JPS6366786B2 - - Google Patents

Info

Publication number
JPS6366786B2
JPS6366786B2 JP14662982A JP14662982A JPS6366786B2 JP S6366786 B2 JPS6366786 B2 JP S6366786B2 JP 14662982 A JP14662982 A JP 14662982A JP 14662982 A JP14662982 A JP 14662982A JP S6366786 B2 JPS6366786 B2 JP S6366786B2
Authority
JP
Japan
Prior art keywords
sulfuric acid
agent
waste sulfuric
waste
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14662982A
Other languages
Japanese (ja)
Other versions
JPS5939756A (en
Inventor
Susumu Iwasaki
Masami Nakayama
Hiroshi Hakozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP14662982A priority Critical patent/JPS5939756A/en
Publication of JPS5939756A publication Critical patent/JPS5939756A/en
Publication of JPS6366786B2 publication Critical patent/JPS6366786B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は硫酸法酸化チタン製造工程から排出さ
れる廃硫酸及び、鉄鋼材料の酸洗工程から排出さ
れる所謂ピツクリング廃硫酸の有効利用に関す
る。 本発明において原料として用いられる廃硫酸
は、そのまま工場外へ排出すれば公害源となるた
め、これを希釈して石膏を製造していた。しかし
希釈して反応を行うので、装置が大型化し、又鉄
含有廃水の処理も必要とし経済性の点で欠点があ
つた。 そこで本発明者等は、廃硫酸を希釈せずにその
まま原料として有用な化合物を得る方法を種々研
究した結果、Fe2+イオンを含有し遊離硫酸濃度
が240g/以上の廃硫酸を予め酸化してFe3+
オン含有硫酸溶液とし、この溶液にCa剤及びAl
剤を反応させることにより土木、建築用材料とし
て適性な強度を有する硬化組成物を得ることを見
い出し、本発明を完成した。 本発明の特徴は、廃硫酸中の遊離硫酸(以下F
―H2SO4と略称する)濃度を限定していること
である。即ち硫酸法酸化チタン製造工程から排出
される廃硫酸及び鉄鋼材料の酸洗工程から排出さ
れる所謂ピツクリング廃硫酸については種々の濃
度のものが存在するが種々検討を重ねた結果、F
―H2SO4濃度240g/以上でないとCa剤及びAl
剤との反応生成物の遊離水分が多く、硬化組成物
の強度が出ないため本発明の目的を達しえない。 しかし、F―H2SO4濃度が240g/以下の廃
硫酸であつても適当な方法によつて濃縮し、F―
H2SO4濃度が240g/以上となれば本発明に使
用出来ることは当然である。 以下に本発明を詳細に説明する。 原料となる廃硫酸はF―H2SO4濃度240g/
以上のものを用いる。尚、硫酸法酸化チタン製造
工程から排出される廃硫酸及び鉄鋼の酸洗工程か
ら排出される所謂ピツクリング廃硫酸は、鉄が
Fe2+イオンの状態で存在するため公知の酸化剤、
例えば酸素、過塩素酸ソーダ等で酸化してFe3+
イオンにしておく必要がある。 Fe2+イオンをFe3+イオンにしておく理由は、
後で述べる硬化組成物中で安定なFe(OH)3とし
て存在せしめるためであり、2価のFe(OH)2
は空気中に放置すると酸化され硬化組成物のPHを
下げ、強度を低下させるからである。 かくして得られたFe3+イオンを含有する廃硫
酸を混合機、例えばニーダーに所定量仕込み、こ
の溶液中の全硫酸根に中和当量以上のCa剤と適
量のAl剤を撹拌しながら添加すると反応が発熱
的に進み10分〜30分間混練後数時間放置すると固
い硬化組成物となる。 Ca剤とAl剤の添加順序は特に限定されず廃硫
酸中にCa剤、ついでAl剤を加えても良く又、そ
の逆でもよく、同時でもよい。 ここに用いるCa剤は炭酸カルシウム
(CaCO3)、生石灰(CaO)、消石灰(Ca(OH)2
の1種あるいは2種以上であり、特に生石灰の場
合は中和熱が大きく反応物の温度が上昇し、反応
速度が早くなると共に、水分の蒸発も起り遊離水
分の少ない硬化物を生成するので強度も上昇し特
に好適である。炭酸カルシウム、消石灰の場合は
反応熱は比較的少ないが、反応は充分進行し、強
度も充分なものが得られる。 Ca剤の使用量は、全硫酸(以下T―H2SO4
略称)の中和当量以上用いる必要があり、当量よ
り少ない場合は硬化組成物は酸性を呈し、遊離水
分が多くなり強度が低い。好ましい範囲は、T―
H2SO4の当量の120〜150%で、150%以上用いて
も強度の上昇はそれ程大きくならず経済的でな
い。 又、使用するAl剤は可溶性Alを主成分とする
フライアツシユ、アルミナセメントの1種あるい
は2種であり、特にフライアツシユは経済性の面
で好適である。フライアツシユは石炭火力発電所
の石炭燃焼の副生物で化学成分はSiO2とAl2O3
主成分で例えば次の様な成分からなつている。 SiO252〜58%、Al2O325%、Fe2O33〜6%、
MgO1〜2%、CaO3〜7% アルミナセメントはAl2O3とCaOが主成分で例
えば次の様な成分からなつている。 Al2O349%、CaO40%、Fe2O34.5%、SiO24%、
MgO0.5% これらのAl剤は、その成分中に含まれるAl2O3
が主として硬化反応に寄与しておりAl2O3含量を
ベースに使用量をきめる。 Al剤の使用量は、T―H2SO4の中和当量以下
で充分であり中和当量の20〜50%の範囲が好まし
い。 20%以下では硬化組成物の強度が低く又50%以
上では強度もそれ程上昇せず経済的でない。 本発明で得られ硬化物は新規な2水石膏―エト
リンガイト―水酸化第2鉄の硬化組成物である。 本発明で得られる硬化組成物の遊離水分は35%
以下と少なく、一軸圧縮強度は3Kg/cm2以上を示
し、そのままで埋立用土として利用される他、道
路の造成用にも好適である。又、成型加工を行な
つて建築用壁材、床材等の建材とすることもでき
る。 本発明の処理方法に於いては、液とか、いわ
ゆる廃水は全く発生せず廃硫酸の完全処理として
合理的かつ経済的な方法である。 このように本発明は公害源となる廃硫酸を原料
として有効利用し、有用な硬化組成物を効率よく
得んとするものである。 以下実施例により具体的に説明する。 実施例 1 硫酸法酸化チタン工程から排出された廃硫酸
(F―H2SO4300g/、T―H2SO4383g/、
FeSO4116g/を含有する)1m3に40℃でNOX
ガス存在下でO2ガスを吹き込みFeSO4をFe2
(SO43に酸化した。 得られたFe3+イオン含有廃硫酸(以下酸化廃
酸と略称する)は次の組成であつた。 (F―H2SO4273g/、T―H2SO4383g/、
Fe2(SO43152g/) この酸化廃酸1を3ビーカーに分取し撹拌
下に炭酸カルシウム390gを加えてCaSO4
2H2OとFe(OH)3を含む褐色のスラリーを得た。 次いでこのスラリー全量をニーダーに移し消石
灰58gとフライアツシユ(Al2O3として25重量%
含有)106gを同時に加え10分間よく混練し、混
練物を直径50mm、高さ100mmのモールドに注型し
密閉器内に1週間保存後、土質試験方法
JISA1216に従つて一軸圧縮強度を測定した。 圧縮強度は3.1Kg/cm2であつた。 又、硬化組成物の遊離水分は35%であつた。 実施例2〜6、比較例2〜3 実施例1で調製した同じ酸化廃酸各1を用い
実施例1と同様の操作で種々の条件をかえて実験
を行なつた。 結果は第1表に示す通りである。
