JPS6234418B2 - - Google Patents

Info

Publication number
JPS6234418B2
JPS6234418B2 JP55092277A JP9227780A JPS6234418B2 JP S6234418 B2 JPS6234418 B2 JP S6234418B2 JP 55092277 A JP55092277 A JP 55092277A JP 9227780 A JP9227780 A JP 9227780A JP S6234418 B2 JPS6234418 B2 JP S6234418B2
Authority
JP
Japan
Prior art keywords
carrier
catalyst
silver
thallium
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55092277A
Other languages
Japanese (ja)
Other versions
JPS5719038A (en
Inventor
Masashi Mitsuhata
Toshihiko Kumazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP9227780A priority Critical patent/JPS5719038A/en
Publication of JPS5719038A publication Critical patent/JPS5719038A/en
Publication of JPS6234418B2 publication Critical patent/JPS6234418B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epoxy Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はエチレンを分子状酸素により接触気相
酸化してエチレンオキシドを製造するに際して使
用される銀触媒に関するものである。 工業的にエチレンを分子状酸素により接触気相
酸化してエチレンオキシドを製造するに際し使用
される触媒は、その性能として高活性、高選択性
および耐久性が要求される。 これらの要求に対し、その性能を改善する目的
で今日迄種々検討がなされており反応促進剤、担
体、銀化合物等の改良に多くの努力が払われてき
た。中でも反応促進剤に関する報告はたとえば特
開昭49―30286号、特開昭50―50307号、特開昭50
―74589号、特開昭50―90591号、特開昭52―
25703号など数多く出されている。 しかしながら、担体についてはまだ不明な点も
多くまだまだ改良すべき問題が多々ある。 例えば、担体の比表面積、細孔径、細孔分布、
比細孔容積、気孔率等の担体のもつ物理的性質、
またα―アルミナ、シリコン―カーバイト、シリ
カ、ジルコニア等担体材量のもつ化学的性質等の
最適化への改良がある。 本発明者等も長年にわたりエチレンオキシド製
造用銀触媒に用いる好適な担体に関する研究を行
つてきた結果、従来当分野で一般的に工業的規模
において用いられている担体よりも、低ナトリウ
ム含量のα―アルミナ担体を用いた場合、触媒に
した時の選択率の低さのゆえに当分野の工業的規
模において一般的に用いられていない比較的高比
表面積の担体が有効に使用でき、これを特に反応
促進剤としてタリウム金属またはタリウム化合物
を添加した銀触媒に利用した場合、これ迄になく
高活性、高選択性、耐久性の触媒ができることを
見い出して本発明を完成した。 本発明は担体に銀およびタリウム金属またはタ
リウム化合物を含有するエチレンオキシド製造用
銀触媒において、ナトリウム成分が0.07重量%以
下、比表面積が0.5〜5m2/gのα―アルミナ担
体に、完成触媒に対し5〜25重量%担持された金
属銀粒子と、完成触媒1キログラムあたり0.0005
〜0.03グラム当量を担持されたタリウム金属また
はタリウム化合物を含有することを特徴とするエ
チレンオキシド製造用銀触媒である。 以下、さらにくわしく本発明を説明する。 エチレンを分子状酸素により接触気相酸化して
エチレンオキシドを製造する際に用いられる触媒
は銀触媒であり、そのほとんどが担体を使用した
銀担持触媒であることは言うまでもないことであ
る。また用いられる担体がアルミナ主成分の多孔
質耐火性担体であることも周知である。 しかしながら、単にアルミナ主成分の多孔質耐
火性担体と言つても千差万別で担体の比表面積、
細孔分布、細孔容積、粒径、形状等の物性及び担
体を構成する材質例えばα―アルミナ、シリカ、
シリコン―カーバイド、結合剤等のもつ化学的性
質等これらの物性および化学的性質が触媒の性能
に及ばす影響は大きい。 従つて、どのような性質の担体を選ぶかは当業
者にとつて大きな問題である。 担体の物性の中でも比表面積は細孔径にも関係
し触媒性能に与える影響は大きく大いに留意しな
ければならない。即ち、活性、耐久性の面から考
えると触媒比表面積は大きい方が望ましく、その
為には担体比表面積は大きい方が良いが担体比表
面積を大きくする為には担体材料のアルミナ粒子
は小さいものを選ぶ必要がある。そのことは必然
的に小さな細孔径の形成を意味する。このことは
ガスの拡散滞留、反応熱の除去という点から考え
ると不利になる。また担体表面の露出面積が増大
することからも不利である。これ等のことはいず
れも選択率の低下につながる。 したがつて、必ずしも比表面積は大きい方が良
いとばかりは言えず自ずと制限が出てくる。 これ迄の工業的規模に採用されている大部分の
担体の比表面積は1m2/g以下であり、さらには
0.5m2/g以下である。例外的には1m2/g以上
の担体を使つた例もあるが、低表面積のものより
選択率は低い。 本発明者等はこれ等の欠点を無くすべき検討し
た結果0.5m2/g以上の大きな比表面積の担体を
用いても選択率の低下を招くことなく、さらに向
上させ且つ高活性、耐久性を維持、促進させる触
媒を見い出した。 すなわち、担体の構成材料のα―アルミナ中の
低ナトリウム含有化、延いては担体の低ナトリウ
ム含有化により達成される。 このような物性面から来る不利益が担体の化学
的性質特に担体中のナトリウム含有量によつて改
善されることは驚くべきことである。 10m2/g以下の比表面積の担体に使用されてい
るα―アルミナは通常その製法からくる理由から
0.1重量%(Na2Oとして)以上のナトリウム成分
(主にNa2O)を含んでいることが普通であり、そ
れによりできた担体に0.1重量%(Na2Oとして)
以上のナトリウム成分が含くまれていることも一
般的である。 これまでエチレンオキシド製造用銀触媒に使用
されてきた担体のほとんどはこのような担体であ
り、担体成分についてはα―アルミナ主体という
ことで、α―アルミナ含量が高い方が好ましいと
して90重量%以上の含量の担体が指向され、かな
り定着化してきているが、その他の成分について
は考慮されていない、まして担体中の不純物的存
在のナトリウム成分について考慮されてない。 我々の研究によれば、担体中のナトリウム成分
は触媒性能に微妙に影響し、従来当分野で通常使
われている比表面積0.5m2/g以下の担体ではそ
の影響は、比表面積が小さくなる程小さいが、
0.5m2/g以上になるとだんだん大きくなり、1
