JPS6366584B2 - - Google Patents

Info

Publication number
JPS6366584B2
JPS6366584B2 JP58068806A JP6880683A JPS6366584B2 JP S6366584 B2 JPS6366584 B2 JP S6366584B2 JP 58068806 A JP58068806 A JP 58068806A JP 6880683 A JP6880683 A JP 6880683A JP S6366584 B2 JPS6366584 B2 JP S6366584B2
Authority
JP
Japan
Prior art keywords
stator
rotor
particles
crushed
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58068806A
Other languages
Japanese (ja)
Other versions
JPS59196754A (en
Inventor
Tatsuo Hagiwara
Shoji Nagano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP6880683A priority Critical patent/JPS59196754A/en
Priority to US06/598,453 priority patent/US4562972A/en
Priority to EP84104138A priority patent/EP0122608B1/en
Priority to DE8484104138T priority patent/DE3470007D1/en
Publication of JPS59196754A publication Critical patent/JPS59196754A/en
Publication of JPS6366584B2 publication Critical patent/JPS6366584B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crushing And Grinding (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Disintegrating Or Milling (AREA)

Description

【発明の詳細な説明】 本発明は、微粉砕装置に関するものである。[Detailed description of the invention] The present invention relates to a pulverizer.

従来の微粉砕装置は、第1図及び第2図に示す
如く外側表面の母線に沿つて多数の凸部1を有す
る円筒状の回転子2を回転軸3に支持し、この回
転子との間に間隙4を存して内側表面の母線に沿
つて多数の凸部5を有する固定子6を嵌装したも
ので、回転子2と固定子6との間の間隙4内に被
粉砕物を供給し、前記回転子2の高速回転により
被粉砕物粒子を粉砕するものである。
As shown in FIGS. 1 and 2, a conventional pulverizing device supports a cylindrical rotor 2 having a large number of convex portions 1 along the generatrix of the outer surface on a rotating shaft 3, and A stator 6 is fitted with a stator 6 having a gap 4 between them and a large number of protrusions 5 along the generatrix of the inner surface. is supplied, and the particles of the object to be crushed are crushed by the high-speed rotation of the rotor 2.

この被粉砕物の粉砕過程は、製品排出口12に
連なる吸引送風機(図示省略)の運転により、固
定子6の下端に連なる下部ケーシング7の底板に
設けた供給口8から供給された被粉砕物粒子を空
気と共に機内に吸引し、回転子2と一体に高速回
転する回転子底板下面に固設された撹拌羽根9に
よつて起る気流によつて、下部ケーシング7の逆
円錐状内面に沿わせて上昇させ、回転子2と固定
子6との間に形成された粉砕室内に送り込み、高
速回転している回転子2の回転力によつて速度エ
ネルギを与えて固定子6に衝突させて粉砕し且つ
回転子2の凸部1により打撃粉砕し、さらに回転
子2の凸部1と固定子6の凸部5との間で摩砕さ
せて更に細かく粉砕させ乍ら回転子2の高速回転
によつて発生した上向き螺旋気流に乗せて上方に
運び、固定子6の上端に連なる上部ケーシング1
0内に送り出し、これを回転子2と一体に高速回
転する回転子上板上面に固設された遠心羽根11
により上部ケーシング10の内周面に沿わせて回
転し、上部ケーシング10の接線方向に設けられ
た製品排出口12から排出し、図示せぬバグフイ
ルターに導入し、ここで粉砕製品と空気とが分離
され、空気は吸収送風機を経由して排気され、粉
砕製品はバグフイルターからホツパーに送られて
貯留されるものである。
In the process of crushing the material to be crushed, the material to be crushed is supplied from the supply port 8 provided in the bottom plate of the lower casing 7 which is connected to the lower end of the stator 6 by operating a suction blower (not shown) connected to the product discharge port 12. The particles are sucked into the machine along with the air, and are moved along the inverted conical inner surface of the lower casing 7 by the airflow generated by the stirring blades 9 fixed to the lower surface of the rotor bottom plate, which rotates at high speed together with the rotor 2. The powder is raised at the same time and sent into the crushing chamber formed between the rotor 2 and the stator 6, and is given velocity energy by the rotational force of the rotor 2 rotating at high speed to cause it to collide with the stator 6. It is pulverized and crushed by impact by the convex part 1 of the rotor 2, and further crushed between the convex part 1 of the rotor 2 and the convex part 5 of the stator 6 to be further finely pulverized. The upper casing 1 is carried upward on the upward spiral airflow generated by the rotation and is connected to the upper end of the stator 6.
centrifugal blades 11 fixed to the upper surface of the rotor upper plate, which rotate the rotor 2 at high speed together with the rotor 2;
The product rotates along the inner peripheral surface of the upper casing 10, is discharged from the product discharge port 12 provided in the tangential direction of the upper casing 10, and is introduced into a bag filter (not shown), where the crushed product and air are separated. The air is separated and exhausted via an absorption blower, and the crushed product is sent from a bag filter to a hopper for storage.

ところで前記の微粉砕装置に於いては、回転子
2と固定子6との間隙4が一般に2〜5mm或いは
それ以上あつて広いので、 イ 固定子6の凹部5aに発生する渦の強さが弱
い。
By the way, in the above-mentioned pulverizer, the gap 4 between the rotor 2 and the stator 6 is generally 2 to 5 mm or more, which is wide. weak.

ロ 回転子2による被粉砕物粒子の打撃確率が小
さい。
(b) The probability of the rotor 2 hitting the particles of the object to be crushed is small.

ハ 回転子2による被粉砕物粒子への打撃力が小
さい。
C. The impact force exerted by the rotor 2 on the particles of the object to be crushed is small.

等の欠点があつた。There were other drawbacks.

また回転子2と固定子6とにより形成された粉
砕室内に於いては、空気は回転子2の凹部1a、
間隙4及び固定子6の凹部5aを通過し、被粉砕
物粒子はこの空気即ち上向き螺線気流に乗つて粉
砕室を通過するのであるが、回転子2が高速回転
しているので、回転子2の凹部1aを通る被粉砕
物粒子は殆んど無い。従つて、被粉砕物粒子の通
過する箇所は、間隙4及び固定子6の凹部5aの
2ケ所である。然るに固定子6の凸部5、凹部5
aの断面形状は矩形に近いので、固定子6の凹部
5aに於いては、第3図に示す如く高回転速度の
渦を形成しながら空気は下方から上方へ流れる。
この渦に巻き込まれた被粉砕物粒子の内、あるも
のは凹部5aの壁面に衝突し、また凹部5aから
間隙4に排出されて回転子2の凸部1により強力
な打撃作用を受け且つ固定子6の凸部5との間の
摩砕作用により粉砕が進行する。しかし被粉砕物
粒子のあるものは、上記のように粉砕されずに渦
に巻き込まれたままその渦に乗つて凹部5aの上
端から粉砕室外に出てしまうという欠点があつ
た。
In addition, in the crushing chamber formed by the rotor 2 and the stator 6, air flows through the recess 1a of the rotor 2,
The particles to be crushed pass through the gap 4 and the recess 5a of the stator 6, and pass through the crushing chamber riding on this air, that is, the upward spiral airflow, but since the rotor 2 is rotating at high speed, the rotor Almost no particles of the material to be crushed pass through the concave portion 1a of No. 2. Therefore, the particles to be crushed pass through two places: the gap 4 and the recess 5a of the stator 6. However, the convex portion 5 and the concave portion 5 of the stator 6
Since the cross-sectional shape of a is nearly rectangular, air flows from below to above in the recess 5a of the stator 6 while forming a vortex at a high rotational speed as shown in FIG.
Among the particles of the object to be crushed that are caught up in this vortex, some collide with the wall surface of the recess 5a, are discharged from the recess 5a into the gap 4, are subjected to a strong impact action by the projection 1 of the rotor 2, and are fixed. Grinding progresses due to the grinding action between the child 6 and the convex portion 5. However, there is a drawback in that some of the particles to be crushed are not crushed as described above, but remain caught up in the vortex and exit from the crushing chamber through the upper end of the recess 5a.

