JPS6234419B2 - - Google Patents

Info

Publication number
JPS6234419B2
JPS6234419B2 JP55095047A JP9504780A JPS6234419B2 JP S6234419 B2 JPS6234419 B2 JP S6234419B2 JP 55095047 A JP55095047 A JP 55095047A JP 9504780 A JP9504780 A JP 9504780A JP S6234419 B2 JPS6234419 B2 JP S6234419B2
Authority
JP
Japan
Prior art keywords
thallium
silver
carrier
complex compound
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55095047A
Other languages
Japanese (ja)
Other versions
JPS5721937A (en
Inventor
Masashi Mitsuhata
Toshihiko Kumazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP9504780A priority Critical patent/JPS5721937A/en
Publication of JPS5721937A publication Critical patent/JPS5721937A/en
Publication of JPS6234419B2 publication Critical patent/JPS6234419B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epoxy Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、エチレンを分子状酸素により接触気
相酸化してエチレンオキシドを製造する際に使用
される銀触媒に関するものである。 工業的にエチレンを分子状酸素により接触気相
酸化してエチレンオキシドを製造するに際し使用
される触媒は、その性能として高活性、高選択性
および耐久性が要求される。 これらの要求に対し、その性能を改善する目的
で今日迄種々検討がなされており、反応促進剤、
担体、銀化合物等の改良に多くの努力が払われて
きた。中でも反応促進剤に関する報告は、たとえ
ば特開昭49―30286号、特開昭50―50307号、特開
昭50―74589号、特開昭50―90591号、特開昭52―
25703号など数多く出されている。 しかしながらこれ等の大部分は確に選択率に関
してはある程度改良されているが、活性、耐久性
については、まだまだ検討すべき点が多い、また
選択率についてもまだ不充分であり活性と共に合
せ考慮していかねばならない。 本発明者等はこれ等のことを考慮し鋭意検討し
た結果これ迄当分野の工業的規模において用いら
れていた担体より大きな比表面積を有する担体を
用いて、より多量の特定化されたタリウムを他の
金属との錯化合物の形で添加することにより、こ
れ迄になく、高活性、高選択性および耐久性の向
上が達成される触媒を見い出して本発明を完成し
た。 本発明はナトリウム成分が0.07重量%以下、比
表面積が1〜5m2/gのα―アルミナ主成分担体
を、完成触媒に対し5〜25重量%の銀担持率とな
る如き分解性銀溶液に、完成触媒1キログラム当
り0.0005〜0.03グラム当量のタリウムとホウ素の
錯化合物またはタリウムとチタニウムの錯化合物
を含む含浸液で含浸処理を行い、加熱し、還元ま
たは熱分解して製造されたことを特徴とするエチ
レンオキシド製造用銀触媒である。 つぎに本発明を詳細に述べる。 エチレンの気相酸化により酸化エチレンを製造
する際に用いられる触媒が銀触媒であり、そのほ
とんどが担体を使用した銀担持触媒であることは
言うまでもないことである。また用いられる担体
がアルミナ主成分の多孔質耐火性担体であること
も周知である。 しかしながら単にアルミナ主成分の多孔耐火性
担体と言つても千差万別で比表面積、細孔分布、
比細孔容積、粒径、形状により大いに違い、これ
らの物性が触媒の性能に及ぼす影響は大きい。従
つてどのような物性の担体を選ぶかは当業者にと
つて大きな問題である。 中でも担体の比表面積は細孔径に関係し触媒性
能に与える影響は大きく、大いに留意しなければ
ならない。 すなわち、活性、耐久性の面から考えると、触
媒比表面積は大きい方が望ましく、そのためには
担体比表面積は大きい方が良いが、担体比表面積
を大きくする為には担体材料のアルミナ粒子は小
さいものを選ぶ必要がある。そのことは必然的に
少さな細孔径の形成を意味する。このことはガス
の拡散、滞留、反応熱の除去、担体露出面積の増
大という点から考えると不利であり選択率の低下
につながる。 したがつて、必ずしも担体の比表面積は大きい
方が良いとばかりは言えず自ずと制限が出てく
る。 これまでの工業的規模に採用されている大部分
の担体の比表面積は1m2/g以下であり、さらに
は0.5m2/g以下である。例外的に1m2/g以上
の担体を使つた例もあるが1m2/g以下のものよ
り選択率は抵い。 本発明者等はこれらの欠点を無くすべく検討し
た結果1m2/g以上の大きな比表面積の担体を用
いても選択率の低下を招くことなく、さらに向上
させ且つ高活性、耐久性を維持促進させる触媒を
見い出した。 本願発明は構成材料の改良された担体と、反応
促進剤としてタリウムとホウ素の錯化合物、また
はタリウムとチタニウムの錯化合物を用いること
によつて達成された。 すなわち、比較的大きな比表面積の担体の使用
による前述のような不利益は担体の低ナトリウム
含有化によりなくなり、より一層の選択率、耐久
性の向上の為にはタリウムとホウ素の錯化合物ま
たはタリウムとチタニウムの錯化合物の添加が有
効であることが見い出された。 さらに詳述するならば、 担体比表面積の増大による不利益は前述の如く
細孔径の微少化によるガスの拡散、滞留、反応熱
除去等への悪影響、担体露出面の増大等が考えら
れるが、担体の抵ナトリウム含有化により、結果
としてそのような不利益がなくなることは驚くべ
きことである。 10m2/g以下の比表面積の担体はその製法から
くる理由から0.07重量%を越えるナトリウム分
(主にNa2O)を含んでいることが普通である。 これまで酸化エチレン製造用触媒に使用されて
きた担体のほとんどはこのような担体であり、担
体成分についてはα―アルミナ主体ということだ
けであまり考慮はなされていない。まして担体中
の不純物的存在のナトリウム分についてのみ考慮
することなど全くされていない。 しかしながら我々の研究によれば、担体中のナ
トリウム分は触媒性能に微妙に影響し、特に従来
当分野で通常使われている比表面積0.5m2/g以
下の担体ではその影響は比表面積が小さくなる程
小さいが、比表面積0.5m2/g以上の担体になる
と大きくなり、1m2/g以上になるとその影響は
顕著になることが分つた。しかし本発明によれば
これまでその選択率の低さゆえに使われなかつた
比表面積1m2/g以上の担体も使用可能となるば
かりでなく、さらには優位にさえなる。 これらは後述の実施例からわかるように同じ
1.5m2/gの比表面積の担体でも0.07重量%以下
の低ナトリウム含有量の担体とナトリウム含有量
が0.07重量%を越える担体では、他の物性も多少
関係あるにしてもタリウムとホウ素の錯化合物ま
たはタリウムとチタニウムの錯化合物を添加した
触媒にしたときの選択率が実に6%以上も差があ
ることは驚くべきことである。 このような改良された性能が如何なる原因に基
づくかは明らかにすることはできないが、反応促
進剤として積極的に加えられる場合もあるナトリ
ウムが担体中には出来るだけ少い方が良いという
こと、さらにまた文献に、アルミナやシリカへの
金属イオンの吸着がPHに強く依存する等のことを
考慮すると、担体中のナトリウム成分は銀および
タリウム化合物含有溶液を担体へ含浸する際に、
担体内のPH分布に関係し、銀あるいはそれ以上に
タリウムとホウ素の錯化合物またはタリウムとチ
タニウムの錯化合物の析出分布に強い影響を与え
ることが考えられ、それが触媒性能に関係してく
ると思える。その意味では担体中のカリウム成分
(主にK2O)も関係すると考えられるが、本発明
者等の実験によれば、カリウム含量は従来と同じ
でもナトリウム成分を減らすことによつて充分の
効果が得られている。しかしながら担体中にはカ
リウム成分もK2Oとして0.1重量%以上含まれて
おり、ナトリウムと同じようにカリウムも0.07重
量%以下にすることによりさらに効果が上がるこ
とは考えられる。 したがつて1m2/g以上の比表面積の担体の使
用によつて後述の実施例に見られる如く活性、耐
久性の向上が達成でき、しかもこれらの担体を用
いてタリウムのホウ素またはチタニウムの錯化合