m2/g以上になるとその影響は顕著になることが
分つた。しかし本発明によればこれまで選択率が
低くなるゆえに使われなかつた1m2/g以上の担
体も使用可能になるばかりでなく、さらには活
性、選択性において優位にさえなる。 このことは後述の実施例でも解る様に、同じ
1.5m2/gぐらいの比表面積の担体でも0.07重量
%以下の低ナトリウム含有量のα―アルミナ担体
とそうでない担体では他の物性が多少関係あるに
しても、タリウム金属またはタリウム化合物を添
加した触媒にしたときの選択率は実に6%以上も
の差が出ることは驚くべきことである。 このことがどういう作用によるかは、反応促進
剤として積極的に加えられる場合もあるナトリウ
ムが担体中には出来るだけ少い方が良いというこ
と、またタリウム金属またはタリウム化合物を添
加せずに、比表面積が1.54m2/gでナトリウム含
有量が0.05重量%以下の担体を用いた銀触媒と比
表面積が1.51m2/gでナトリウム含有量が0.40重
量%の担体を用いた銀触媒とを比較すると選択率
の差が約3.6%程度であること、さらにまた文献
に、アルミナやシリカへの金属イオンの吸着がPH
に強く依存することが記載されていること等、こ
れ等のことを考慮に入れて考えると、担体中のナ
トリウム成分は銀およびタリウム化合物含有溶液
を担体へ含浸する際に、担体内のPH分布に関係
し、銀或いはそれ以上にタリウム金属またはタリ
ウム化合物の析出分布に強い影響を与えることが
考えられる。そのことが触媒性能に関係してくる
と思える。その意味では担体中のカリウム成分
(主にK2O)も関係すると考えられるが、本発明
者等の実験によれば、カリウム含量は従来と同じ
でもナトリウム成分を減らすことによつて充分の
効果が得られている。しかしながら担体中にはカ
リウム成分もK2Oとして0.1重量%以上含まれて
おり、ナトリウムと同じようにカリウムも0.07重
量%以下にすることによりさらに効果が上がるこ
とは考えられる。 従つて0.5m2/g以上の比表面積の低ナトリウ
ム成分の担体をより有効に使用する為には反応促
進剤としてタリウム化合物が添加されねばならな
い。 添加されるタリウム化合物は、有機塩、無機塩
のいずれの化合物も有効であるが、水溶性の化合
物が特に有効に使用できる。 タリウム金属またはタリウム化合物の添加量に
ついては、公知文献に見られる添加量を越えた範
囲も有効であり、特に比表面積の大きな担体の場
合は従来の好適範囲を越えた点で議論せねばなら
ないことが多い。 本発明の好適なタリウム金属またはタリウム化
合物の添加量の範囲は、完成触媒1キログラムあ
たり0.0005〜0.03グラム当量で好ましくは0.001〜
0.02グラム当量である。 使用される担体に関しては、前記0.5m2/g以
上の比表面積、0.07重量%以下の低ナトリウム含
有量のα―アルミナ担体使用という以外は当分野
で公知のいかなる条件も適用できるが、好適には
見掛けの気孔率25〜60%、比細孔容積0.2〜0.5
c.c./g、粒径3〜20mmのα―アルミナ主成分、好
ましくは90重量%以上がα―アルミナ成分である
α―アルミナ担体が使用出来る。また前記比表面
積についても0.5m2/g以上さらには1m2/g以
上のものが好適であるが、5m2/g以上のものは
実質的に良いものは得られておらず実際的でな
い。 さらにまたα―アルミナ、ナトリウム成分(主
にNa2O)以外の担体成分は当分野で慣用の担体
に含まれる程度の成分、量が好ましい。 銀含有率は完成された触媒に対し5〜25重量
%、好ましくは10〜20重量%が選ばれるが、25重
量%以上の担持は無意味で不経済である。 触媒の調製法は従来公知の方法はどれもが使用
できるが、一般的には分解性銀塩の水溶液或は有
機溶媒溶液、例えば硝酸銀水溶液、無機有機酸銀
のアンモニア溶液あるいは有機アミン溶液、乳酸
銀水溶液、等を前記の如き担体に含浸する。タリ
ウム金属またはタリウム化合物は担体に先に析出
させておいても、銀溶液に加えておいても良い。 次いでこの含浸担体を加熱し分解物を分解或は
還元し触媒とするか、還元性雰囲気中で還元分解
し触媒とする方法が使用できる。 以上のことをより具体的に述べるならば、エチ
レンを分子状酸素により気相接触酸化してエチレ
ンオキシドを製造する際に使用する銀触媒におい
て、多孔質耐火性担体として、ナトリウム含量が
0.07重量%以下の0.5〜5m2/g、好ましくは1
〜5m2/gの比表面積、25〜60%の見掛けの気孔
率、0.2〜0.5c.c./gの比細孔容積、3〜20mmの粒
径の物性をもつ担体を使用し、これに有機酸銀の
アミン溶液等の分解性銀溶液を含浸後100〜300℃
に加熱し、還元或は熱分解する。銀は触媒に対し
5〜25重量%、好ましくは10〜20重量%を微粒状
に担体内外表面に析出させる。 タリウム化合物は、有機塩、無機塩化合物の中
から選ばれた化合物を水溶液或いはアルコール性
溶液の形で完成触媒1キログラムあたり0.0005〜
0.03グラム当量、好ましくは0.001〜0.02グラム当
量を銀溶液に加えて銀と同時に析出させるかまた
は銀の析出の前後の担体に析出させておくことが
できる。 該タリウム含有銀触媒は最終的に空気流により
100〜400℃で24〜100時間で賦活化し触媒を完成
させる。 この方法では調製された銀触媒を使用してエチ
レンを分子状酸素により酸化して酸化エチレンを
製造する方法において採用出来得る条件は、これ
までこの分野で知られている全ての条件が採用で
きるが、製造規模における一般的な条件、即ち原
料ガス組成としてエチレン0.5〜40容量%、酸素
3〜10容量%、二酸化炭素5〜30容量%、残部が
窒素、アルゴン、水蒸気等の不活性ガスおよびメ
タン、エタン等の低級炭化水素類さらにまた反応
抑制剤としての二塩化エチレン、塩化ジフエニル
等のハロゲン化物、空間速度0.1〜10000hr-1
(STP)、圧力2〜40Kg/cm2等が好適に採用でき
る。 以下さらに具体的にするために実施例、比較例
を挙げて詳細に説明するが、本発明はその主旨に
反しない限りこれらの実施例に限定されるもので
はない。 なお、本文および実施例、比較例中に記載する
変化率、選択率は次式により算出されたものであ
る。 変化率(%)=反応したエチレンのモル数/原料ガス中のエチレンのモル数×100 選択率(%)=エチレンオキシドに変化したエチレンのモル数/反応したエチレンのモル数×100 実施例 1 炭酸銀570gを水200mlと泥状にしておき、これ
にエタノールアミン560mlを加え、よく撹拌し溶
解させ、さらに水500mlを加えよく撹拌後、これ
に41.5重量%の硫酸タリウム水溶液を10ml加えて
撹拌し、含浸溶液を調製した。この溶液を見掛け
気孔率51%BET比表面積1.54m2/g、比細孔容積
0.34c.c./g、粒径5mmの予め加熱したナトリウム
含量が0.05重量%(Na2Oとして)以下のα―ア
ルミナ担体4000mlに含浸させた。ついでゆるやか
に撹拌しながら80〜120℃で2時間加熱した。 この触媒を内径25.0mm、管長11000mmステンレ
ス製反応管に充填し、その外側を熱媒により100
℃から徐々に240℃迄昇温しながら空気を触媒層
に流通させ240℃で24時間、空気により該触媒を
賦活化した。 次いで熱媒温度を180℃迄降温し、空気流の代
りにエチレン20容量%、酸素8容量%、炭酸ガス