The present invention relates to the effective use of waste sulfuric acid discharged from the sulfuric acid method titanium oxide production process and so-called pickling waste sulfuric acid discharged from the pickling process of steel materials. The waste sulfuric acid used as a raw material in the present invention becomes a source of pollution if discharged outside the factory as it is, so gypsum has been produced by diluting it. However, since the reaction is carried out after dilution, the equipment becomes large and treatment of iron-containing wastewater is also required, which is disadvantageous in terms of economy. Therefore, the present inventors conducted various research on methods for obtaining compounds useful as raw materials without diluting waste sulfuric acid, and as a result, we found that waste sulfuric acid containing Fe 2+ ions and having a free sulfuric acid concentration of 240 g/ or more was oxidized in advance. to make a sulfuric acid solution containing Fe 3+ ions, and add Ca agent and Al to this solution.
The present invention was completed based on the discovery that a cured composition having a strength suitable for use as a material for civil engineering and construction can be obtained by reacting an agent with a compound. The feature of the present invention is that free sulfuric acid (hereinafter referred to as F) in waste sulfuric acid is
- abbreviated as H 2 SO 4 ). In other words, waste sulfuric acid discharged from the sulfuric acid method titanium oxide manufacturing process and so-called pickling waste sulfuric acid discharged from the pickling process of steel materials exist in various concentrations, but as a result of various studies, F
- If the H 2 SO 4 concentration is not 240 g/ or more, Ca agent and Al
The objective of the present invention cannot be achieved because the reaction product with the agent contains a large amount of free water and the cured composition does not have sufficient strength. However, even if waste sulfuric acid has a F-H 2 SO 4 concentration of 240g/or less, it can be concentrated by an appropriate method and F-
It goes without saying that it can be used in the present invention if the H 2 SO 4 concentration is 240 g/or higher. The present invention will be explained in detail below. The waste sulfuric acid used as a raw material has a F-H 2 SO 4 concentration of 240g/
Use the above. In addition, the waste sulfuric acid discharged from the sulfuric acid method titanium oxide production process and the so-called pickling waste sulfuric acid discharged from the steel pickling process are
Oxidizing agent known because it exists in the state of Fe 2+ ions,
For example, oxidize with oxygen, sodium perchlorate, etc. to form Fe 3+
It needs to be ionized. The reason for changing Fe 2+ ions to Fe 3+ ions is
This is to ensure that it exists as stable Fe(OH) 3 in the cured composition, which will be described later. Divalent Fe(OH) 2 oxidizes when left in the air, lowering the PH of the cured composition and reducing its strength. It is from. When a predetermined amount of the thus obtained waste sulfuric acid containing Fe 3+ ions is placed in a mixer, such as a kneader, and a neutralizing equivalent or more of Ca agent and an appropriate amount of Al agent are added to all the sulfuric acid groups in this solution while stirring. The reaction proceeds exothermically, and after kneading for 10 to 30 minutes, a hard cured composition is obtained when left for several hours. The order of addition of the Ca agent and the Al agent is not particularly limited, and the Ca agent and then the Al agent may be added to the waste sulfuric acid, or vice versa, or they may be added simultaneously. The Ca agents used here are calcium carbonate (CaCO 3 ), quicklime (CaO), and slaked lime (Ca(OH) 2 ).