物を含む分解性銀溶液で含浸処理して得られた銀
触媒が、さらにこれまでになく高活性、高選択
性、耐久性の性能を有する触媒であることは注目
に値する。 これまで反応促進剤を添加した触媒、特にアル
カリ金属化合物を添加した触媒は、その使用期間
中に性能特に選択率の劣化が著しく、その対策に
多くの努力が払われてきた。その点においてタリ
ウム含有触媒は比較的劣化の少い触媒であるが全
くの例外ではない。 本発明者等はこの点を考慮し種々検討した結果
タリウム化合物を、他の金属化合物と錯塩と形成
させ添加することによりさらに改善されることを
見出した。 すなわち、タリウムとホウ素あるいはチタニウ
ムからなる錯化合物、例えばホウ酸タリウム、チ
タン酸タリウムを添加することにより選択率の劣
化は従来のタリウム化合物を添加した時より鈍化
され且つ若干の選択率の向上が見られた。 これ等の錯化合物の添加範囲は、タリウムを基
準として従来のタリウム化合物の添加範囲で良い
が、本発明者等が既に特開昭52―25703号で明ら
かにした如く、添加量は担体の比表面積に、ある
程度比例関係があるので従来になく大きな比表面
積の担体を使用する場合最適となる添加範囲は従
来範囲を越えたものとなるのは当然であり、従来
範囲の下限は実質上大きくなる。 また錯化合物を形成しているタリウム以外の金
属の添加量は錯化合物の構造とタリウムの添加量
によつて決まるが、タリウムの0.5〜2倍になる
ように錯化合物の構造は選ばれるべきである。 従つてタリウム錯化合物の添加範囲は完成触媒
1キログラムあたり0.0005〜0.03グラム当量、好
ましくは0.001〜0.02グラム当量、最適には0.002
〜0.01グラム当量である。 触媒の調製法は従来公知の方法どれもが使用で
きるが、一般的には分解性銀塩の水溶液あるいは
有機溶媒溶液、例えば硝酸銀水溶液、無機有機酸
銀のアンモニア溶液あるいは有機アミン溶液、乳
酸銀水溶液、等を前記の如き担体に含浸する。タ
リウムとホウ素の錯化合物またはタリウムとチタ
ニウムの錯化合物は銀より先に担体に析出させて
おいてもよいが工程が一つ増加することになるの
で銀溶液と同時に含浸する方がよい。次いで含浸
担体を加熱し分解物を分解し触媒とするか、還元
性雰囲気中で還元分解し触媒とする方法が使用で
きる。 以上のことをより具体的に述べるならば、エチ
レンを分子状酸素により気相接触酸化してエチレ
ンオキシドを製造する際に使用する銀触媒におい
て多孔質耐火性担体としてナトリウム含量が0.07
重量%以下、1〜5m2/g好ましくは1〜3m2
gの比表面積、25〜60%の見掛気孔率、0.2〜0.5
ml/gの比細孔容積、3〜20mmの粒径の物性をも
つ粒状α―アルミナ担体を使用し、これに有機酸
銀のアミン溶液等の分解性銀溶液を含浸後、100
〜300℃に加熱し還元あるいは熱分解する。銀は
触媒に対し5〜25重量%、好ましくは10〜20重量
%を微粒状に担体内外表面に析出させる。タリウ
ムの錯化合物は好ましくはホウ素とタリウムの錯
化合物、チタニウムとタリウムの錯化合物、具体
的に最も好ましくはホウ酸タリウムあるいはチタ
ン酸タリウムの水溶液あるいはアルコール性溶液
の形で、完成触媒1キログラム当り0.0005〜0.03
グラム当量、好ましくは0.001〜0.02グラム当量
を銀溶液に加えて銀と同時に析出させるか、また
は銀に先立つて担体に析出させておくことができ
る。 該タリウム錯化合物含有銀触媒は最終的に空気
流により100〜400℃で24〜100時間で賦活化し触
媒を完成させる。 この方法で調製された銀触媒を使用してエチレ
ンを分子状酸素により酸化して酸化エチレンを製
造する方法において、採用出来得る条件は、これ
までこの分野で知られている全ての条件が採用で
きるが、製造規模における一般的な条件、すなわ
ち原料ガス組成としてエチレン0.5〜40容量%、
酸素3〜10容量%、二酸化炭素5〜30容量%残部
が窒素、アルゴン、水蒸気等の不活性ガスおよび
メタン、エタン等の低級炭化水素類さらにまた反
応抑制剤としての二塩化エチレン、塩化ジフエニ
ル等のハロゲン化合物0.1〜10ppmよりなり、反
応温度150〜300℃、空間速度3000〜10000hr-1
(STP)、圧力2〜40Kg/cm2G等が好適に採用でき
る。 以下さらに具体的にするために実施例、比較例
を挙げて詳細に説明するが、本発明はその主旨に
反しない限りこれらの実施例に限定されるもので
はない。 なお本文および実施例、比較例中に記載する変
化率、選択率は次式により算出されたものであ
る。 変化率(%)=反応したエチレンのモル数/原料ガス中のエチレンのモル数×100 選択率(%)=エチレンオキシドに変化したエチレンのモル数/反応したエチレンのモル数×100 実施例 1 酢酸銀690gを熱水600mlにとかした溶液を、氷
冷したエタノールアミン560mlに滴下し、よく撹
拌しこれに4.7重量%ホウ酸タリウム水溶液100ml
を加えて、含浸溶液を調製した。この溶液を見掛
け気孔率56%、BET比表面積1.54m2/g、比細孔
容積0.34ml/g、粒径5mmの予め加熱したナトリ
ウム含量が0.05重量%(主にNa2Oとして)以下
のα―アルミナ担体4000mlに含浸させた。ついで
ゆるやかに撹拌しながら80〜120℃で2時間加熱
した。 この触媒を内径25.0mm、管長11000mmのステン
レス製反応管に充填し、その外側を熱媒により
100℃から徐々に240℃まで昇温しながら空気を触
媒層に流通させ240℃で24時間空気により触媒を
賦活化した。次いで熱媒温度を180℃まで降温
し、空気流の代りにエチレン20容量%、酸素8容
量%、炭酸ガス7容量%、残余が窒素、メタン、
エタン、アルゴン等の不活性ガス及び二塩化エチ
レン1ppmからなる原料混合ガスを導入し、反応
圧力24Kg/cm2G、空間速度3000hr-1(STP)、熱
媒温度を201℃まで昇温し反応を行つた。その結
果10日後の反応結果および1年後の反応結果は表
―1に示すとおりであつた。 比較例 1 実施例1において使用する担体を、見掛けの気
孔率53%、BET比表面積1.51m2/g、比細孔容積
0.31c.c./g、粒径5mmのナトリウム含量が0.40重
量%(主にN2Oとして)のα―アルミナ担体を使
用する以外は実施例1と同じように触媒を調製
し、反応温度(熱媒温度)を215℃とする以外は
同じように反応させた。その結果は表―1に示す
とおりであつた。
The present invention relates to a silver catalyst used in the production of ethylene oxide by catalytic gas phase oxidation of ethylene with molecular oxygen. Catalysts used industrially to produce ethylene oxide by catalytic gas phase oxidation of ethylene with molecular oxygen are required to have high activity, high selectivity, and durability. In response to these demands, various studies have been made to date to improve the performance of reaction accelerators,
Many efforts have been made to improve carriers, silver compounds, etc. Among them, reports regarding reaction accelerators include, for example, JP-A-49-30286, JP-A-50-50307, JP-A-50-74589, JP-A-50-90591, and JP-A-52-