7容量%、残余が窒素、メタン、エタン、アルゴ
ン等の不活性ガス及び二塩化エチレン1ppmから
成る原料混合ガスを導入し反応圧力24Kg/cm2G、
空間速度3000hr-1(STP)で熱媒温度を203℃迄
昇温し反応をさせた。10日後の反応結果は表―1
に示す通りであつた。 比較例 1 実施例1において使用する担体を、見掛けの気
孔率53%、BET比表面積1.51m2/g、比細孔容積
0.31c.c./g、粒径5mm、ナトリウム含有量が0.40
重量%(Na2Oとして)のα―アルミナ担体を使
用する以外は実施例1と同じように触媒を調製
し、反応温度(熱媒温度)を216℃とする以外は
同じように反応させた。その結果は表―1に示す
とおりであつた。
The present invention relates to a silver catalyst used in the production of ethylene oxide by catalytic gas phase oxidation of ethylene with molecular oxygen. Catalysts used industrially to produce ethylene oxide by catalytic gas phase oxidation of ethylene with molecular oxygen are required to have high activity, high selectivity, and durability. In response to these demands, various studies have been made to date to improve the performance, and much effort has been made to improve reaction accelerators, carriers, silver compounds, etc. Among them, reports on reaction accelerators include, for example, JP-A-49-30286, JP-A-50-50307, and JP-A-Sho 50.
-No. 74589, Japanese Patent Application Publication No. 1973-90591, Japanese Patent Application Publication No. 1973-
Numerous issues such as issue 25703 have been published. However, there are still many unknown points regarding the carrier, and there are still many problems that need to be improved. For example, specific surface area, pore diameter, pore distribution,
Physical properties of the carrier such as specific pore volume and porosity,
There are also improvements to optimize the chemical properties of carrier materials such as α-alumina, silicon carbide, silica, and zirconia. The present inventors have also conducted research on suitable supports for use in silver catalysts for the production of ethylene oxide over many years, and have found that α- When an alumina support is used, it is possible to effectively use a support with a relatively high specific surface area, which is not generally used on an industrial scale in this field due to its low selectivity when used as a catalyst. The present invention was completed by discovering that when a silver catalyst containing thallium metal or a thallium compound as a promoter is used, a catalyst with unprecedentedly high activity, high selectivity, and durability can be produced. The present invention relates to a silver catalyst for producing ethylene oxide containing silver and thallium metal or a thallium compound in the carrier. 5-25% by weight of supported metallic silver particles and 0.0005% per kilogram of finished catalyst
This is a silver catalyst for producing ethylene oxide, characterized in that it contains thallium metal or thallium compound supported in an amount of ~0.03 gram equivalent. The present invention will be explained in more detail below. The catalyst used to produce ethylene oxide by catalytic gas phase oxidation of ethylene with molecular oxygen is a silver catalyst, and it goes without saying that most of them are silver-supported catalysts using a carrier. It is also well known that the carrier used is a porous refractory carrier based on alumina. However, even though it is simply a porous refractory carrier mainly composed of alumina, the specific surface area of the carrier and
