ない。またこのようなことが触媒性能と関係ある
かどうかは定かではないが、対応していることは
単なる偶然とは思えない。炭酸ガス以外のガスが
効果を示さないことも特筆されるべきことであ
る。炭酸ガスに他のガスを混合させても効果はあ
るが効果は小さくなり処理時間が長くなることか
ら、他のガスは炭酸ガスの希釈にしか役立たな
い。 また、処理温度は高い方が効果は大きいが触媒
物質の形状が変化する程高温にすることは却つて
好ましくない。しかし低温では時間が長くかか
る。従つて50〜400℃で効果はあるが賦活温度前
後の温度150〜300℃で5〜35時間好ましくは15〜
30時間処理することが良い。 炭酸ガス処理による効果として触媒の耐久性以
外に附随的に触媒の保存性の効果がある。これは
アルカリ金属化合物添加の触媒を賦活後長く保存
しておいて使用する場合、あるいは遠隔地へ送る
場合等、触媒を製造後長期的に使用しない場合、
使用の際に劣化していることがあり、特に高表面
積の担体を使用し銀含有量の少いアルカリ金属化
合物添加触媒はその傾向が多くみられる。しかし
ながら炭酸ガス処理した触媒はそのような現象が
見られず、いつまでも保存ができる。このことは
何故であるか分らないが、触媒物質の被毒と関係
あるのかもしれない。それが炭酸ガス処理により
抑えられることは注目すべきことで実施例に見ら
れる如くその効果は小さくない。 ここに言う炭酸ガス処理も全く前記した方法と
同じで良く一回の処理で両方の効果が得られる。 以上のことをより具体的に述べるならば、エチ
レンを分子状酸素により気相接触酸化してエチレ
ンオキシドを製造する際に使用される銀触媒にお
いて、多孔質耐火物担体としてα−アルミナを主
成分とした0.1〜5m2/g好ましくは1〜3m2
gの比表面積、30〜60容量%の見掛気孔率、0.2
〜0.5c.c./gの比細孔容積、3〜20mmの粒径等の
物性をもつ粒状担体を使用して、これに含浸法等
により、有機酸の銀塩、アンモニア性銀塩等の分
解性銀塩の溶液を含浸し、還元あるいは熱分解等
により担体の表面、担体の細孔内表面に銀を触媒
に対し5〜25重量%、好ましくは5〜20重量%微
粒状に析出させ、アルカリ金属化合物は好ましく
はカリウム、ルビジウム、セシウムの水溶性ある
いはアルコール溶解性塩を、完成触媒1キログラ
ムあたり0.001〜0.03グラム当量を、好ましくは
0.008〜0.03グラム当量を銀溶液に加えて銀と同
時に析出させるか、または銀の担持に先立つて担
体に含浸し、濃縮乾燥し担体表面に析出させてお
く。次いで該アルカリ金属化合物含有銀触媒を空
気流により240〜400℃で24〜100時間賦活化した
後、炭酸ガス流により50〜400℃好ましくは150〜
300℃の温度で5〜35時間好ましくは15〜35時間
熱処理して固定化されるのが好適である。 この方法で調製された銀触媒を使用してエチレ
ンを分子状酸素により酸化してエチレンオキシド
を製造する方法において採用出来得る条件は、こ
れまでこの分野で知られている総ての条件が採用
できるが、製造規模における一般的な条件、即ち
原料ガス組成としてエチレン0.5〜40容量%、酸
素3〜10容量%、二酸化炭素5〜30容量%、残部
が窒素、アルゴン、水蒸気等の不活性ガスおよび
メタン、エタン等の低級炭化水素類さらにまた反
応抑制剤としての二塩化エチレン、塩化ジフエニ
ル等のハロゲン化合物0.1〜10ppmから成る原料
ガス、反応温度150〜300℃、空間速度3000〜
10000hr-1(STP)、圧力2〜40Kg/cm2G等の条件
が好適に採用できる。 以下さらに具体的にするために実施例および比
較例を挙げて詳細に説明するが、本発明はその主
旨に反しない限りこれらの実施例に限定されるも
のではない。 なお、本文、実施例および比較例中に記載する
変化率、選択率は次式により算出されたものであ