Numerous issues such as issue 25703 have been published. However, although the selectivity of most of these has certainly been improved to some extent, there are still many points to be considered regarding activity and durability, and selectivity is still insufficient and should be considered in conjunction with activity. I have to go. Taking these matters into consideration, the inventors of the present invention have conducted intensive studies and have found that a larger amount of specified thallium can be produced by using a carrier with a larger specific surface area than the carriers that have been used on an industrial scale in this field. The present invention has been completed by discovering a catalyst that achieves unprecedentedly high activity, high selectivity, and improved durability by adding it in the form of a complex compound with other metals. In the present invention, an α-alumina main component carrier having a sodium content of 0.07% by weight or less and a specific surface area of 1 to 5 m 2 /g is added to a decomposable silver solution with a silver loading rate of 5 to 25% by weight relative to the finished catalyst. , characterized in that it is produced by impregnating with an impregnating solution containing a complex compound of thallium and boron or a complex compound of thallium and titanium in an amount of 0.0005 to 0.03 gram equivalent per kilogram of the finished catalyst, followed by heating and reduction or thermal decomposition. This is a silver catalyst for producing ethylene oxide. Next, the present invention will be described in detail. It goes without saying that the catalyst used to produce ethylene oxide by gas-phase oxidation of ethylene is a silver catalyst, and most of them are silver-supported catalysts using a carrier. It is also well known that the carrier used is a porous refractory carrier based on alumina. However, even though it is simply a porous refractory carrier mainly composed of alumina, there are a wide range of differences in specific surface area, pore distribution, etc.
It varies greatly depending on specific pore volume, particle size, and shape, and these physical properties have a large influence on the performance of the catalyst. Therefore, it is a big problem for those skilled in the art to select a carrier with physical properties. Among them, the specific surface area of the carrier is related to the pore diameter and has a large influence on the catalyst performance, and must be carefully considered. In other words, from the standpoint of activity and durability, it is desirable that the specific surface area of the catalyst be large, and for that purpose the specific surface area of the carrier should be large, but in order to increase the specific surface area of the carrier, the alumina particles of the carrier material should be small. I need to choose something. This necessarily means the formation of small pore sizes. This is disadvantageous from the viewpoint of gas diffusion, retention, removal of reaction heat, and increase in the exposed area of the carrier, leading to a decrease in selectivity. Therefore, it cannot necessarily be said that the larger the specific surface area of the carrier, the better, and there are limitations. The specific surface area of most of the carriers employed on an industrial scale to date is 1 m 2 /g or less, and even 0.5 m 2 /g or less. Although there are exceptional cases in which a carrier of 1 m 2 /g or more is used, the selectivity is lower than that of a carrier of 1 m 2 /g or less. The present inventors investigated to eliminate these drawbacks, and as a result, they were able to further improve the selectivity without causing a decrease in selectivity even when using a carrier with a large specific surface area of 1 m 2 /g or more, and maintain and promote high activity and durability. We have found a catalyst that makes this possible. The present invention was achieved by using a carrier with improved constituent materials and a complex compound of thallium and boron or a complex compound of thallium and titanium as a reaction accelerator. In other words, the above-mentioned disadvantages due to the use of a carrier with a relatively large specific surface area can be eliminated by lowering the sodium content of the carrier, and in order to further improve selectivity and durability, complex