従つて、このような微粉砕装置による粉砕製品
の平均粒度は、被粉砕物粒子によつても若干異な
るが、例えば白米で60μm、トナーで4μmにしか
なり得ず、充分な微粉砕とは言い難く、ミクロン
オーダ乃至は10数ミクロンの微粉砕製品を得るこ
とができなかつた。
Therefore, the average particle size of the product crushed by such a fine grinding device differs slightly depending on the particles of the material to be crushed, but for example, it can only be 60 μm for polished rice and 4 μm for toner, and it is difficult to say that it is sufficiently finely pulverized. However, it was not possible to obtain a finely pulverized product on the order of microns or more than 10 microns.

また上記の微粉砕装置は、 イ 回転子2が高速回転する。 In addition, the above-mentioned pulverizer is B. Rotor 2 rotates at high speed.

ロ 粉砕製品の粒度を小さくする為に、粉砕室通
過空気量を制限する。
(b) To reduce the particle size of the crushed product, limit the amount of air passing through the crushing chamber.

などの理由により、空気排出温度が上昇し、固定
子6が局部的に昇温する。その結果、被粉砕物粒
子の種類によつては粉砕不可能となる場合があ
り、また粉砕はできるが粉砕製品が熱的変化を受
け、好ましくないという場合もある。例えば、ト
ナー或いは合成樹脂は軟化点が低く、粉砕不可能
となり、コーヒー粉末、ブドウ糖、ある種の医薬
品等の弱熱性物質は熱的変化を受ける。
For these reasons, the air discharge temperature rises, and the temperature of the stator 6 locally rises. As a result, depending on the type of the particles to be ground, it may not be possible to grind them, or there may be cases where grinding is possible but the pulverized product will undergo thermal changes, which is undesirable. For example, toners or synthetic resins have low softening points and cannot be crushed, and mildly heat-sensitive substances such as coffee powder, glucose, and certain pharmaceuticals undergo thermal changes.

このような欠点を解消する為、従来は微粉砕装
置内に被粉砕物粒子と共に導入する空気を冷却す
る為に、第4図に示す如く固定子6の下端に連な
る下部ケーシング7の底板に設けられた冷却空気
の導入管13の途中に被粉砕物粒子の供給口14
を設け、導入管13の先端に空気冷却器15を連
結し、この空気冷却器15の冷却コイル16の入
口と冷凍機17の出口とを配管18にて連結し、
冷却コイル16の出口と冷媒タンク19の入口と
を配管20にて連結し、冷媒タンク19の出口と
冷凍機17の入口とをポンプ21を途中に備えた
配管22にて連結している。図中23は回転子2
を高速回転する電動機で、ベルト24を走行して
回転軸3を回転するようになつている。25はバ
グフイルターで、その入口に微粉砕装置の粉砕製
品排出口12に連結された排出管27の先端を連
結している。バグフイルター25の出口には途中
に吸引送風機28を備えた排気管29を連結して
いる。
In order to eliminate these drawbacks, conventionally, in order to cool the air introduced into the pulverizer together with the particles to be pulverized, a pulverizer was installed on the bottom plate of the lower casing 7 connected to the lower end of the stator 6, as shown in FIG. There is a supply port 14 for the particles to be crushed in the middle of the cooling air introduction pipe 13.
An air cooler 15 is connected to the tip of the introduction pipe 13, and the inlet of the cooling coil 16 of the air cooler 15 and the outlet of the refrigerator 17 are connected with a pipe 18.
The outlet of the cooling coil 16 and the inlet of the refrigerant tank 19 are connected by a pipe 20, and the outlet of the refrigerant tank 19 and the inlet of the refrigerator 17 are connected by a pipe 22 having a pump 21 in the middle. 23 in the figure is rotor 2
An electric motor that rotates at high speed runs on a belt 24 to rotate the rotating shaft 3. 25 is a bag filter, and its inlet is connected to the tip of a discharge pipe 27 which is connected to the pulverized product discharge port 12 of the pulverizer. An exhaust pipe 29 having a suction blower 28 in the middle is connected to the outlet of the bag filter 25.

微粉砕装置内に被粉砕物粒子と共に導入される
空気は、前記空気冷却器15を通過して冷却コイ
ル16により予め必要温度まで冷却される。
The air introduced into the pulverizer together with the particles to be pulverized passes through the air cooler 15 and is cooled in advance to a required temperature by the cooling coil 16.

しかしこのような導入空気の冷却では、排気温
度を目的の温度に抑えることはできるが、固定子
6の局部的な温度上昇を抑えることができなかつ
た。
However, with such cooling of the introduced air, although the exhaust temperature can be suppressed to a target temperature, it is not possible to suppress the local temperature rise of the stator 6.

されに前記従来の微粉砕装置では被粉砕物粒子
が混入していると、微細に粉砕されずに粗大粒子
のまま排出されたり、粗大粒子の衝突により回転
子2或いは固定子6が著しく摩耗するので、予め
被粉砕物粒子をある一定範囲の粒径まで細かく粉
砕した上で供給することが望ましく、その手間に
多大な労力を要するものである。
In addition, in the conventional pulverizing device, if particles of the object to be pulverized are mixed in, the particles may not be pulverized into fine particles and may be discharged as coarse particles, or the rotor 2 or stator 6 may be significantly worn due to collisions of the coarse particles. Therefore, it is desirable that the particles of the material to be crushed be finely crushed to a certain particle size within a certain range before being supplied, which requires a great deal of effort.

本発明は、斯かる諸事情に鑑みなされたもので
あり、前処理をする必要がなく、被粉砕物粒子の
粒径が不均一であつても供給された被粉砕物粒子
を確実に且つ十分に微粉砕作用を行つて粉砕効果
を高め、ミクロンオーダの至10数ミクロンの粒度
幅の狭い微粉砕製品を得ることができ、その上微
粉砕装置の排気温度を抑えることができることは
勿論のこと、固定子の局部的な温度上昇を抑える
ことができて、軟化点の低い被粉砕物粒子や弱熱
性の被粉砕物粒子でも何ら支障なく微粉砕できる
ようにした微粉砕装置を提供せんとするものであ
る。
The present invention has been made in view of the above circumstances, and it does not require pre-treatment, and even if the particle size of the particles to be crushed is non-uniform, the supplied particles to be crushed can be reliably and sufficiently processed. It is possible to improve the pulverizing effect by performing a pulverizing action on the pulverizer and obtain a pulverized product with a narrow particle size range of 10-odd microns on the micron order.In addition, it goes without saying that the exhaust temperature of the pulverizer can be suppressed. It is an object of the present invention to provide a pulverizing device capable of suppressing local temperature rise of a stator and capable of pulverizing even particles having a low softening point or mildly heat-sensitive particles without any trouble. It is something.