る。 変化率(%)=反応したエチレンのモル数/原
料ガス中のエチレンのモル数×100 選択率(%)=エチレンオキシドに変化したエ
チレンのモル数/反応したエチレンのモル数×100 実施例 1 炭酸銀430gを水150mlと泥状にしておきこれに
エタノールアミン400mlを加えよく撹拌し溶解さ
せ、さらに水600mlを加えよく撹拌後、これにさ
らに13.9重量%硝酸セシウム溶液10mlを加えて撹
拌し含浸溶液を調製した。この溶液を見掛け気孔
率57%、BET比表面積0.3m2/g、比細孔容積
0.30c.c./g、粒径5mmの予め加熱したα−アルミ
ナ担体4000mlに含浸した。ついでゆるやかに撹拌
しながら80〜120℃で2時間加熱した。 この触媒を内径25.0mm、管長11000mmのステン
レス製反応管に充填し、その外側を熱媒により
100℃から徐々に240℃まで昇温しながら空気と触
媒層に流通させ240℃で24時間空気流により該触
媒を賦活化した。次いで温度はそのままで空気の
流通を止め、代りに炭酸ガスを流通させ24時間該
賦活触媒を炭酸ガス処理をした。 熱媒温度を180℃まで降温し、炭酸ガスの代り
にエチレン20容量%、酸素8容量%、二酸化炭素
7容量%、残余が窒素、メタン、エタン、アルゴ
ン等の不活性ガスから成り、さらに二塩化エチレ
ン1ppmから成る原料混合ガスを導入し、反応圧
力24Kg/cm2G、空間速度5500hr-1(STP)熱媒温
度227℃まで昇温して反応を行つた。その結果は
表−1に示す。 実施例 2 硝酸銀700gをモノエチレングリコール1000g
に溶解し、この溶液にホルムアミド280gを添加
しよく混合した。この液にさらに10重量%、水酸
化セシウム水溶液40mlを加えよく混合した。この
溶液を、予め加熱した見掛けの気孔率56%
(BET)比表面積1.54m2/g、比細孔容積0.34
c.c./g、粒径5mmのα−アルミナ主成分担体4000
mlに含浸させた。 次いでゆるやかに撹拌しながら145〜150℃の温
度で2時間加熱した。 この触媒を内径25.0mm、管長11000mmのステン
レス製反応管に充填し、以下の賦活化、炭酸ガス
処理は実施例1と全く同じ方法によつた。 また反応を最終的に熱媒温度を229℃とする以
外は実施例1と同様に行つた。その結果は表−1
に示す。 比較例 1 実施例1において炭酸ガス処理をしない以外は
実施例1と全く同じ方法で触媒を調製し反応を行
つた。その結果は表−1に示す。
The present invention relates to a silver catalyst used in the production of ethylene oxide by catalytic gas phase oxidation of ethylene with molecular oxygen. Catalysts used industrially to produce ethylene oxide by catalytic gas phase oxidation of ethylene with molecular oxygen are required to have high activity, high selectivity, and durability. To date, various studies have been conducted to improve the performance of these requirements, including reaction accelerators,
Many efforts have been made to improve carriers, silver compounds, etc. Among them, the report on reaction accelerators was published in 1973.