Especially in the case of quicklime, the heat of neutralization is large and the temperature of the reactants rises, the reaction rate becomes faster and water evaporates, producing a cured product with less free water. It is particularly suitable because the strength also increases. In the case of calcium carbonate and slaked lime, the heat of reaction is relatively small, but the reaction proceeds sufficiently and a product with sufficient strength is obtained. The amount of Ca agent used must be at least the neutralization equivalent of total sulfuric acid (hereinafter abbreviated as T-H 2 SO 4 ); if it is less than the equivalent, the cured composition will become acidic and the strength will increase due to the amount of free water. low. The preferred range is T-
It is 120 to 150% of the equivalent amount of H 2 SO 4 , and even if it is used in an amount of 150% or more, the increase in strength is not so large and it is not economical. The Al agent used is one or two of fly ash and alumina cement, both of which have soluble Al as a main component, and fly ash is particularly preferred from the economic point of view. Fly ash is a by-product of coal combustion in coal-fired power plants, and its chemical components include SiO 2 and Al 2 O 3 as main components, including the following components: SiO2 52-58%, Al2O3 25 %, Fe2O3 3-6 %,
MgO 1-2%, CaO3-7% Alumina cement is mainly composed of Al 2 O 3 and CaO, and is composed of the following components, for example. Al 2 O 3 49%, CaO 40%, Fe 2 O 3 4.5%, SiO 2 4%,
MgO0.5% These Al agents contain Al 2 O 3 in their components.
mainly contributes to the curing reaction, and the amount to be used is determined based on the Al 2 O 3 content. The amount of the Al agent used is sufficient to be less than the neutralization equivalent of T--H 2 SO 4 and is preferably in the range of 20 to 50% of the neutralization equivalent. If it is less than 20%, the strength of the cured composition will be low, and if it is more than 50%, the strength will not increase so much and it is not economical. The cured product obtained in the present invention is a novel dihydrate-ettringite-ferric hydroxide cured composition. The free moisture content of the cured composition obtained by the present invention is 35%
It has a uniaxial compressive strength of 3 kg/cm 2 or more, and is suitable for use as landfill soil as it is, as well as for road construction. It can also be molded into building materials such as architectural wall materials and floor materials. The treatment method of the present invention does not generate any liquid or so-called waste water, and is a rational and economical method for completely treating waste sulfuric acid. In this way, the present invention aims to effectively utilize waste sulfuric acid, which is a source of pollution, as a raw material, and to efficiently obtain a useful cured composition. This will be explained in detail below using Examples. Example 1 Waste sulfuric acid (F-H 2 SO 4 300g/, T-H 2 SO 4 383g/,
NOx at 40℃ in 1 m3
Convert FeSO4 to Fe2 by blowing O2 gas in the presence of gas
Oxidized to (SO 4 ) 3 . The obtained Fe 3+ ion-containing waste sulfuric acid (hereinafter abbreviated as oxidized waste acid) had the following composition. (F-H 2 SO 4 273g/, T-H 2 SO 4 383g/,
Fe 2 (SO 4 ) 3 152g/) This oxidized waste acid 1 was separated into 3 beakers and 390g of calcium carbonate was added under stirring to form CaSO 4 .
A brown slurry containing 2H 2 O and Fe(OH) 3 was obtained. Next, the entire amount of this slurry was transferred to a kneader, and 58 g of slaked lime and fly ash (25% by weight as Al 2 O 3 ) were added.
Add 106g of (containing) at the same time, mix well for 10 minutes, pour the kneaded mixture into a mold with a diameter of 50mm and a height of 100mm, and store it in a sealed container for one week.
Unconfined compressive strength was measured according to JISA1216. The compressive strength was 3.1Kg/cm 2 . Also, the free water content of the cured composition was 35%. Examples 2 to 6, Comparative Examples 2 to 3 Using the same oxidized waste acids prepared in Example 1, experiments were conducted in the same manner as in Example 1, but under various conditions. The results are shown in Table 1.