以下本発明による微粉砕装置の一実施例を図に
よつて説明する。第5図において、30は第1粉
砕部、31は第2粉砕部である。第1粉砕部30
は、回転軸3′の下部に支持せるボス32に固着
された上下2枚の支持部材33,33に第6図に
示す如く外側表面の母線に沿つて放射状に粉砕子
34を多数個固設し、上下支持部材33,33に
夫々上面羽根35、補助羽根36を固定して成る
第1回転子37と、この第1回転子37との間に
一定間隙38を存して嵌装され内側表面に矩形の
凸部39を有する第1固定子40とより成る。第
2粉砕部31は、回転軸3′の上部に支持され第
7図に示す如く外側表面の母線に沿つて多数の矩
形の凸部41を有し上面板に上面羽根42、下面
板に補助羽根43を設けた第2回転子44との間
に1mm以下の間隙45を存して嵌装された第2固
定子46とより成る。第2固定子46の内側表面
は第8図に示す如く略三角形の凹部47と凸部4
8とが連続する歯形になされ、その歯形の凹部4
7の一辺47aが第2回転子44の中心に向けら
れ且つ1〜5mm程度の長さになされ、凹部47の
他辺47bが第2回転子44の接線方向に向けら
れ、凹部47の一辺と他辺との挾角αが45〜60度
になされている。そして凸部48の先端には第2
固定子46の軸芯線を中心とする円弧面48aが
形成され、その円弧面48aの幅は1mm程度にな
されている。第2固定子46の内周面の凹部47
の上端には第9図a,bに示す如く凹部47の上
端開口面を閉鎖する分級リング49が一体又は着
脱可能に設けられている。この分級リング49
は、第2固定子46の内周面の周方向の全部の凹
部47における上端開口面を閉鎖しても良いもの
であるから、その半径方向の幅と凸部48の長さ
との差δは零でも良い。また分級リング49は第
10図a,bに示す如く第2固定子46の内周面
の凹部47の中間に設けても良いものであり、そ
の場合一段のみならず、二段、三段…と設けても
良いものである。さらに分級リング46は分割し
て周方向に段違いに複数段配設しても良いもので
ある。第2固定子46の外周には第5図に示す如
く冷却用ジヤケツト50が設けられ、この冷却用
ジヤケツト50の下端の入口と第11図に示され
る前記第1固定子40の下端に連なる下部ケーシ
ング7′の底板に設けられた導入管13′の先端の
空気冷却15′における冷却コイル16′の出口と
が配管51にて連結され、冷却用ジヤケツト50
の上端の出口と冷媒タンク19′の入口とが配管
52にて連結され、冷媒タンク19′の出口と冷
凍機17′の入口とが途中にポンプ21′を備えた
配管22′にて連結されている。冷凍機17′の出
口と空気冷却器15の冷却コイル16の入口とが
配管18′にて連結されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a pulverizing apparatus according to the present invention will be described below with reference to the drawings. In FIG. 5, 30 is a first crushing section, and 31 is a second crushing section. First crushing section 30
As shown in FIG. 6, a large number of crushers 34 are fixed radially along the generatrix of the outer surface of two upper and lower support members 33, 33 fixed to a boss 32 supported at the lower part of the rotating shaft 3'. A first rotor 37 is formed by fixing upper blades 35 and auxiliary blades 36 to upper and lower support members 33 and 33, respectively, and is fitted with a constant gap 38 between the first rotor 37 and the inner side. The first stator 40 has a rectangular convex portion 39 on its surface. The second crushing part 31 is supported on the upper part of the rotating shaft 3', and has a large number of rectangular convex parts 41 along the generatrix of the outer surface as shown in FIG. It consists of a second stator 46 fitted with a second rotor 44 provided with blades 43 with a gap 45 of 1 mm or less therebetween. The inner surface of the second stator 46 has a substantially triangular concave portion 47 and a convex portion 4, as shown in FIG.
8 is made into a continuous tooth shape, and the recess 4 of the tooth shape
One side 47a of the recess 47 is oriented toward the center of the second rotor 44 and has a length of about 1 to 5 mm, and the other side 47b of the recess 47 is oriented toward the tangential direction of the second rotor 44, and has a length of about 1 to 5 mm. The angle α with the other side is 45 to 60 degrees. The tip of the convex portion 48 has a second
An arcuate surface 48a centered on the axis of the stator 46 is formed, and the width of the arcuate surface 48a is approximately 1 mm. Recess 47 on the inner peripheral surface of second stator 46
At the upper end, as shown in FIGS. 9a and 9b, a classification ring 49 that closes the upper opening surface of the recess 47 is provided either integrally or detachably. This classification ring 49
Since the upper end opening surface of all the recesses 47 in the circumferential direction of the inner circumferential surface of the second stator 46 may be closed, the difference δ between the radial width and the length of the protrusion 48 is It may be zero. Further, the classification ring 49 may be provided in the middle of the recess 47 on the inner circumferential surface of the second stator 46 as shown in FIGS. It is also a good idea to set it as Further, the classification ring 46 may be divided and arranged in a plurality of stages at different stages in the circumferential direction. A cooling jacket 50 is provided on the outer periphery of the second stator 46 as shown in FIG. The tip of the introduction pipe 13' provided on the bottom plate of the casing 7' is connected to the outlet of the cooling coil 16' in the air cooling 15' through a pipe 51, and a cooling jacket 50 is connected to the outlet of the cooling coil 16' in the air cooling 15'.
The outlet at the upper end and the inlet of the refrigerant tank 19' are connected by a pipe 52, and the outlet of the refrigerant tank 19' and the inlet of the refrigerator 17' are connected by a pipe 22' having a pump 21' in the middle. ing. The outlet of the refrigerator 17' and the inlet of the cooling coil 16 of the air cooler 15 are connected by a pipe 18'.

前記冷却用ジヤケツト50は、第1固定子40
の外周まで下方に延長して設けても良いものであ
る。
The cooling jacket 50 is connected to the first stator 40
It may be provided by extending downward to the outer periphery.

第5図中10′は上部ケーシング、12′は粉砕
製品排出口である。第11図中23′は電動機で
ベルト24′を走行して回転軸3′を回転するよう
になつている。25′は粉砕製品排出口12′に連
結された排出管27′の先端に連結されたバグフ
イルターで、このバグフイルター25′の出口に
は途中に吸引送風機28′を備えた排気管29′が
連結されている。53は被粉砕物粒子を供給口1
4′に送入するフイーダである。
In FIG. 5, 10' is an upper casing, and 12' is a pulverized product outlet. In FIG. 11, reference numeral 23' is an electric motor that runs on a belt 24' and rotates a rotating shaft 3'. Reference numeral 25' denotes a bag filter connected to the tip of a discharge pipe 27' connected to the pulverized product discharge port 12'. At the outlet of this bag filter 25', there is an exhaust pipe 29' equipped with a suction blower 28' in the middle. connected. 53 is the supply port 1 for the particles to be crushed.
4' is the feeder.