-4605, JP-A-49-30285, JP-A-50-74889
Many proposals have been made, such as No. 1, which aim to improve performance by adding alkali metals within a limited range. However, although the selectivity of most of these has certainly been improved to some extent, there are still many points to be considered regarding activity and durability. In particular, various efforts seem to have been made to address the durability problem of alkali metal-added catalysts with respect to a decrease in activity and selectivity during their use, but no solution has yet been reached. Although several reports have been published regarding carriers, there are still many unclear points and many points that need to be improved. For example, physical properties such as specific surface area, pore diameter, pore distribution, specific pore volume, and porosity of the carrier;
This includes elucidating and optimizing the effects of the chemical properties of carrier materials such as α-alumina, silicon carbide, silica, and zirconia on catalyst performance. In particular, the specific surface area of the carrier is also related to the pore diameter, and its influence on catalyst performance must be taken into consideration. In this respect, one progress is that the specific surface area of carriers that have recently been used on an industrial scale has increased compared to before. However, this results from the small increase in catalyst effective surface area relative to the ratio of increase in carrier specific surface area. Separation and atomization of silver particles and susceptibility to poisoning have emerged as new problems that need to be solved. As a result of intensive study on these matters, the present inventors have found that the deterioration of the alkali metal-added catalyst during its use can be minimized, the performance deterioration due to initial poisoning of the catalyst can be eliminated, and the activity can be maintained stably over a long period of time. We have discovered a catalyst that exhibits high selectivity. This will be explained in detail below. As mentioned above, conventional alkali metal-added catalysts suffer from significant deterioration in performance, particularly selectivity, during the period of use, necessitating a shortening of the period of use. Various efforts have been made to improve this, and for example, a method for regenerating a deteriorated catalyst by impregnating it with alkali metal again is disclosed in Japanese Patent Laid-Open No. 52-35193. Looking at this, it may be that the alkali metal added to the catalyst is scattered little by little during the period of use, or that it moves into the silver or carrier, weakening its function. There may also be an effect due to sintering of silver particles, but there is no proof of either. As a result of careful consideration of these points, the present inventors have determined that in the process of preparing a catalyst to which an alkali metal compound has been added, the catalyst after final activation is treated with carbon dioxide to reduce the poisoning effect. They discovered that a long-term stable, highly active, and highly selective catalyst could be obtained, and completed the present invention. That is, metallic silver particles are supported on a support with a specific surface area of 0.1 to 5 m 2 /g so that the silver content is 5 to 25% by weight with respect to the finished catalyst. per kilogram of finished catalyst simultaneously with silver or before loading silver
The silver catalyst for producing ethylene oxide of the present invention is obtained by supporting 0.001 to 0.03 gram equivalent, then activating it at a temperature of 240 to 400°C with an air flow, and then fixing it at a temperature of 50 to 350°C with a carbon dioxide gas flow. It is. It is surprising that the effect of adding an alkali metal compound can be sustained for a longer time by treating the alkali metal-added catalyst with carbon dioxide gas after activation with air. This effect is particularly remarkable for catalysts with a low silver content. The inventors do not know what this is based on. However, it is also surprising that it is compatible with the following: That is, the alkali metal compound is fixed in the catalyst by carbon dioxide treatment. This is due to the difference in the amount of alkali metal compound extracted with alcohol depending on whether or not the alkali metal compound-added catalyst is treated with carbon dioxide gas. That is, as shown in Table 1 of Examples below, the amount of extraction clearly differs depending on whether or not carbon dioxide treatment is performed. This cannot be explained simply from solubility. Also, although it is not clear whether this is related to catalyst performance, the fact that they correspond does not seem to be a mere coincidence. It should also be noted that gases other than carbon dioxide have no effect. Mixing other gases with carbon dioxide gas is effective, but the effect is smaller and the processing time becomes longer, so other gases are only useful for diluting the carbon dioxide gas. Furthermore, although the higher the treatment temperature, the greater the effect, it is rather undesirable to raise the treatment temperature to such a high temperature that the shape of the catalyst substance changes. However, at low temperatures it takes longer. Therefore, although it is effective at 50 to 400℃, it is preferably 15 to 35 hours at a temperature of 150 to 300℃ around the activation temperature.
It is better to process for 30 hours. In addition to the durability of the catalyst, the carbon dioxide treatment has an additional effect on the shelf life of the catalyst. This applies when the catalyst containing an alkali metal compound is stored for a long time after activation, or when the catalyst is not used for a long time after production, such as when sending it to a remote location.