compounds of thallium and boron or thallium can be used. It was found that the addition of a complex compound of titanium and titanium is effective. To be more specific, as mentioned above, the disadvantages of increasing the specific surface area of the carrier include negative effects on gas diffusion, retention, reaction heat removal, etc. due to miniaturization of the pore size, and an increase in the exposed surface of the carrier. It is surprising that sodium-resistance of the carrier results in the elimination of such disadvantages. A carrier with a specific surface area of 10 m 2 /g or less usually contains more than 0.07% by weight of sodium (mainly Na 2 O) due to its manufacturing method. Most of the carriers that have been used in catalysts for producing ethylene oxide have been such carriers, and not much consideration has been given to the carrier components since they are mainly α-alumina. Furthermore, no consideration is given to the sodium content present as an impurity in the carrier. However, according to our research, the sodium content in the carrier has a subtle effect on catalyst performance, and this effect is particularly pronounced in the case of carriers with a specific surface area of 0.5 m 2 /g or less, which are commonly used in this field. Although the specific surface area of the carrier is small, it becomes larger when the specific surface area is 0.5 m 2 /g or more, and it has been found that when the specific surface area is 1 m 2 /g or more, the effect becomes significant. However, according to the present invention, carriers with a specific surface area of 1 m 2 /g or more, which have not been used hitherto due to their low selectivity, can not only be used, but also become advantageous. These are the same as shown in the example below.
Even if a carrier has a specific surface area of 1.5 m 2 /g, a carrier with a low sodium content of 0.07% by weight or less and a carrier with a sodium content of more than 0.07% by weight will cause a complex between thallium and boron, even if other physical properties are somewhat related. It is surprising that when a catalyst is added with a compound or a complex compound of thallium and titanium, the selectivity differs by more than 6%. Although it is not possible to clarify the cause of such improved performance, it is important to note that it is better to have as little sodium as possible in the carrier, which is sometimes actively added as a reaction accelerator. Furthermore, considering the fact that the adsorption of metal ions on alumina and silica strongly depends on pH, it is stated in the literature that the sodium component in the carrier is
It is thought that it is related to the PH distribution within the carrier and has a strong influence on the precipitation distribution of silver or even more so the complex compound of thallium and boron or the complex compound of thallium and titanium, and that this is related to the catalyst performance. I can think of it. In this sense, it is thought that the potassium component (mainly K 2 O) in the carrier is also involved, but according to the experiments of the present inventors, sufficient effects can be obtained by reducing the sodium component even if the potassium content remains the same as before. is obtained. However, the carrier also contains a potassium component in the form of K 2 O of 0.1% by weight or more, and it is conceivable that the effect will be further improved by reducing potassium to 0.07% by weight or less, just like sodium. Therefore, by using a carrier with a specific surface area of 1 m 2 /g or more, it is possible to improve the activity and durability as seen in the examples below. It is noteworthy that the silver catalyst obtained by impregnation treatment with a decomposable silver solution containing the compound is also a catalyst with unprecedented performance of high activity, high selectivity, and