次に上述の如く構成された本発明の微粉砕装置
による被粉砕物粒子の粉砕作用について説明す
る。第11図に示される電動機23′を駆動し、
ベルト24′を走行して回転軸3′を高速回転し、
また吸引送風機28′を運転すると共に冷凍機1
7′から空気冷却器15′の冷却コイル16′に低
温の冷媒を送り、空気冷却器15′に導入した空
気を冷却して0〜5℃の低温空気とし、これを導
入管13′を通して下部ケーシング7′内に吸引導
入すると共にフイーダ53から被粉砕物粒子を導
入管13′の途中の供給口14′に送入し、該供給
口14′から連続的に被粉砕物粒子を導入管1
3′に供給し、低温空気を乗せて下部ケーシング
7′内に導入する。この下部ケーシング7′内に導
入された被粉砕物粒子は、第5図に示される回転
軸3′と一体に高速回転する第1回転子37の補
助羽根36によつて起る気流により該下部ケーシ
ング7′の逆円錐状内面に沿つて上昇し、第1回
転子37と第1固定子40との間に形成された第
1粉砕室内に入り、ここで大きな粒子が第1回転
子37と第1固定子40とに粉砕される。そして
ある一定範囲の粒径まで細かく粉砕された粒子は
第1粉砕室外に出て上面羽根35及び第2回転子
44の補助羽根43の回転により生じる気流に乗
り、第2回転子44と第2固定子46との間に形
成された第2粉砕室に導かれ、ここで全ての粒子
が微粉砕作用を受けて、ミクロンオーダ乃至は10
数ミクロンの粒度幅の狭い微粉砕製品となつて上
部ケーシング10′内に送り出され、第2回転子
44と、一体に高速回転する上面羽根42によつ
て上部ケーシング10′の内周面に沿つて回転し、
上部ケーシング10′の接線方向に設けられた製
品排出口12′から空気と共に排出され、この製
品排出口12′に連なる第11図に示される排出
管27′を通してバグフイルター25′に導入され
る。そしてここで粉砕製品と空気とに分離され、
空気は吸引送風機28′を経由して排気管29′よ
り排気され、粉砕製品はバグフイルター25′か
ら図示せぬホツパーに送られて貯留される。
Next, the pulverizing action of the particles to be pulverized by the pulverizer of the present invention constructed as described above will be explained. driving the electric motor 23' shown in FIG.
Running on belt 24', rotating shaft 3' at high speed,
In addition, while operating the suction blower 28', the refrigerator 1
A low-temperature refrigerant is sent from 7' to the cooling coil 16' of the air cooler 15', and the air introduced into the air cooler 15' is cooled to a low temperature of 0 to 5°C, which is then passed through the introduction pipe 13' to the lower part. At the same time, the particles to be crushed are introduced into the casing 7' by suction, and the particles to be crushed are fed from the feeder 53 to the supply port 14' in the middle of the introduction pipe 13'.
3', and introduced into the lower casing 7' with low temperature air. The particles to be crushed introduced into the lower casing 7' are moved to the lower casing 7' by airflow generated by the auxiliary blades 36 of the first rotor 37, which rotates at high speed together with the rotating shaft 3' shown in FIG. It rises along the inverted conical inner surface of the casing 7' and enters the first grinding chamber formed between the first rotor 37 and the first stator 40, where the large particles are separated by the first rotor 37 and the first stator 40. The first stator 40 is crushed into pieces. Then, the particles finely pulverized to a particle size within a certain range exit the first pulverizing chamber and ride the airflow generated by the rotation of the upper surface blade 35 and the auxiliary blade 43 of the second rotor 44, and pass through the second rotor 44 and the second The particles are guided to a second grinding chamber formed between the stator 46, where all the particles are subjected to a fine grinding action, and are reduced to micron order or 10 micron order.
A finely pulverized product with a narrow particle size width of several microns is sent into the upper casing 10', and is rolled along the inner circumferential surface of the upper casing 10' by the second rotor 44 and the upper blade 42 that rotates at high speed together. and rotate,
The product is discharged together with air from a product discharge port 12' provided in the tangential direction of the upper casing 10', and introduced into the bag filter 25' through a discharge pipe 27' shown in FIG. 11 connected to the product discharge port 12'. Then, the crushed product and air are separated,
Air is exhausted from an exhaust pipe 29' via a suction blower 28', and the pulverized product is sent from a bag filter 25' to a hopper (not shown) and stored therein.

次に、上記第2粉砕室内での被粉砕物粒子の微
粉砕作用の詳細について、第2回転子44と第2
固定子46と分級リング49との関連構成によつ
て説明する。
Next, details of the pulverizing action of the particles to be pulverized in the second pulverizing chamber will be explained.
The related structure of the stator 46 and the classification ring 49 will be explained.

一般的に回転体の周囲の空気を考えると、表面
に附着している空気は、回転体の周速と同一速度
で回転するのに対し、表面から離れた位置にある
空気の速度はその距離が大きければ大きい程、回
転体の周速からの遅れが大きくなり、速度は小さ
くなる。然るに第2固定子46の凹部47を考え
ると、この部分には第8図に示されるように渦が
誘引される。渦の回転数は、凹部47の開口面に
沿う空気の円周速度υに比例する。従つて、第2
回転子44と第2固定子46との間隙45の寸法
hが大きい程、前記円周速度υは第2回転子44
の周速からυ0から遅れ、渦の回転数は小さくな
る。逆に間隙45の寸法hが小さい程渦の回転数
は大きくなる。かくして渦に巻き込まれた被粉砕
物粒子は、渦の回転数が大きい程強烈に壁面に衝
突し、また渦の回転数が大きい程より小粒径の粒
子も壁面に衝突することになるので、被粉砕物粒
子は良好に粉砕される。
Generally speaking, when considering the air surrounding a rotating body, the air attached to the surface rotates at the same speed as the circumferential speed of the rotating body, whereas the speed of the air at a position away from the surface is the distance The larger the value, the greater the delay from the circumferential speed of the rotating body, and the smaller the speed. However, considering the concave portion 47 of the second stator 46, a vortex is induced in this portion as shown in FIG. The rotational speed of the vortex is proportional to the circumferential velocity υ of the air along the opening surface of the recess 47. Therefore, the second
The larger the dimension h of the gap 45 between the rotor 44 and the second stator 46, the faster the circumferential speed υ of the second rotor 44 becomes.
The circumferential speed of υ lags behind 0 , and the rotational speed of the vortex becomes smaller. Conversely, the smaller the dimension h of the gap 45, the higher the rotational speed of the vortex. The particles of the material to be crushed that are caught up in the vortex collide with the wall surface more intensely as the rotation speed of the vortex increases, and the particles with smaller diameters also collide with the wall surface as the rotation speed of the vortex increases. The particles of the material to be ground are well ground.

また凹部47内の渦から間隙45に出た被粉砕
物粒子の第2回転子44による打撃確率Pは、間
隙45の寸法h、被粉砕物粒子の粒径d、第2回
転子44の凸部41の個数nとすると、P∝d/h ×nとなり、間隙45の寸法hが小さく、第2回
転子44の凸部41の個数nの多いものは前記打
撃確率Pが増大し、第2回転子44による被粉砕
物粒子の打撃粉砕が効率良く行われる。
In addition, the probability of impact by the second rotor 44 on particles to be crushed that have come out from the vortex in the recess 47 to the gap 45 is determined by the dimension h of the gap 45, the particle diameter d of the particles to be crushed, and the convexity of the second rotor 44. If the number of portions 41 is n, then P∝d/h×n, and when the dimension h of the gap 45 is small and the number n of the convex portions 41 of the second rotor 44 is large, the above-mentioned impact probability P increases, and The impact pulverization of the particles of the object to be pulverized by the two rotors 44 is performed efficiently.

さらに第2固定子46の凹部47から間隙45
に出た被粉砕物粒子は、間隙45を流れる空気流
により加速される。この場合間隙45の寸法hが
大きい程、粒子が第2回転子44により打撃され
るまでの時間が長くなる為、打撃時に於ける粒子
と第2回転子44との相対速度は小さくなり、第
2回転子44による粒子の打撃力は小さくなる
が、間隙45の寸法が1mm以下と極めて小さいの
で、粒子が第2回転子44により打撃されるまで
の時間が短くなるので、打撃時における粒子と第
2回転子44との相対速度は大きくなり、第2回
転子44による粒子の打撃力は大きくなる。従つ
て被粉砕物粒子は確実に打撃される。
Further, a gap 45 is formed from the recess 47 of the second stator 46.
The particles of the material to be crushed that come out are accelerated by the air flow flowing through the gap 45. In this case, the larger the dimension h of the gap 45, the longer it takes for the particles to be hit by the second rotor 44, so the relative speed between the particles and the second rotor 44 during impact becomes smaller, and the Although the impact force on the particles by the second rotor 44 is reduced, since the dimension of the gap 45 is extremely small, 1 mm or less, the time until the particles are impacted by the second rotor 44 is shortened, so that the impact force on the particles during impact is reduced. The relative speed with the second rotor 44 increases, and the force with which particles are impacted by the second rotor 44 increases. Therefore, the particles to be ground are reliably struck.