Deterioration may occur during use, and this tendency is particularly common with alkali metal compound-added catalysts that use a carrier with a high surface area and have a low silver content. However, catalysts treated with carbon dioxide gas do not exhibit this phenomenon and can be stored indefinitely. The reason for this is not known, but it may be related to the poisoning of the catalyst material. It is noteworthy that this can be suppressed by carbon dioxide treatment, and as seen in the examples, the effect is not small. The carbon dioxide treatment referred to herein is exactly the same as the method described above, and both effects can be obtained with a single treatment. To describe the above more specifically, in the silver catalyst used when producing ethylene oxide by vapor phase catalytic oxidation of ethylene with molecular oxygen, α-alumina is the main component as a porous refractory carrier. 0.1 to 5 m 2 /g, preferably 1 to 3 m 2 /g
Specific surface area in g, apparent porosity of 30-60% by volume, 0.2
Using a granular carrier with physical properties such as a specific pore volume of ~0.5 cc/g and a particle size of 3 to 20 mm, the decomposability of silver salts of organic acids, ammoniacal silver salts, etc. can be improved by impregnation. Impregnated with a solution of silver salt, silver is precipitated in the form of fine particles on the surface of the carrier and on the inner surface of the pores of the carrier by reduction or thermal decomposition, etc., in an amount of 5 to 25% by weight, preferably 5 to 20% by weight, based on the catalyst. The metal compound is preferably a water-soluble or alcohol-soluble salt of potassium, rubidium, cesium, preferably in an amount of 0.001 to 0.03 gram equivalent per kilogram of finished catalyst.
Either 0.008 to 0.03 gram equivalent is added to a silver solution and precipitated simultaneously with silver, or it is impregnated into a carrier prior to supporting silver, concentrated and dried, and precipitated on the surface of the carrier. The alkali metal compound-containing silver catalyst is then activated with a stream of air at 240-400°C for 24-100 hours, and then activated with a stream of carbon dioxide gas at 50-400°C, preferably 150-400°C.
Fixation is preferably carried out by heat treatment at a temperature of 300° C. for 5 to 35 hours, preferably 15 to 35 hours. The conditions that can be adopted in the method of producing ethylene oxide by oxidizing ethylene with molecular oxygen using the silver catalyst prepared by this method include all the conditions known in this field so far. , the general conditions at the production scale, i.e., the raw gas composition is 0.5-40% by volume of ethylene, 3-10% by volume of oxygen, 5-30% by volume of carbon dioxide, the balance being nitrogen, inert gas such as argon, water vapor, etc., and methane. , lower hydrocarbons such as ethane, and 0.1 to 10 ppm of halogen compounds such as ethylene dichloride and diphenyl chloride as reaction inhibitors, reaction temperature 150 to 300°C, space velocity 3000 to
Conditions such as 10000 hr -1 (STP) and a pressure of 2 to 40 Kg/cm 2 G can be suitably employed. The present invention will be described in detail below with reference to Examples and Comparative Examples to make it more specific, but the present invention is not limited to these Examples unless it goes against the spirit thereof. Note that the rate of change and selectivity described in the main text, Examples, and Comparative Examples were calculated using the following formula. Rate of change (%) = Number of moles of ethylene reacted/Number of moles of ethylene in raw material gas x 100 Selectivity (%) = Number of moles of ethylene converted to ethylene oxide/Number of moles of ethylene reacted x 100 Example 1 Carbonic acid Make 430 g of silver into a slurry with 150 ml of water, add 400 ml of ethanolamine and stir well to dissolve it, then add 600 ml of water and stir well, then add 10 ml of 13.9 wt% cesium nitrate solution and stir to make an impregnating solution. was prepared. This solution has an apparent porosity of 57%, a BET specific surface area of 0.3 m 2 /g, and a specific pore volume.
It was impregnated into 4000 ml of a preheated α-alumina carrier with a particle size of 5 mm and a particle size of 0.30 cc/g. Then, the mixture was heated at 80 to 120°C for 2 hours while stirring gently. This catalyst was packed into a stainless steel reaction tube with an inner diameter of 25.0 mm and a tube length of 11,000 mm, and the outside was covered with a heat medium.
Air was passed through the catalyst layer while gradually increasing the temperature from 100°C to 240°C, and the catalyst was activated by air flow at 240°C for 24 hours. Next, the flow of air was stopped while the temperature remained the same, and carbon dioxide gas was passed instead, and the activated catalyst was treated with carbon dioxide gas for 24 hours. The heating medium temperature was lowered to 180℃, and instead of carbon dioxide gas, 20% by volume of ethylene, 8% by volume of oxygen, 7% by volume of carbon dioxide, and the remainder consisted of inert gases such as nitrogen, methane, ethane, and argon, and A raw material mixed gas containing 1 ppm of ethylene chloride was introduced, and the reaction was carried out at a reaction pressure of 24 Kg/cm 2 G, a space velocity of 5500 hr -1 (STP), and a heating medium temperature of 227°C. The results are shown in Table-1. Example 2 700g of silver nitrate and 1000g of monoethylene glycol
280 g of formamide was added to this solution and mixed well. Further, 40 ml of a 10% by weight aqueous cesium hydroxide solution was added to this liquid and mixed well. This solution was heated in advance to give an apparent porosity of 56%.