durability. Until now, catalysts to which a reaction accelerator has been added, particularly catalysts to which an alkali metal compound has been added, have suffered from significant deterioration in performance, particularly selectivity, during their period of use, and many efforts have been made to counter this problem. In this respect, thallium-containing catalysts are catalysts that undergo relatively little deterioration, but are not an exception at all. Taking this point into consideration, the present inventors conducted various studies and found that further improvement can be achieved by adding a thallium compound in the form of a complex salt with another metal compound. That is, by adding a complex compound consisting of thallium and boron or titanium, such as thallium borate or thallium titanate, the deterioration in selectivity is slowed down compared to when conventional thallium compounds are added, and a slight improvement in selectivity is observed. It was done. The addition range of these complex compounds may be within the conventional addition range of thallium compounds based on thallium, but as the present inventors have already clarified in JP-A No. 52-25703, the addition amount should be determined in proportion to the carrier. Since there is a proportional relationship to the surface area to some extent, it is natural that when using a carrier with a larger specific surface area than before, the optimal addition range will be beyond the conventional range, and the lower limit of the conventional range will be substantially larger. . Also, the amount of metals other than thallium added that form the complex compound is determined by the structure of the complex compound and the amount of thallium added, but the structure of the complex compound should be selected so that the amount is 0.5 to 2 times that of thallium. be. Therefore, the addition range of the thallium complex compound is 0.0005 to 0.03 gram equivalent per kilogram of finished catalyst, preferably 0.001 to 0.02 gram equivalent, optimally 0.002 gram equivalent.
~0.01 gram equivalent. Any conventionally known method can be used to prepare the catalyst, but generally an aqueous solution or an organic solvent solution of a decomposable silver salt, such as an aqueous silver nitrate solution, an ammonia solution or an organic amine solution of inorganic organic acid silver, or an aqueous silver lactate solution is used. , etc. are impregnated into the carrier as described above. The complex compound of thallium and boron or the complex compound of thallium and titanium may be precipitated on the carrier before the silver, but since this increases the number of steps by one, it is better to impregnate the complex compound at the same time as the silver solution. Next, the impregnated carrier may be heated to decompose the decomposed product to form a catalyst, or the impregnated carrier may be reductively decomposed in a reducing atmosphere to form a catalyst. To describe the above more specifically, in the silver catalyst used when producing ethylene oxide by gas-phase catalytic oxidation of ethylene with molecular oxygen, the sodium content as a porous refractory carrier is 0.07.
Weight% or less, 1 to 5 m 2 /g, preferably 1 to 3 m 2 / g
Specific surface area of g, apparent porosity of 25-60%, 0.2-0.5
A granular α-alumina support with a specific pore volume of ml/g and a particle size of 3 to 20 mm is used, and after impregnating it with a degradable silver solution such as an amine solution of organic acid silver,
Reduce or thermally decompose by heating to ~300℃. Silver is deposited in the form of fine particles on the inner and outer surfaces of the carrier in an amount of 5 to 25% by weight, preferably 10 to 20% by weight, based on the catalyst. The complex of thallium is preferably in the form of an aqueous or alcoholic solution of boron and thallium, titanium and thallium, particularly and most preferably thallium borate or thallium titanate, at a concentration of 0.0005 g/kg finished catalyst. ~0.03