さて、第2固定子46の凹部47の形状は前述
の如く略三角形であるので、この凹部47に於け
る空気の流れは第12図に示す如くa,a′,a″…
及び渦b,b′,b″の二つに分かれる。渦b,b′,
b″…に巻き込まれた被粉砕物粒子は、従来の矩形
の凹部5a(第3図参照)の場合と略同様に壁面
に衝突し、粉砕が行われる。そして渦流に乗つて
凹部47の一辺47aに沿つて凸部48の先端B
に進み、間隙45に導かれ、この部分で第2回転
子44の凸部41により打撃を受け、粉砕が行わ
れる。そして同様の作用が次の第2固定子46の
凹部47、第2回転子44の凸部41で受け、粉
砕が次々に進行する。一方従来の矩形の凹部5a
の場合は殆んど生じることの無い空気の流れa,
a′,a″…に乗つていく被粉砕物粒子は、凹部47
の他辺47bに沿つて凸部48の先端Aに進み、
間隙45に導かれ、この部分で第2回転子44の
凸部41により打撃を受け、粉砕が行われる。と
同時に打撃粉砕作用を受けた粒子がさらに凹部4
7の他辺47bに衝突せしめられ、粉砕される。
そして同様の作用が次の第2固定子46の凹部4
7で受け、粉砕が次々に進行する結果、従来の矩
形の凹部5aの場合に比し、第2回転子44によ
る打撃がB点のみでなくA点においてもなされる
ので、粉砕確率が大きくなり、被粉砕物粒子がよ
り細かく且つ効率良く微粉砕されることになる。
Now, since the shape of the recess 47 of the second stator 46 is approximately triangular as described above, the air flow in this recess 47 is as shown in FIG. 12: a, a', a''...
and vortices b, b', b''. Vortices b, b',
The particles of the object to be crushed that have been caught up in the recess 5a (see Fig. 3) collide with the wall surface and are crushed by the vortex. 47a along the tip B of the convex portion 48
The material advances to the gap 45, where it is struck by the convex portion 41 of the second rotor 44, and is pulverized. The same action is then applied to the concave portion 47 of the second stator 46 and the convex portion 41 of the second rotor 44, and the crushing progresses one after another. On the other hand, the conventional rectangular recess 5a
Air flow a, which almost never occurs in the case of
The particles to be crushed that ride on a', a''...
Proceed to the tip A of the convex portion 48 along the other side 47b,
It is guided into the gap 45 and is struck by the convex portion 41 of the second rotor 44 at this portion, thereby performing pulverization. At the same time, the particles that have been subjected to the impact crushing action are further moved into the recess 4.
It collides with the other side 47b of 7 and is crushed.
The same effect occurs in the recess 4 of the second stator 46 next.
7 and the crushing progresses one after another, and as a result, compared to the case of the conventional rectangular recess 5a, the impact by the second rotor 44 is made not only at point B but also at point A, so the probability of crushing increases. , the particles of the material to be pulverized are finely and efficiently pulverized.

然して第2固定子46の内周面の周方向におけ
る一部又は全部の凹部47には第9図a,b或い
は第10図a,bに示す如く凹部47を上下方向
で部分的に閉鎖する分級リング49が設けられて
いるので、被粉砕物粒子が従来のように凹部5内
を高回転速度の渦(第3図参照)に乗つて一気に
第2粉砕室外に出てしまうものは無くなり、後述
の分級リング49の分級作用により被粉砕物粒子
の第2粉砕室内に於ける滞留時間が長くなると同
時に、第2粉砕室内に於ける被粉砕物粒子の濃度
が高くなる。滞留時間がそれだけ長くなると、そ
れだけ粉砕作用を受ける確率が上昇し、より微粉
の粉砕製品が得られる。また被粉砕物粒子の濃度
が高くなると、被粉砕物粒子相互の衝突の確率が
高くなり、粉砕作用が助長される。この二つの作
用から被粉砕物粒子は確実に微粉砕が進行する。
こうして微粉砕されたものが空気流に乗つて分級
リング49の直下で間隙45に出ようとする粒子
は、ここではまだ第2回転子44の回転による遠
心力が働いているので、ある一定サイズ以上の粒
子は再び第2固定子46の凹部47に押し戻され
てしまう。押し戻された粒子は再び粉砕作用を受
け、ある一定サイズ以下になるまで分級リング4
9の部分を通過することができない。従つて、被
粉砕物粒子の微粉砕が十分に行われる。
However, some or all of the recesses 47 in the circumferential direction of the inner peripheral surface of the second stator 46 are partially closed in the vertical direction as shown in FIGS. 9a, b or 10a, b. Since the classification ring 49 is provided, particles of the object to be crushed do not travel inside the recess 5 on a high rotational speed vortex (see Fig. 3) and exit out of the second crushing chamber all at once, unlike in the conventional case. Due to the classification action of the classification ring 49, which will be described later, the residence time of the particles to be crushed in the second crushing chamber becomes longer, and at the same time, the concentration of the particles to be crushed in the second crushing chamber increases. The longer the residence time, the higher the probability of being subjected to the pulverizing action, and the more fine the pulverized product can be obtained. Furthermore, when the concentration of the particles of the object to be crushed increases, the probability of collision between the particles of the object to be crushed increases, and the crushing action is promoted. Due to these two effects, the particles of the object to be ground are reliably pulverized.
The particles that have been finely pulverized in this way are carried by the airflow and are about to exit into the gap 45 directly under the classification ring 49, because the centrifugal force caused by the rotation of the second rotor 44 is still acting here, so the particles have a certain size. The above particles are pushed back into the recess 47 of the second stator 46 again. The pushed back particles are subjected to the crushing action again and are passed through the classification ring 4 until they become smaller than a certain size.
I can't get past the 9 part. Therefore, the particles of the object to be pulverized are sufficiently pulverized.

かくして第2回転子44と第2固定子46との
間に形成された第2粉砕室内を通過した微粉砕粒
子は、前述の1mm以下の間隙45と、一辺47a
が中心に向き他辺47bが回転する第2回転子4
4に対向するように第2回転子44の接線方向に
向き且つ両辺47a,47bの挾角αが45〜60度
になされた第2固定子46の内側表面の多数の略
三角形の凹部47と、第2固定子46の内周面の
周方向における一部又は全部の凹部47を上下方
向で部分的に閉鎖するように設けられた分級リン
グ49との作用の相乗効果により、ミクロンオー
ダ乃至10数ミクロンの微粉砕製品となる。
In this way, the finely pulverized particles that have passed through the second pulverizing chamber formed between the second rotor 44 and the second stator 46 are separated by the above-mentioned gap 45 of 1 mm or less and the side 47a.
The second rotor 4 faces toward the center and the other side 47b rotates.
A large number of substantially triangular recesses 47 on the inner surface of the second stator 46 are oriented in the tangential direction of the second rotor 44 so as to face the second stator 46, and the angle α of both sides 47a and 47b is 45 to 60 degrees. , due to the synergistic effect of the action with the classification ring 49 provided to partially close some or all of the recesses 47 in the circumferential direction of the inner peripheral surface of the second stator 46 in the vertical direction, It becomes a finely pulverized product of several microns.