(BET) Specific surface area 1.54m 2 /g, specific pore volume 0.34
cc/g, particle size 5mm α-alumina main component carrier 4000
ml was impregnated. The mixture was then heated at a temperature of 145 to 150° C. for 2 hours with gentle stirring. This catalyst was packed into a stainless steel reaction tube with an inner diameter of 25.0 mm and a tube length of 11000 mm, and the following activation and carbon dioxide treatment were carried out in exactly the same manner as in Example 1. Further, the reaction was carried out in the same manner as in Example 1 except that the heating medium temperature was finally set to 229°C. The results are in Table-1
Shown below. Comparative Example 1 A catalyst was prepared and a reaction was carried out in exactly the same manner as in Example 1, except that the carbon dioxide treatment was not performed. The results are shown in Table-1.

【表】 ていた量に対する割合を示した。
実施例 3 見掛けの気孔率51%、BET比表面積1.54m2
g、比細孔容積0.34c.c./g、粒径5mmのα−アル
ミナ担体4000mlを、18.5重量%硝酸カリウム溶液
10mlと36.0重量%硝酸セシウム水溶液10mlと水
1400mlの水溶液に浸漬し、90〜100℃で水分を蒸
発させ、乾燥した後、このアルカリ金属化合物担
持担体に、硝酸銀570gを水200mlと泥状にし、こ
れにエタノールアミン560mlを加え、さらに水500
mlを加えよく撹拌した銀溶液を含浸させた。つい
でゆるやかに撹拌しながら80〜120℃の温度で2
時間加熱した。 この触媒を内径25.0mm、管長11000mmのステン
レス製反応管に充填し、以下の賦活化、炭酸ガス
処理は実施例1と全く同じ方法によつた。 また反応を最終的に熱媒温度を235℃とする以
外は実施例1と同様に行つた。その結果10日後の
反応試験結果は変化率8%、選択率82.2%であつ
た。また1年後の反応試験結果は熱媒温度241℃、
変化率8%、選択率81.2%であつた。なおアルカ
リ添加量はカリウム、セシウムの合量で8.35×
10-3g当量/Kg触媒であつた。 実施例 4〜7 表−2に示す条件以外は実施例1と同じような
方法を用いて触媒を調整した。そして反応も同様
な条件で反応させた。その結果は表−2に示す。 比較例 2〜5 表−2に示す条件以外は実施例1と同じような
方法を用いて触媒を調製した。反応もまた実施例
1と同様の条件で反応させた。その結果は表−2
に示す。
[Table] Shows the ratio to the amount that was used.
Example 3 Apparent porosity 51%, BET specific surface area 1.54 m 2 /
g, specific pore volume 0.34cc/g, particle size 5mm α-alumina carrier 4000ml was added to 18.5% by weight potassium nitrate solution.
10ml and 36.0% by weight cesium nitrate aqueous solution 10ml and water
After immersing in 1400 ml of aqueous solution, evaporating water at 90 to 100°C and drying, 570 g of silver nitrate and 200 ml of water were mixed into a slurry, 560 ml of ethanolamine was added to this, and 500 ml of water was added to the alkali metal compound support.
ml and stirred well to impregnate the silver solution. Then, while stirring gently, heat the mixture at a temperature of 80 to 120℃.
heated for an hour. This catalyst was packed into a stainless steel reaction tube with an inner diameter of 25.0 mm and a tube length of 11,000 mm, and the following activation and carbon dioxide treatment were carried out in exactly the same manner as in Example 1. Further, the reaction was carried out in the same manner as in Example 1 except that the heating medium temperature was finally set to 235°C. As a result, the reaction test results after 10 days showed a change rate of 8% and a selectivity of 82.2%. In addition, the reaction test results after one year showed that the heating medium temperature was 241℃.
The change rate was 8% and the selection rate was 81.2%. The amount of alkali added is 8.35× the total amount of potassium and cesium.