【表】 比較例 1 F―H2SO4203g/、T―H2SO4257g/、
FeSO483g/を含有する所謂ピツクリング廃硫
酸1を40℃に加熱しNOXガスの存在下にO2
スを吹き込みFeSO4をFe2(SO43に酸化した。得
られた酸化廃酸は次の組成であつた。 (F―H2SO4176g/、T―H2SO4257g/、
Fe2(SO43109g/) 酸化廃酸をニーダーに仕込み、撹拌下に炭酸カ
ルシウム262g、消石灰39g、フライアツシユ71
gを順次添加し、10分間混練後、実施例1と同様
にモールドに注型し、密閉器内に1週間保存後、
一軸圧縮強度を測定した。 硬化組成物の一軸圧縮強度は0.9Kg/cm2と低く、
遊離水分は43%に達した。 一般に埋立用土、道路路盤材用土としては一軸
圧縮強度が3Kg/cm2必要といわれており、比較例
1の硬化組成物では使用に耐えないものである。 実施例 7 実施例1で調整した同じ酸化廃酸1をニーダ
ーに仕込み生石灰328gを5分間で均一に添加し
撹拌しながら反応させた。4〜5分後急激な反応
が起こり水蒸気が激しく発生した。引き続きフラ
イアツシユ(Al2O3として25%含有)265gを添
加し10分間混練し、生成した混練物を型枠9mm×
500mm×400mm(厚さ×巾×長さ)に成形し、1週
間密閉器内に保存し、脱型して、硬化組成物を得
た。 得られた硬化組成物の遊離水分は11%であつ
た。 この硬化組成物を45℃の空気浴中で遊離水分
2.0%になるまで乾燥した。得られた乾燥物を建
築用ボード類の曲げ試験方法JISA―1408に準じ
て曲げ試験を行つたところ、曲げ破壊荷重は55Kg
であつた。 この値は建築用ボード等の使用に耐えうるもの
である。
[Table] Comparative example 1 F-H 2 SO 4 203g/, T-H 2 SO 4 257g/,
The so-called pickling waste sulfuric acid 1 containing 83 g/FeSO 4 was heated to 40° C., and O 2 gas was blown into it in the presence of NO X gas to oxidize FeSO 4 to Fe 2 (SO 4 ) 3 . The obtained oxidized waste acid had the following composition. (F-H 2 SO 4 176g/, T-H 2 SO 4 257g/,
Fe 2 (SO 4 ) 3 109g/) Oxidized waste acid was charged into a kneader, and while stirring, 262g of calcium carbonate, 39g of slaked lime, and 71g of fly ash were added.
After kneading for 10 minutes, the mixture was poured into a mold in the same manner as in Example 1, and stored in an airtight container for one week.
Unconfined compressive strength was measured. The unconfined compressive strength of the cured composition is as low as 0.9Kg/ cm2 ;
Free moisture reached 43%. Generally, it is said that unconfined compressive strength of 3 Kg/cm 2 is required for landfill soil and road subgrade soil, and the cured composition of Comparative Example 1 cannot withstand this use. Example 7 The same oxidized waste acid 1 prepared in Example 1 was placed in a kneader, and 328 g of quicklime was added uniformly over 5 minutes, followed by reaction with stirring. After 4 to 5 minutes, a rapid reaction occurred and steam was generated violently. Subsequently, 265 g of fly ash (containing 25% as Al 2 O 3 ) was added and kneaded for 10 minutes.
It was molded into a size of 500 mm x 400 mm (thickness x width x length), stored in an airtight container for one week, and removed from the mold to obtain a cured composition. The free moisture content of the resulting cured composition was 11%. This cured composition was heated to release free moisture in an air bath at 45°C.
Dried to 2.0%. When the obtained dried product was subjected to a bending test according to the bending test method JISA-1408 for architectural boards, the bending failure load was 55 kg.
It was hot. This value is sufficient to withstand use as a construction board, etc.