Gram equivalents, preferably 0.001 to 0.02 gram equivalents, can be added to the silver solution and precipitated simultaneously with the silver, or can be precipitated onto the support prior to the silver. The thallium complex compound-containing silver catalyst is finally activated by air flow at 100 to 400°C for 24 to 100 hours to complete the catalyst. In the method of producing ethylene oxide by oxidizing ethylene with molecular oxygen using the silver catalyst prepared by this method, all the conditions known in this field can be adopted. However, the typical conditions at the production scale, i.e. 0.5 to 40% ethylene by volume as the raw gas composition,
3 to 10% by volume of oxygen, 5 to 30% by volume of carbon dioxide, the balance being nitrogen, inert gas such as argon, water vapor, etc., lower hydrocarbons such as methane, ethane, etc. Ethylene dichloride, diphenyl chloride, etc. as reaction inhibitors. halogen compound 0.1~10ppm, reaction temperature 150~300℃, space velocity 3000~10000hr -1
(STP), a pressure of 2 to 40 Kg/cm 2 G, etc. can be suitably employed. The present invention will be described in detail below using Examples and Comparative Examples to make it more specific, but the present invention is not limited to these Examples unless it goes against the gist thereof. Note that the rate of change and selectivity described in the main text, Examples, and Comparative Examples were calculated using the following formula. Rate of change (%) = Number of moles of ethylene reacted/Number of moles of ethylene in raw material gas x 100 Selectivity (%) = Number of moles of ethylene converted to ethylene oxide/Number of moles of ethylene reacted x 100 Example 1 Acetic acid A solution of 690 g of silver dissolved in 600 ml of hot water was added dropwise to 560 ml of ice-cooled ethanolamine, stirred well, and 100 ml of a 4.7% by weight thallium borate aqueous solution was added.
was added to prepare an impregnating solution. This solution had an apparent porosity of 56%, a BET specific surface area of 1.54 m 2 /g, a specific pore volume of 0.34 ml/g, a particle size of 5 mm, and a preheated solution with a sodium content of 0.05% by weight or less (mainly as Na 2 O). It was impregnated into 4000ml of α-alumina carrier. Then, the mixture was heated at 80 to 120°C for 2 hours while stirring gently. This catalyst was packed into a stainless steel reaction tube with an inner diameter of 25.0 mm and a tube length of 11,000 mm, and the outside was covered with a heat medium.
Air was circulated through the catalyst layer while gradually increasing the temperature from 100°C to 240°C, and the catalyst was activated by air at 240°C for 24 hours. Next, the temperature of the heating medium was lowered to 180℃, and instead of the air flow, 20% by volume of ethylene, 8% by volume of oxygen, 7% by volume of carbon dioxide, the remainder being nitrogen, methane,
A raw material mixed gas consisting of an inert gas such as ethane, argon, etc. and 1 ppm of ethylene dichloride was introduced, and the reaction pressure was 24 Kg/cm 2 G, the space velocity was 3000 hr -1 (STP), and the heating medium temperature was raised to 201°C. I went there. The reaction results after 10 days and after 1 year were as shown in Table 1. Comparative Example 1 The carrier used in Example 1 had an apparent porosity of 53%, a BET specific surface area of 1.51 m 2 /g, and a specific pore volume.
A catalyst was prepared in the same manner as in Example 1 except that an α-alumina support with a particle size of 0.31 cc/g and a particle size of 5 mm and a sodium content of 0.40 wt% (mainly as N 2 O) was used, and the reaction temperature (heating medium) was The reaction was carried out in the same manner except that the temperature (temperature) was 215°C. The results were as shown in Table 1.