It was 10 -3 g equivalent/Kg catalyst. Examples 4 to 7 Catalysts were prepared using the same method as in Example 1 except for the conditions shown in Table-2. The reaction was also carried out under the same conditions. The results are shown in Table-2. Comparative Examples 2 to 5 Catalysts were prepared using the same method as in Example 1 except for the conditions shown in Table 2. The reaction was also carried out under the same conditions as in Example 1. The results are in Table-2
Shown below.

【表】 実施例 8 表−3に示す条件以外は実施例1と同様に触媒
を調製し、賦活後炭酸ガス処理をした後、冷却後
反応管から抜き出し約12ケ月間ナイロン袋内に保
存した後、再び反応管に充填し、実施例1と同じ
組成のガスで反応させた結果、反応温度(熱媒温
度)227℃で表−3のような結果を得た。 比較例 6 実施例7と賦活後炭酸ガス処理しない以外は全
く同じようにし12ケ月間ナイロン袋内に保存した
後同様に反応させたところ反応温度234℃で表−
3のような結果を得た。
[Table] Example 8 A catalyst was prepared in the same manner as in Example 1 except for the conditions shown in Table 3. After activation, it was treated with carbon dioxide gas, and after cooling, it was extracted from the reaction tube and stored in a nylon bag for about 12 months. Thereafter, the reaction tube was filled again and a reaction was performed with a gas having the same composition as in Example 1. As a result, the results shown in Table 3 were obtained at a reaction temperature (heating medium temperature) of 227°C. Comparative Example 6 The same procedure as in Example 7 was carried out except that the carbon dioxide gas treatment was not performed after activation, and the reaction was carried out in the same manner after being stored in a nylon bag for 12 months.
I got results like 3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 エチレンを分子状酸素により接触気相酸化し
てエチレンオキシドを製造するに際し、比表面積
が0.1〜5m2/gのα−アルミナ担体を、完成触
媒に対し5〜25重量%の銀担持率となる如き分解
性銀溶液に、完成触媒1キログラムあたり0.001
〜0.03グラム当量のアルカリ金属化合物を含む含
浸液で含浸処理し、濃縮乾燥して担持し、空気流
により240〜400℃の温度で賦活し、ついで炭酸ガ
ス流により50〜400℃の温度で熱処理して製造さ
れた触媒を使用することを特徴とするエチレンオ
キシドの製造方法。 2 エチレンを分子状酸素により接触気相酸化し
てエチレンオキシドを製造するに際し、比表面積
が0.1〜5m2/gのα−アルミナ担体を、完成触
媒1キログラムあたり0.001〜0.03グラム当量の
アルカリ金属化合物を含む含浸液で含浸処理し、
濃縮乾燥して該担体にアルカリ金属化合物を担持
した後、完成触媒に対し5〜25重量%の銀担持率
となる如き分解性銀溶液で含浸処理し、濃縮乾燥
して担持し、空気流により240〜400℃の温度で賦
活し、ついで炭酸ガス流により50〜400℃の温度
で熱処理して製造された触媒を使用することを特
徴とするエチレンオキシドの製造方法。
[Claims] 1. When producing ethylene oxide by catalytic gas phase oxidation of ethylene with molecular oxygen, an α-alumina carrier having a specific surface area of 0.1 to 5 m 2 /g is added in an amount of 5 to 25% by weight based on the finished catalyst. 0.001 per kilogram of finished catalyst in a degradable silver solution with a silver loading of
Impregnated with an impregnating solution containing ~0.03 gram equivalent of alkali metal compound, concentrated and dried, supported, activated with a stream of air at a temperature of 240-400°C, and then heat-treated with a stream of carbon dioxide at a temperature of 50-400°C. A method for producing ethylene oxide, characterized by using a catalyst produced by 2. When producing ethylene oxide by catalytic gas phase oxidation of ethylene with molecular oxygen, an α-alumina support with a specific surface area of 0.1 to 5 m 2 /g and an alkali metal compound of 0.001 to 0.03 gram equivalent per kilogram of the finished catalyst are used. Impregnated with an impregnating solution containing
After the alkali metal compound is supported on the carrier by concentration and drying, it is impregnated with a decomposable silver solution such that the silver loading rate is 5 to 25% by weight based on the finished catalyst, and the support is concentrated and dried, and then the catalyst is supported by an air flow. A method for producing ethylene oxide, which comprises using a catalyst produced by activation at a temperature of 240 to 400°C and then heat treatment at a temperature of 50 to 400°C with a flow of carbon dioxide gas.