Claims (1)

【特許請求の範囲】 1 Fe2+イオンを含有し、遊離硫酸濃度が240
g/以上の廃硫酸を予め酸化してFe3+イオン含
有硫酸溶液とし、この溶液にCa剤及びAl剤を反
応せしめる事を特徴とする硬化組成物の製造方
法。 2 廃硫酸が硫酸法酸化チタン製造工程から排出
されるもの及び鉄鋼材料の酸洗工程から排出され
る所謂ピツクリング廃硫酸である特許請求範囲第
1項記載の方法。 3 Ca剤が、炭酸カルシウム、生石灰、消石灰
の群から選ばれる1種あるいは2種以上である特
許請求範囲第1項記載の方法。 4 Al剤がフライアツシユ、アルミナセメント
の群から選ばれる1種あるいは2種以上である特
許請求範囲第1項記載の方法。 5 廃硫酸中の全硫酸根(SO2- 4)に対して中和
当量の120〜150%のCa剤と廃硫酸中の全硫酸根
(SO2- 4)に対して中和当量の20〜50%のAl剤を反
応せしめる特許請求の範囲第1項記載の方法。
[Claims] 1 Contains Fe 2+ ions and has a free sulfuric acid concentration of 240
1. A method for producing a curing composition, which comprises pre-oxidizing waste sulfuric acid in an amount of 1.5 g/g or more to obtain a sulfuric acid solution containing Fe 3+ ions, and reacting this solution with a Ca agent and an Al agent. 2. The method according to claim 1, wherein the waste sulfuric acid is waste sulfuric acid discharged from a sulfuric acid method titanium oxide manufacturing process and so-called pickling waste sulfuric acid discharged from a pickling process of steel materials. 3. The method according to claim 1, wherein the Ca agent is one or more selected from the group of calcium carbonate, quicklime, and slaked lime. 4. The method according to claim 1, wherein the Al agent is one or more selected from the group of fly ash and alumina cement. 5 Ca agent with a neutralization equivalent of 120 to 150% of the total sulfate radicals (SO 2- 4 ) in the waste sulfuric acid and 20% of the neutralization equivalent with respect to the total sulfate radicals (SO 2- 4 ) in the waste sulfuric acid The method according to claim 1, wherein ~50% of the Al agent is reacted.
JP14662982A 1982-08-24 1982-08-24 Manufacture of hardenable composition from waste sulfuric acid Granted JPS5939756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14662982A JPS5939756A (en) 1982-08-24 1982-08-24 Manufacture of hardenable composition from waste sulfuric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14662982A JPS5939756A (en) 1982-08-24 1982-08-24 Manufacture of hardenable composition from waste sulfuric acid