上記の第2粉砕部による被粉砕物粒子の微粉砕
により、導入空気及び被粉砕物粒子は第2粉砕室
内を下方から上方に移動するにつれて温度上昇す
る。この温度上昇の仕方は原理的には下方から上
方へ一様に均等に上昇するのであるが、間隙45
及び第2固定子46の凹部47において局部的に
被粉砕物粒子の濃度が高くなることは避けられ
ず、従つて被粉砕物粒子及び導入空気の局部的な
温度上昇が発生する。
As the particles of the object to be crushed are pulverized by the second pulverizing section, the temperatures of the introduced air and the particles of the object to be crushed increase as they move from the bottom to the top within the second pulverization chamber. In principle, the temperature rises uniformly from the bottom to the top, but the temperature rises uniformly from the bottom to the top.
It is unavoidable that the concentration of the particles to be crushed becomes locally high in the concave portion 47 of the second stator 46, and therefore a local temperature increase of the particles to be crushed and the introduced air occurs.

これらの温度上昇を抑える為に文発明の微粉砕
装置では、被粉砕物粒子と共に第2粉砕室内に導
入される空気を空気冷却器15′を通して冷却コ
イル16′により冷却するだけではなく、冷却コ
イル16′を通つた冷媒を冷却用ジヤケツト50
に通して、間隙45及び第2固定子46の凹部4
7に在る空気及び被粉砕物粒子を第2固定子46
を介して冷却ジヤケツト50中の冷媒と熱交換さ
せている。この熱交換は、間隙45が1mm以下と
極めて小さい為、熱貫流係数が大きくて極めて効
率が良く、冷却効果が著しいものである。従つ
て、従来のように冷却空気の導入のみによる冷却
方法に比べて容易に空気及び被粉砕物粒子の温度
上昇を抑えることができるのみならず、局部的な
第2固定子46の温度上昇も抑えることができ
る。
In order to suppress these temperature increases, the pulverizer of the present invention not only cools the air introduced into the second pulverizing chamber together with the particles to be pulverized by the cooling coil 16' through the air cooler 15'; The refrigerant passing through the cooling jacket 50
through the gap 45 and the recess 4 of the second stator 46
7, the air and particles of the material to be crushed are transferred to the second stator 46.
Heat is exchanged with the refrigerant in the cooling jacket 50 through the cooling jacket 50. Since the gap 45 is extremely small, 1 mm or less, this heat exchange has a large heat transmission coefficient, is extremely efficient, and has a remarkable cooling effect. Therefore, compared to the conventional cooling method that only introduces cooling air, it is possible not only to suppress the temperature rise of the air and the particles to be crushed, but also to prevent the local temperature rise of the second stator 46. It can be suppressed.

尚冷却ジヤケツト50を第1固定子40の外周
まで下方に延長して設けた場合は、第1固定子4
0の温度上昇も抑えることができる。
In addition, when the cooling jacket 50 is provided extending downward to the outer circumference of the first stator 40, the first stator 4
0 temperature rise can also be suppressed.

本発明による微粉砕装置は、前記の他第13図
に示すものがある。この微粉砕装置は、製品排出
口12′とバグフイルター25′とを連結した排出
管27′の途中に分級機54が設けられ、該分級
機54の粗粉排出口55と下部ケーシング7′の
導入管13′の途中に設けられた被粉砕物供給口
14′とが配管56にて連繋され、分級機54の
微粉排出口57は排出管27′にてバグフイルタ
ー25′に連結されている。その他は第11図と
同一構成であるので、その説明を省略する。
In addition to the above-mentioned pulverizer according to the present invention, there is one shown in FIG. 13. In this pulverizing device, a classifier 54 is provided in the middle of a discharge pipe 27' that connects a product discharge port 12' and a bag filter 25', and a coarse powder discharge port 55 of the classifier 54 and a lower casing 7' are connected to each other. The introduction pipe 13' is connected to a material supply port 14' provided in the middle through a pipe 56, and the fine powder discharge port 57 of the classifier 54 is connected to a bag filter 25' through a discharge pipe 27'. . The rest of the configuration is the same as that in FIG. 11, so a description thereof will be omitted.

この微粉砕装置によれば、第2粉砕部31でミ
クロンオーダ乃至10数ミクロンに微粉砕された粒
度幅の狭い粉砕製品が空気と共に製品排出口1
2′より排出され、配管27′を通つて分級機54
に入ると、ミクロンオーダの微粉と10数ミクロン
の粗粉とに分級される。そして一方の微粉は配管
27′を通つてバグフイルター25′に導入され、
ここで微粉と空気とに分離され、空気は吸引送風
機28′を経由して排気管29′より排気され、微
粉はバグフイルター25′から図示せぬホツパー
に送られて貯留される。他方粗粉は排出口55か
ら配管56を通つて被粉砕物供給口14′に送入
されて導入管13′に供給され、フイーダ53か
ら被粉砕物供給口14′に送入され導入管13′に
供給された新たな被粉砕物粒子と共に冷却空気に
乗つて下部ケーシング7′内に導入され、第1粉
砕部30、第2粉砕部31で再び粉砕作用を受け
る。従つて、この微粉砕装置で得られる粉砕製品
はミクロンオーダの極めて粒度幅の狭い微粉であ
る。
According to this pulverizing device, the pulverized product with a narrow particle size range, which is pulverized to micron order to tens of microns in the second pulverizing section 31, is delivered to the product outlet 1 along with air.
2' and passes through the pipe 27' to the classifier 54.
Once inside, it is classified into fine powder on the micron order and coarse powder on the order of 10 microns. Then, one fine powder is introduced into the bag filter 25' through the pipe 27',
Here, the fine powder and air are separated, and the air is exhausted from the exhaust pipe 29' via the suction blower 28', and the fine powder is sent from the bag filter 25' to a hopper (not shown) and stored therein. On the other hand, the coarse powder is fed from the discharge port 55 through the pipe 56 to the feed port 14' for the material to be ground, and is supplied to the introduction pipe 13', and from the feeder 53 to the feed port 14' for the material to be ground, and is fed to the feed port 13'. They are introduced into the lower casing 7' along with the new particles of the material to be crushed that have been supplied to the casing 7' on the cooling air, and are again subjected to the crushing action in the first crushing section 30 and the second crushing section 31. Therefore, the pulverized product obtained by this pulverizer is a fine powder with an extremely narrow particle size range on the micron order.

以上の説明で判るように本発明の微粉砕装置
は、第1粉砕部にて被粉砕物粒子中の粗大粒子を
予め粉砕して、ある一定範囲の粒径の細かい粒子
となし、これを第2粉砕部で微粉砕するようにし
たので、第2回転子及び第2固定子の摩耗が著し
く減少し、耐久性に富むものである。しかも従来
のように予め被粉砕物粒子をある一定範囲の粒径
まで細かく粉砕するという前処理が不要であるの
で、これに要した多大の労力を省略される。
As can be seen from the above description, the pulverizer of the present invention crushes coarse particles in the particles of the object to be crushed in advance in the first pulverizing section to form fine particles with a particle size within a certain range, and then Since the powder is finely pulverized by two pulverizers, wear of the second rotor and second stator is significantly reduced, and the product is highly durable. Moreover, unlike the conventional method, there is no need for pre-treatment of finely pulverizing the particles of the object to be pulverized to a certain particle size within a certain range, thereby eliminating the great amount of labor required for this.