【表】 実施例 2〜3 実施例1において、表―2に示す触媒および反
応温度に変えた以外は、実施例1と同様に行なつ
た。その結果、表―2のとおりであつた。 比較例 2 比較例1において、ホウ酸タリウムを無添加と
し、表―2に示す反応温度に変えた以外は比較例
1と同様に行なつた。その結果、表―2のとおり
であつて。 比較例 3 実施例1において、ホウ酸タリウムを無添加と
し、表―2に示す反応温度に変えた以外は実施例
1と同様に行なつた。その結果、表―2のとおり
であつた。 比較例 4〜5 実施例1において、表―2に示す触媒および反
応温度に変えた以外は、実施例1と同様に行なつ
た。その結果、表―2のとおりであつた。
[Table] Examples 2 to 3 The same procedure as in Example 1 was carried out except that the catalyst and reaction temperature shown in Table 2 were changed. The results were as shown in Table-2. Comparative Example 2 The same procedure as Comparative Example 1 was conducted except that thallium borate was not added and the reaction temperature was changed to the one shown in Table 2. The results are as shown in Table-2. Comparative Example 3 The same procedure as in Example 1 was conducted except that thallium borate was not added and the reaction temperature was changed to the one shown in Table 2. The results were as shown in Table-2. Comparative Examples 4 to 5 The same procedure as in Example 1 was carried out except that the catalyst and reaction temperature were changed to those shown in Table 2. The results were as shown in Table-2.