JP877580A 1980-01-30 1980-01-30 Silver catalyst for preparing ethylene oxide Granted JPS56108533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP877580A JPS56108533A (en) 1980-01-30 1980-01-30 Silver catalyst for preparing ethylene oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP877580A JPS56108533A (en) 1980-01-30 1980-01-30 Silver catalyst for preparing ethylene oxide

Publications (2)

Publication Number Publication Date
JPS56108533A JPS56108533A (en) 1981-08-28
JPS6366837B2 true JPS6366837B2 (en) 1988-12-22

Family

ID=11702254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP877580A Granted JPS56108533A (en) 1980-01-30 1980-01-30 Silver catalyst for preparing ethylene oxide

Country Status (1)

Country Link
JP (1) JPS56108533A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774222A (en) * 1982-06-16 1988-09-27 Scientific Design Company, Inc. Catalyst for oxidation of ethylene to ethylene oxide and process for preparing the catalyst
JP2746900B2 (en) * 1988-03-12 1998-05-06 株式会社リコー Recording device
US5525740A (en) * 1993-03-01 1996-06-11 Scientific Design Company, Inc. Process for preparing silver catalyst and process of using same to produce ethylene oxide
US6184175B1 (en) * 1993-03-01 2001-02-06 Scientic Design Company, Inc. Process for preparing silver catalyst
US5739075A (en) * 1995-10-06 1998-04-14 Shell Oil Company Process for preparing ethylene oxide catalysts
US5801259A (en) * 1996-04-30 1998-09-01 Shell Oil Company Ethylene oxide catalyst and process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3563914A (en) * 1967-03-22 1971-02-16 Shell Oil Co Silver catalyst
JPS4983687A (en) * 1972-11-30 1974-08-12
JPS52151690A (en) * 1976-05-28 1977-12-16 Ici Ltd Manufacture of alkylene oxides and catalysts therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3563914A (en) * 1967-03-22 1971-02-16 Shell Oil Co Silver catalyst
JPS4983687A (en) * 1972-11-30 1974-08-12
JPS52151690A (en) * 1976-05-28 1977-12-16 Ici Ltd Manufacture of alkylene oxides and catalysts therefor

Also Published As

Publication number Publication date
JPS56108533A (en) 1981-08-28

Similar Documents

Publication Publication Date Title
US5374748A (en) Process for preparing silver catalyst for ethylene epoxidation
US4248740A (en) Process for preparing silver-supported catalyst for the production of ethylene oxide
KR101711108B1 (en) Catalyst with bimodal pore size distribution and the use thereof
US5387751A (en) Production of olefine oxides
US4212772A (en) Catalyst for the manufacture of ethylene oxide
KR960011428B1 (en) Silver catalyst for production of ethyleneoxide and method for manufacturing thereof
JPS6155416B2 (en)
JPS6159178B2 (en)
JPS60216844A (en) Silver catalyst for producing ethylene oxide
TW200916451A (en) Process for production of an olefin oxide
NL193590C (en) Process for the preparation of a supported silver catalyst and process for the oxidation of ethylene to ethylene oxide.
EP0975615A1 (en) Ethylene oxide catalyst
JPS6121701B2 (en)
CA2196059C (en) Process for preparing silver catalyst
US5691269A (en) Process for preparing silver catalyst
JPS6366837B2 (en)
US4897376A (en) Process for preparing a catalyst for oxidation of ethylene to ethylene oxide
CN112892529A (en) Silver catalyst for preparing ethylene oxide and preparation method and application thereof
KR102155073B1 (en) Epoxidation process with post-conditioning step
WO1999011371A1 (en) Ethylene oxide catalyst
US5602070A (en) Process for preparing silver catalyst
JPS6231983B2 (en)
JPH02973B2 (en)
JPS6234419B2 (en)
JPS6039653B2 (en) Method for producing oxygen-containing hydrocarbon compound