また本発明の微粉砕装置は、第2粉砕部の第2
固定子の内側表面を特殊形状になし、第2回転子
との間隙を1mm以下と著しく狭くしてあるので、
被粉砕物粒子を確実に且つ十分に、しかも効率良
く微粉砕することができて、ミクロンオーダ乃至
10数ミクロンの粒度幅の狭い微粉砕製品を短時間
に容易に得ることができる。
Further, the pulverizer of the present invention has a second pulverizer in the second pulverizer.
The inner surface of the stator has a special shape, and the gap with the second rotor is extremely narrow, less than 1 mm.
It is possible to reliably, sufficiently, and efficiently pulverize the particles of the object to be pulverized, from micron order to fine pulverization.
Finely pulverized products with a narrow particle size range of 10-odd microns can be easily obtained in a short time.

特に微粉砕製品を分級機で分級して10数ミクロ
ンオーダの粗粉を戻して再び微粉砕するようにし
た場合は、ミクロンオーダの極めて粒度幅の狭い
粉砕製品を得ることができる。
In particular, if a finely pulverized product is classified with a classifier and the coarse powder on the order of 10-odd microns is returned and pulverized again, a pulverized product with an extremely narrow particle size range on the order of microns can be obtained.

さらに本発明の微粉砕装置は、第2粉砕室内に
被粉砕物粒子と共に導入される空気を冷却して排
気温度を抑えることができるばかりではなく、従
来不可能であつた固定子の局部的な温度上昇を抑
えることができるので、軟化点の低い被粉砕物粒
子でも粉砕不可能となることが無く円滑に粉砕で
き、また弱熱性物質の被粉砕物粒子でも熱的変化
を受けることなく粉砕できる。その上導入空気の
冷却と固定子の冷却とが1台の冷却装置で行われ
るので、極めて冷却効率が良く、運転費も安価で
経済的である。
Furthermore, the pulverizing device of the present invention not only cools the air introduced into the second pulverizing chamber together with the particles to be pulverized, thereby suppressing the exhaust temperature, but also allows for the localization of the stator, which was previously impossible. Since temperature rise can be suppressed, even particles with a low softening point can be crushed smoothly without becoming impossible to crush, and even particles of mildly heat-sensitive substances can be crushed without undergoing thermal changes. . Furthermore, since the introduced air is cooled and the stator is cooled by one cooling device, the cooling efficiency is extremely high and the operating cost is low and economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の微粉砕機を示す縦断面図、第2
図は第1図の―線に沿う一部拡大断面図、第
3図は第1図の微粉砕装置の固定子内側表面の凹
部に於ける空気の流れを示す一部斜視図、第4図
は従来の他の微粉砕装置を示す系統図、第5図は
本発明の微粉砕装置の要部を示す縦断面図、第6
図は第5図の−線に沿う拡大断面図、第7図
は第5図の−線に沿う拡大断面図、第8図は
本発明の微粉砕装置に於ける第2粉砕部の第2回
転子と第2固定子との組合せを示す一部水平断面
図、第9図a,bは第2固定子の内周面における
凹部の上端部に設けた分級リングを示す一部斜視
図、第10図a,bは第2固定子の内周面におけ
る凹部の中間部に設けた分級リングを示す一部斜
視図及び一部縦断面図、第11図は本発明の微粉
砕装置の全体を示す系統図、第12図は第2固定
子内側表面の凹部と第2回転子外側表面の凸部と
の関係による被粉砕物粒子の粉砕作用を説明する
為の第8図の拡大図、第13図は本発明の他の微
粉砕装置を示す系統図である。 3′…回転軸、7′…下部ケーシング、10′…
上部ケーシング、12′…製品排出口、13′…導
入管、14′…被粉砕物供給口、15′…空気冷却
器、16′…冷却コイル、17′…冷凍機、18′
…配管、25′…バグフイルター、27′…排出
管、30…第1粉砕部、31…第2粉砕部、34
…粉砕子、37…第1回転子、38…間隙、39
…凸部、40…第1固定子、41…凸部、44…
第2回転子、45…間隙、46…第2固定子、4
7…略三角形の凹部、47a…凹部の一辺、47
b…凹部の他辺、48…略三角形の凸部、49…
分級リング、50…冷却用ジヤケツト、51…配
管、52…配管、54…分級機、55…粗粉排出
口、56…配管。
Figure 1 is a vertical sectional view showing a conventional pulverizer, Figure 2
The figure is a partially enlarged sectional view taken along the line - in Figure 1, Figure 3 is a partial perspective view showing the air flow in the recesses on the inner surface of the stator of the pulverizer in Figure 1, and Figure 4. 5 is a system diagram showing another conventional pulverizing device, FIG. 5 is a vertical sectional view showing the main parts of the pulverizing device of the present invention, and FIG.
5 is an enlarged sectional view taken along the line - in FIG. 5, FIG. 7 is an enlarged sectional view taken along the line - in FIG. 5, and FIG. A partial horizontal sectional view showing a combination of a rotor and a second stator; FIGS. 9a and 9b are partial perspective views showing a classification ring provided at the upper end of a recess in the inner circumferential surface of the second stator; FIGS. 10a and 10b are a partial perspective view and a partial vertical cross-sectional view showing a classification ring provided in the middle of the recess on the inner circumferential surface of the second stator, and FIG. 11 is an overall view of the pulverizing device of the present invention. FIG. 12 is an enlarged view of FIG. 8 for explaining the pulverizing action of particles to be crushed due to the relationship between the concave portions on the inner surface of the second stator and the convex portions on the outer surface of the second rotor; FIG. 13 is a system diagram showing another pulverizer of the present invention. 3'...rotating shaft, 7'...lower casing, 10'...
Upper casing, 12'...Product discharge port, 13'...Introduction pipe, 14'...Crushed material supply port, 15'...Air cooler, 16'...Cooling coil, 17'...Freezer, 18'
... Piping, 25'... Bag filter, 27'... Discharge pipe, 30... First crushing section, 31... Second crushing section, 34
...Crusher, 37...First rotor, 38...Gap, 39
...Protrusion, 40...First stator, 41...Protrusion, 44...
Second rotor, 45... Gap, 46... Second stator, 4
7... Substantially triangular recess, 47a... One side of the recess, 47
b...Other side of the concave portion, 48...Substantially triangular convex portion, 49...
Classifying ring, 50... Cooling jacket, 51... Piping, 52... Piping, 54... Classifier, 55... Coarse powder outlet, 56... Piping.

Claims (1)