【表】【table】

Claims (1)

【特許請求の範囲】 1 ナトリウム成分が0.07重量%以下、比表面積
が1〜5m2/gのα―アルミナ主成分担体を、完
成触媒に対し5〜25重量%の銀担持率となる如き
分解性銀溶液に、完成触媒1キログラム当り
0.0005〜0.03グラム当量のタリウムとホウ素の錯
化合物またはタリウムとチタニウムの錯化合物を
含む含浸液で含浸処理を行い、加熱し還元または
熱分解して製造されたことを特徴とするエチレン
オキシド製造用銀触媒。 2 タリウムとホウ素の錯化合物がホウ酸タリウ
ムである特許請求の範囲第1項記載の銀触媒。 3 タリウムとチタニウムの錯化合物がチタン酸
タリウムである特許請求の範囲第1項記載の銀触
媒。 4 分解性銀溶液に含まれる、タリウムとホウ素
の錯化合物またはタリウムとチタニウムの錯化合
物の量が完成触媒1キログラム当り0.001〜0.02
グラム当量である特許請求の範囲第1〜3項のい
ずれかに記載の銀触媒。
[Scope of Claims] 1. An α-alumina main component carrier having a sodium content of 0.07% by weight or less and a specific surface area of 1 to 5 m 2 /g is decomposed to a silver loading rate of 5 to 25% by weight relative to the finished catalyst. per kilogram of finished catalyst in silver solution
A silver catalyst for producing ethylene oxide, which is produced by impregnating with an impregnating liquid containing 0.0005 to 0.03 gram equivalent of a complex compound of thallium and boron or a complex compound of thallium and titanium, followed by heating and reduction or thermal decomposition. . 2. The silver catalyst according to claim 1, wherein the complex compound of thallium and boron is thallium borate. 3. The silver catalyst according to claim 1, wherein the complex compound of thallium and titanium is thallium titanate. 4. The amount of thallium and boron complex compound or thallium and titanium complex compound contained in the decomposable silver solution is 0.001 to 0.02 per kilogram of finished catalyst.
The silver catalyst according to any one of claims 1 to 3, which is in gram equivalent.
JP9504780A 1980-07-14 1980-07-14 Silver catalyzer for production of ethylene oxide Granted JPS5721937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9504780A JPS5721937A (en) 1980-07-14 1980-07-14 Silver catalyzer for production of ethylene oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9504780A JPS5721937A (en) 1980-07-14 1980-07-14 Silver catalyzer for production of ethylene oxide

Publications (2)

Publication Number Publication Date
JPS5721937A JPS5721937A (en) 1982-02-04
JPS6234419B2 true JPS6234419B2 (en) 1987-07-27

Family

ID=14127145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9504780A Granted JPS5721937A (en) 1980-07-14 1980-07-14 Silver catalyzer for production of ethylene oxide

Country Status (1)

Country Link
JP (1) JPS5721937A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908343A (en) * 1987-02-20 1990-03-13 Union Carbide Chemicals And Plastics Company Inc. Catalyst composition for oxidation of ethylene to ethylene oxide
US5057481A (en) * 1987-02-20 1991-10-15 Union Carbide Chemicals And Plastics Technology Corporation Catalyst composition for oxidation of ethylene to ethylene oxide
JP4746205B2 (en) 2001-06-12 2011-08-10 Okiセミコンダクタ株式会社 Booster circuit and semiconductor device incorporating the same

Also Published As

Publication number Publication date
JPS5721937A (en) 1982-02-04

Similar Documents

Publication Publication Date Title
KR960011428B1 (en) Silver catalyst for production of ethyleneoxide and method for manufacturing thereof
TWI409258B (en) Process for production of an olefin oxide
US4368144A (en) Silver catalyst for production of ethylene oxide
US4212772A (en) Catalyst for the manufacture of ethylene oxide
US4248740A (en) Process for preparing silver-supported catalyst for the production of ethylene oxide
US4916243A (en) New catalyst composition and process for oxidation of ethylene to ethylene oxide
JPS6121701B2 (en)
TWI428328B (en) Ethylene oxide production using fixed moderator concentration
JP2506527B2 (en) Method for producing supported silver catalyst
JPH0468974B2 (en)
JPS6155416B2 (en)
JP3313164B2 (en) Silver catalyst for producing ethylene oxide and method for producing the same
JPS6045637B2 (en) Method for producing ethylene oxide
JP3748888B2 (en) Preparation method of silver catalyst
WO1999011370A1 (en) Ethylene oxide catalyst
JPS6234419B2 (en)
JP3233652B2 (en) Silver catalyst for ethylene oxide production
US4837347A (en) Process for oxidation of ethylene to ethylene oxide
JPS6231983B2 (en)
JPS6366837B2 (en)
US4169099A (en) Catalyst and process for producing ethylene oxide
JPS6234418B2 (en)
KR900002456B1 (en) Preparation method of silver catalyst for producing ethylene oxide
JPH02973B2 (en)
JP3636911B2 (en) Method for producing silver catalyst for ethylene oxide production