Physical properties such as pore distribution, pore volume, particle size, shape, etc., and materials constituting the carrier, such as α-alumina, silica,
These physical and chemical properties, such as the chemical properties of silicon carbide, binder, etc., have a great influence on the performance of the catalyst. Therefore, it is a big problem for those skilled in the art how to select a carrier having properties. Among the physical properties of the carrier, the specific surface area is also related to the pore diameter, and has a large influence on the catalyst performance, so great care must be taken. In other words, from the standpoint of activity and durability, it is desirable that the specific surface area of the catalyst be large, and for that purpose, the specific surface area of the carrier should be large, but in order to increase the specific surface area of the carrier, the alumina particles of the carrier material should be small. You need to choose. That necessarily means the formation of small pore sizes. This is disadvantageous from the viewpoint of gas diffusion and retention and removal of reaction heat. It is also disadvantageous because the exposed area of the carrier surface increases. All of these things lead to a decrease in selectivity. Therefore, it cannot necessarily be said that the larger the specific surface area, the better, and limitations naturally arise. The specific surface area of most carriers that have been used on an industrial scale so far is 1 m 2 /g or less, and
It is 0.5m 2 /g or less. Although there are exceptional cases in which a carrier of 1 m 2 /g or more is used, the selectivity is lower than that of a carrier with a low surface area. The present inventors investigated how to eliminate these drawbacks, and as a result, even if a carrier with a large specific surface area of 0.5 m 2 /g or more is used, the selectivity does not decrease, and the selectivity is further improved and high activity and durability are achieved. We have discovered a catalyst that maintains and promotes this. That is, this is achieved by lowering the sodium content in the α-alumina of the constituent material of the carrier, and by reducing the sodium content of the carrier. It is surprising that such disadvantages due to physical properties can be improved by changing the chemical properties of the carrier, especially the sodium content in the carrier. α-Alumina, which is used as a carrier with a specific surface area of 10 m 2 /g or less, is usually used for reasons related to its manufacturing method.
It usually contains 0.1% by weight (as Na 2 O) or more of a sodium component (mainly Na 2 O), and the resulting carrier contains 0.1% by weight (as Na 2 O).
It is also common for the above sodium components to be included. Most of the carriers that have been used for silver catalysts for ethylene oxide production so far are of this kind, and the carrier component is mainly α-alumina, so it is preferable to have a high α-alumina content, so 90% by weight or more is preferred. Although the content of the carrier has been focused on and has become fairly fixed, other components have not been considered, much less the sodium component present as an impurity in the carrier. According to our research, the sodium component in the carrier has a subtle effect on the catalyst performance, and with carriers with a specific surface area of 0.5 m 2 /g or less, which are commonly used in this field, this effect becomes smaller. Although quite small,