Publications (2)

Publication Number Publication Date
JPS5939756A JPS5939756A (en) 1984-03-05
JPS6366786B2 true JPS6366786B2 (en) 1988-12-22

Family

ID=15412050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14662982A Granted JPS5939756A (en) 1982-08-24 1982-08-24 Manufacture of hardenable composition from waste sulfuric acid

Country Status (1)

Country Link
JP (1) JPS5939756A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173698A (en) * 1988-12-26 1990-07-05 Yamaha Corp Electronic musical instrument
JP4942433B2 (en) * 2006-09-13 2012-05-30 テイカ株式会社 Roadbed material using neutralization ridge and method for producing the same
JP6770658B1 (en) * 2020-02-04 2020-10-14 デンカ株式会社 Rapid binder for spraying
EP4194420A4 (en) * 2020-09-17 2024-02-14 Denka Company Ltd Low-dust sprayed concrete and low-dust spraying method using same

Also Published As

Publication number Publication date
JPS5939756A (en) 1984-03-05

Similar Documents

Publication Publication Date Title
Singh et al. Activation of gypsum anhydrite-slag mixtures
RU2517729C2 (en) Geopolymer composite binders with given properties for cement and concrete
US5362319A (en) Process for treating fly ash and bottom ash and the resulting product
KR100913770B1 (en) Preparation of blended cement compositions using Reduction Electric Arc Furnace Slag
US5346549A (en) Environmentally stabilized products formed from ash and papermill waste
CN105016636B (en) A kind of gypsum slag cement insulation board and its preparation technology
JPH02111646A (en) Production of adhesive, underground building materials, construction part raw material and adhesive component or rapid solidifying component for concrete
US4655837A (en) Building material and manufacture thereof
JPH0138067B2 (en)
JPS6366786B2 (en)
JPS6336840B2 (en)
JP2013086030A (en) Method for treating dolomite sludge and soil improving material
JP3382202B2 (en) Fluorine-insoluble gypsum composition and method for producing the same
Beretka et al. Cementitious mixtures containing industrial process wastes suitable for the manufacture of preformed building elements
JPS5925745B2 (en) Manufacturing method for lightweight materials
RU2331603C1 (en) Raw mixture
JPS6158239B2 (en)
CA1131664A (en) High sulphate slag cement and the method for manufacturing this cement
Adam et al. Effect of Method and Duration of Curing on the Compressive Strength of the Lime-Fly Ash Geopolymer Concrete
JP2716574B2 (en) Manufacturing method of dry desulfurization agent for exhaust gas treatment
JPS641416B2 (en)
JPS6050738B2 (en) High sulfate slag cement and its manufacturing method
JPH08301639A (en) Solidification and materialization of fly ash powder with geopolymer
KR960006226B1 (en) Process for the preparation of slag board
JPS641423B2 (en)