When it exceeds 0.5m 2 /g, it gradually becomes larger and becomes 1
It was found that the effect becomes significant at m 2 /g or more. However, according to the present invention, it is not only possible to use carriers of 1 m 2 /g or more, which have not been used until now because of their low selectivity, but they are even superior in terms of activity and selectivity. As will be seen in the examples below, this is the same
Even if the carrier has a specific surface area of about 1.5 m 2 /g, there is a difference in other physical properties between an α-alumina carrier with a low sodium content of 0.07% by weight or less and a carrier without it, but thallium metal or thallium compounds are added. It is surprising that when used as a catalyst, the selectivity differs by more than 6%. The reason for this effect is that it is better to have as little sodium as possible in the carrier, which is sometimes actively added as a reaction accelerator, and that it is better to use as little sodium as possible in the carrier, and that it is better to use the carrier without adding thallium metal or thallium compounds. A comparison of a silver catalyst using a carrier with a surface area of 1.54 m 2 /g and a sodium content of 0.05% by weight or less and a silver catalyst using a carrier with a specific surface area of 1.51m 2 /g and a sodium content of 0.40% by weight. The difference in selectivity was approximately 3.6%, and the literature also states that the adsorption of metal ions on alumina and silica
Considering these facts, such as the fact that it has been described that the sodium component in the carrier is strongly dependent on the PH distribution in the carrier when impregnated with a solution containing silver and thallium compounds, It is thought that this has a stronger influence on the precipitation distribution of thallium metal or thallium compound than that of silver. This seems to be related to catalyst performance. In this sense, the potassium component (mainly K 2 O) in the carrier is thought to be involved, but according to the experiments of the present inventors, sufficient effects can be obtained by reducing the sodium component even if the potassium content remains the same as before. is obtained. However, the carrier also contains a potassium component in the form of K 2 O of 0.1% by weight or more, and it is conceivable that the effect will be further improved by reducing potassium to 0.07% by weight or less, similar to sodium. Therefore, in order to use the low-sodium component carrier having a specific surface area of 0.5 m 2 /g or more more effectively, a thallium compound must be added as a reaction accelerator. As the thallium compound to be added, both organic salts and inorganic salts are effective, but water-soluble compounds are particularly effective. Regarding the amount of thallium metal or thallium compound added, it is also effective to add the amount beyond the amount found in known literature, and especially in the case of a support with a large specific surface area, it is necessary to discuss points beyond the conventional preferred range. There are many. The range of suitable amounts of thallium metal or thallium compound added according to the present invention is from 0.0005 to 0.03 gram equivalents per kilogram of finished catalyst, preferably from 0.001 to 0.001.
0.02 gram equivalent. Regarding the carrier used, any conditions known in the art can be applied, except for the use of an α-alumina carrier with a specific surface area of 0.5 m 2 /g or more and a low sodium content of 0.07% by weight or less, but preferably is apparent porosity 25-60%, specific pore volume 0.2-0.5
An α-alumina carrier having a particle size of 3 to 20 mm and a main component of α-alumina, preferably 90% by weight or more can be used. Also, as for the specific surface area, it is preferable to have a specific surface area of 0.5 m 2 /g or more, and even 1 m 2 /g or more, but a material with a specific surface area of 5 m 2 /g or more has not been practically obtained and is not practical. Furthermore, carrier components other than α-alumina and sodium components (mainly Na 2 O) are preferably contained in carriers commonly used in the art. The silver content is selected to be 5 to 25% by weight, preferably 10 to 20% by weight, based on the finished catalyst, but loading more than 25% by weight is meaningless and uneconomical. Any conventionally known method can be used to prepare the catalyst, but in general, an aqueous solution or an organic solvent solution of a decomposable silver salt, such as an aqueous silver nitrate solution, an ammonia solution or an organic amine solution of inorganic organic acid silver, or a lactic acid solution. The carrier as described above is impregnated with an aqueous silver solution or the like. The thallium metal or thallium compound may be precipitated on the carrier or may be added to the silver solution. Next, the impregnated carrier may be heated to decompose or reduce the decomposed product to form a catalyst, or the impregnated carrier may be reductively decomposed in a reducing atmosphere to form a catalyst. To describe the above more specifically, in the silver catalyst used when producing ethylene oxide by gas-phase catalytic oxidation of ethylene with molecular oxygen, sodium content is
0.5 to 5 m 2 /g, preferably 1% by weight or less
A carrier with physical properties of a specific surface area of ~5 m 2 /g, an apparent porosity of 25 to 60%, a specific pore volume of 0.2 to 0.5 cc/g, and a particle size of 3 to 20 mm is used, and an organic acid is added to this support. 100-300℃ after impregnation with degradable silver solution such as silver amine solution
The substance is heated to reduce or thermally decompose it. Silver is deposited in the form of fine particles on the inner and outer surfaces of the carrier in an amount of 5 to 25% by weight, preferably 10 to 20% by weight, based on the catalyst. The thallium compound is a compound selected from organic salts and inorganic salts in the form of an aqueous solution or an alcoholic solution at a rate of 0.0005 to 1 kg per kilogram of the finished catalyst.
0.03 gram equivalents, preferably 0.001 to 0.02 gram equivalents, can be added to the silver solution and precipitated simultaneously with the silver, or can be deposited on the support before or after silver precipitation. The thallium-containing silver catalyst is finally
The catalyst is completed by activation at 100-400℃ for 24-100 hours. In this method, all conditions known in this field can be adopted in the method of producing ethylene oxide by oxidizing ethylene with molecular oxygen using the prepared silver catalyst. , the general conditions at the production scale, i.e., the raw gas composition is 0.5-40% by volume of ethylene, 3-10% by volume of oxygen, 5-30% by volume of carbon dioxide, the balance being nitrogen, inert gas such as argon, water vapor, etc., and methane. , lower hydrocarbons such as ethane, and halides such as ethylene dichloride and diphenyl chloride as reaction inhibitors, space velocity 0.1 to 10000 hr -1
(STP), a pressure of 2 to 40 Kg/cm 2 or the like can be suitably employed. The present invention will be described in detail below using Examples and Comparative Examples to make it more specific, but the present invention is not limited to these Examples unless it goes against the gist thereof. Note that the rate of change and selectivity described in the main text, Examples, and Comparative Examples were calculated using the following formula. Rate of change (%) = Number of moles of ethylene reacted/Number of moles of ethylene in raw material gas x 100 Selectivity (%) = Number of moles of ethylene converted to ethylene oxide/Number of moles of ethylene reacted x 100 Example 1 Carbonic acid Make 570 g of silver into a slurry with 200 ml of water, add 560 ml of ethanolamine, stir well to dissolve, then add 500 ml of water and stir well, then add 10 ml of 41.5% by weight thallium sulfate aqueous solution and stir. , an impregnating solution was prepared. This solution has an apparent porosity of 51%, a BET specific surface area of 1.54 m 2 /g, and a specific pore volume.
4000 ml of a preheated α-alumina carrier with a sodium content of 0.05% by weight (as Na 2 O) of 0.34 cc/g and a particle size of 5 mm was impregnated. Then, the mixture was heated at 80 to 120°C for 2 hours while stirring gently. This catalyst was packed into a stainless steel reaction tube with an inner diameter of 25.0 mm and a tube length of 11,000 mm, and the outside of the tube was heated to 100 mm using a heat medium.
The catalyst was activated by air at 240°C for 24 hours by passing air through the catalyst layer while gradually increasing the temperature from 0°C to 240°C. Next, the heating medium temperature was lowered to 180℃, and instead of the air flow, 20% by volume of ethylene, 8% by volume of oxygen, 7% by volume of carbon dioxide, and the remainder was nitrogen, an inert gas such as methane, ethane, argon, etc., and ethylene dichloride. A raw material mixed gas consisting of 1 ppm was introduced, and the reaction pressure was 24 Kg/cm 2 G.
The reaction was carried out by increasing the heat medium temperature to 203℃ at a space velocity of 3000hr -1 (STP). The reaction results after 10 days are shown in Table 1.
It was as shown in. Comparative Example 1 The carrier used in Example 1 had an apparent porosity of 53%, a BET specific surface area of 1.51 m 2 /g, and a specific pore volume.
0.31cc/g, particle size 5mm, sodium content 0.40
A catalyst was prepared in the same manner as in Example 1, except that an α-alumina support of % by weight (as Na 2 O) was used, and the reaction was carried out in the same manner, except that the reaction temperature (thermal medium temperature) was 216 °C. . The results were as shown in Table 1.

【表】 比較例 2 実施例1においてタリウム化合物を添加しない
以外は実施例1と同じように触媒を調製し、反応
温度を表―2に示す温度にする以外は実施例1と
同じようにおこなつた。その結果は表―2に示す
とおりであつた。 比較例 3 比較例1において、タリウム化合物を添加しな
い以外は比較例1と同じように触媒を調製し、反
応温度を表―2に示す温度にする以外は比較例1
と同様に行なつた。その結果、表―2に示すとお
りであつた。
[Table] Comparative Example 2 A catalyst was prepared in the same manner as in Example 1, except that the thallium compound was not added in Example 1, and a catalyst was prepared in the same manner as in Example 1, except that the reaction temperature was set to the temperature shown in Table 2. Konatsuta. The results were as shown in Table 2. Comparative Example 3 In Comparative Example 1, a catalyst was prepared in the same manner as in Comparative Example 1, except that no thallium compound was added, and the reaction temperature was set to the temperature shown in Table 2.
I did the same thing. The results were as shown in Table-2.

【表】 実施例 2 実施例1において、表―3に示す担体、タリウ
ム化合物の添加量および反応温度に変えた以外は
実施例1と同様に行なつた。その結果表―3のと
おりであつた。
[Table] Example 2 The same procedure as in Example 1 was carried out except that the carrier, the added amount of the thallium compound, and the reaction temperature were changed as shown in Table 3. The results were as shown in Table-3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 担体に銀およびタリウム金属またはタリウム
化合物を含有するエチレンオキシド製造用銀触媒
において、ナトリウム成分が0.07重量%以下、比
表面積が0.5〜5m2/gのα―アルミナ担体に、
完成触媒に対し5〜25重量%担持された金属銀微
粒子と、完成触媒1キログラムあたり0.0005〜
0.03グラム当量を担持されたタリウム金属または
タリウム化合物を含有することを特徴とするエチ
レンオキシド製造用銀触媒。 2 タリウム金属またはタリウム化合物が完成触
媒1キログラムあたり0.001〜0.02グラム当量担
持されていることを特徴とする特許請求の範囲第
1項記載の触媒。
[Scope of Claims] 1. In a silver catalyst for producing ethylene oxide containing silver and thallium metal or thallium compound in the carrier, an α-alumina carrier having a sodium component of 0.07% by weight or less and a specific surface area of 0.5 to 5 m 2 /g,
Metallic silver fine particles supported at 5 to 25% by weight on the finished catalyst and 0.0005 to 1 kg per kilogram of the finished catalyst
A silver catalyst for producing ethylene oxide, characterized in that it contains 0.03 gram equivalent of supported thallium metal or thallium compound. 2. The catalyst according to claim 1, wherein 0.001 to 0.02 gram equivalent of thallium metal or thallium compound is supported per kilogram of the finished catalyst.
JP9227780A 1980-07-08 1980-07-08 Silver catalyst for production of ethylene oxide Granted JPS5719038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9227780A JPS5719038A (en) 1980-07-08 1980-07-08 Silver catalyst for production of ethylene oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9227780A JPS5719038A (en) 1980-07-08 1980-07-08 Silver catalyst for production of ethylene oxide

Publications (2)

Publication Number Publication Date
JPS5719038A JPS5719038A (en) 1982-02-01
JPS6234418B2 true JPS6234418B2 (en) 1987-07-27

Family

ID=14049899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9227780A Granted JPS5719038A (en) 1980-07-08 1980-07-08 Silver catalyst for production of ethylene oxide

Country Status (1)

Country Link
JP (1) JPS5719038A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450514A (en) * 1987-08-21 1989-02-27 Okaya Electric Industry Co Columnar chip type film capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450514A (en) * 1987-08-21 1989-02-27 Okaya Electric Industry Co Columnar chip type film capacitor

Also Published As

Publication number Publication date
JPS5719038A (en) 1982-02-01

Similar Documents

Publication Publication Date Title
KR960011428B1 (en) Silver catalyst for production of ethyleneoxide and method for manufacturing thereof
US4368144A (en) Silver catalyst for production of ethylene oxide
US6153556A (en) Silver catalyst for production of ethylene oxide, method for production thereof, and method for production of ethylene oxide
TWI409258B (en) Process for production of an olefin oxide
CA2520786C (en) A silver-catalyst composition, a process for preparing the catalyst composition and a use of the catalyst composition for the epoxidation of ethylene
JPS6155416B2 (en)
JPH0468974B2 (en)
JPS6121701B2 (en)
JP2013534465A (en) Carrier for ethylene oxide catalyst
TW200920739A (en) Ethylene oxide production using fixed moderator concentration
EP0975615A1 (en) Ethylene oxide catalyst
US11213806B1 (en) Catalyst supports—composition and process of manufacture
JP2004515331A (en) Ethylene oxide catalyst
JPS6045637B2 (en) Method for producing ethylene oxide
JP3313164B2 (en) Silver catalyst for producing ethylene oxide and method for producing the same
JP3748888B2 (en) Preparation method of silver catalyst
WO1999011370A1 (en) Ethylene oxide catalyst
JPS6231983B2 (en)
JP3233652B2 (en) Silver catalyst for ethylene oxide production
JPS6234418B2 (en)
RU2169040C2 (en) Silver catalyst for production of ethylene oxide, method of preparing catalyst and ethylene oxide production process
JPS6366837B2 (en)
JPS6234419B2 (en)
JP3636912B2 (en) Method for producing catalyst for producing ethylene oxide
JP4210255B2 (en) Silver catalyst for producing ethylene oxide and method for producing ethylene oxide