【特許請求の範囲】 1 回転軸の下部に支持され外側表面の母線に沿
つて放射状に粉砕子を有する第1回転子との間に
一定間隙を存して第1固定子が嵌装された第1粉
砕部と、回転軸の上部に支持され外側表面の母線
に沿つて多数の凸部を有する第2回転子との間に
1mm以下の間隙を存して第2固定子が嵌装された
第2粉砕部と、前記第1固定子の下端に連なる下
部ケーシングに設けられた被粉砕物粒子と空気の
導入管と、前記第2固定子の下端に連なる上部ケ
ーシングに設けられた粉砕製品排出口とより成
り、前記第2紛砕部の第2固定子の内側表面は略
三角形の凹部と凸部が連続する歯形になされ、そ
の歯形の凹部の一辺が第2回転子の中心に向けら
れ、凹部の他辺が第2回転子の接線方向に設けら
れ、凹部の一辺と他辺との挟角が45〜60度になさ
れ、第2固定子の内周面の周方向の一部又は全部
の凹部の上端又は中間に、該凹部を上下方向で部
分的に閉鎖する分級リングが少くとも一段設けら
れ、少くとも第2固定子の外周には冷却ジヤケツ
トが設けられ、該冷却ジヤケツトの入口と前記下
部ケーシングの導入管の先端に設けた空気冷却器
の冷却コイルの出口とが配管を介して連結され、
冷却ジヤケツトの出口と冷凍機の入口とが配管を
介して連結され、冷凍機の出口と空気冷却器の冷
却コイルの入口とが配管を介して連結されている
微粉砕装置。 2 回転軸の下部に支持され外側表面の母線に沿
つて放射状に粉砕子を有する第1回転子との間に
一定間隙を存して第1固定子が嵌装された第1粉
砕部と、回転軸の上部に支持され外側表面の母線
に沿つて多数の凸部を有する第2回転子との間に
1mm以下の間隙を存して第2固定子が嵌装された
第2の粉砕部と、前記第1固定子の下端に連なる
下部ケーシングに設けられた被粉砕物粒子と空気
の導入管と、前記第2固定子の下端に連なる上部
ケーシングに設けられた粉砕製品排出口とより成
り、前記第2粉砕部の第2固定子の内側表面は略
三角形の凹部と凸部が連続する歯形になされ、そ
の歯形の凹部の一辺が第2回転子の中心に向けら
れ、凹部の他辺が第2回転子の接線方向に設けら
れ、凹部の一辺と他辺との挟角が45〜60度になさ
れ、第2固定子の内周面の周方向の一部又は全部
の凹部の上端又は中間に、該凹部を上下方向で部
分的に閉鎖する分級リングが少くとも一段設けら
れ、少くとも第2固定子の外周には冷却ジヤケツ
トが設けられ、該冷却ジヤケツトの入口と前記下
部ケーシングの導入管の先端に設けた空気冷却器
の冷却コイルの出口とが配管を介して連結され、
冷却ジヤケツトの出口と冷凍機の入口とが配管を
介して連結され、冷凍機の出口と空気冷却器の冷
却コイルの入口とが配管を介して連結され、前記
上部ケーシングの粉砕製品排出口とバグフイルタ
ーとを連結された排出管の途中には分級機が設け
られ、該分級機の粗粉排出口と下部ケーシングの
導入管の途中に設けられた被粉砕物供給口とが配
管にて連繋されている微粉砕装置。
[Claims] 1. A first stator is fitted with a constant gap between the rotor and the first rotor, which is supported at the lower part of the rotating shaft and has crushers radially along the generatrix of the outer surface. A second stator is fitted with a gap of 1 mm or less between the first crushing part and a second rotor that is supported on the upper part of the rotating shaft and has a large number of convex parts along the generatrix of the outer surface. a second crushing section, an introduction pipe for introducing particles of the crushed material and air provided in a lower casing connected to the lower end of the first stator, and a crushed product provided in an upper casing connected to the lower end of the second stator. The inner surface of the second stator of the second crushing section has a tooth shape in which approximately triangular concave portions and convex portions are continuous, and one side of the concave portion of the tooth shape is directed toward the center of the second rotor. The other side of the recess is provided in the tangential direction of the second rotor, the included angle between one side of the recess and the other side is 45 to 60 degrees, and a part of the inner circumferential surface of the second stator is provided in the circumferential direction. Alternatively, at least one classification ring is provided at the upper end or in the middle of all the recesses to partially close the recesses in the vertical direction, and at least a cooling jacket is provided on the outer periphery of the second stator, and a cooling jacket is provided on the outer periphery of at least the second stator. The inlet and the outlet of the cooling coil of the air cooler provided at the tip of the introduction pipe of the lower casing are connected via piping,
A pulverizer in which the outlet of a cooling jacket and the inlet of a refrigerator are connected through piping, and the outlet of the refrigerator and the inlet of a cooling coil of an air cooler are connected through piping. 2. A first crushing part in which a first stator is fitted with a certain gap between the first rotor and the first rotor, which is supported at the lower part of the rotating shaft and has crushers radially along the generatrix of the outer surface; a second crushing section in which a second stator is fitted with a gap of 1 mm or less between the second rotor, which is supported on the upper part of the rotating shaft and has a large number of convex portions along the generatrix of the outer surface; , an inlet pipe for introducing particles of the pulverized material and air provided in a lower casing connected to the lower end of the first stator, and a pulverized product outlet provided in the upper casing connected to the lower end of the second stator. , the inner surface of the second stator of the second crushing section has a tooth shape in which substantially triangular concave portions and convex portions are continuous, one side of the concave portion of the tooth shape is directed toward the center of the second rotor, and the other side of the concave portion is oriented toward the center of the second rotor. is provided in the tangential direction of the second rotor, the included angle between one side of the recess and the other side is 45 to 60 degrees, and the upper end of the recess in part or all of the inner peripheral surface of the second stator in the circumferential direction Alternatively, at least one stage of classification ring is provided in the middle to partially close the recess in the vertical direction, and a cooling jacket is provided at least on the outer periphery of the second stator, and the inlet of the cooling jacket and the lower casing are connected to each other. The outlet of the cooling coil of the air cooler installed at the tip of the introduction pipe is connected via piping,
The outlet of the cooling jacket and the inlet of the refrigerator are connected through piping, the outlet of the refrigerator and the inlet of the cooling coil of the air cooler are connected through piping, and the crushed product outlet of the upper casing and the bag are connected. A classifier is provided in the middle of the discharge pipe connected to the filter, and the coarse powder discharge port of the classifier and the material supply port to be crushed provided in the middle of the introduction pipe of the lower casing are connected by piping. Fine grinding equipment.
JP6880683A 1983-04-13 1983-04-19 Finely crushing apparatus Granted JPS59196754A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6880683A JPS59196754A (en) 1983-04-19 1983-04-19 Finely crushing apparatus
US06/598,453 US4562972A (en) 1983-04-13 1984-04-09 Micropulverizer
EP84104138A EP0122608B1 (en) 1983-04-13 1984-04-12 Micropulverizer
DE8484104138T DE3470007D1 (en) 1983-04-13 1984-04-12 MICROPULVERIZER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6880683A JPS59196754A (en) 1983-04-19 1983-04-19 Finely crushing apparatus

Publications (2)

Publication Number Publication Date
JPS59196754A JPS59196754A (en) 1984-11-08
JPS6366584B2 true JPS6366584B2 (en) 1988-12-21

Family

ID=13384323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6880683A Granted JPS59196754A (en) 1983-04-13 1983-04-19 Finely crushing apparatus

Country Status (1)

Country Link
JP (1) JPS59196754A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320870A (en) * 2001-04-25 2002-11-05 Nisshin Seifun Group Inc Pulverization process and pulverization system using the same
EP2103996A1 (en) 2008-03-17 2009-09-23 Ricoh Company, Ltd. Method for preparing toner, toner prepared by the method, and image forming apparatus using the toner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366146U (en) * 1986-10-21 1988-05-02
JP4933230B2 (en) * 2006-11-22 2012-05-16 キヤノン株式会社 Toner manufacturing apparatus and toner manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320870A (en) * 2001-04-25 2002-11-05 Nisshin Seifun Group Inc Pulverization process and pulverization system using the same
EP2103996A1 (en) 2008-03-17 2009-09-23 Ricoh Company, Ltd. Method for preparing toner, toner prepared by the method, and image forming apparatus using the toner

Also Published As

Publication number Publication date
JPS59196754A (en) 1984-11-08

Similar Documents

Publication Publication Date Title
JP3139721B2 (en) Fluidized bed jet mill
US4562972A (en) Micropulverizer
JP4891574B2 (en) Crusher and powder manufacturing method using the crusher
JP4472703B2 (en) Crusher
JP2711425B2 (en) Pulverizer
US3815833A (en) Method and apparatus for grinding thermoplastic material
JP2003071307A (en) Pulverizer
JP4805473B2 (en) Fine grinding device and powder product manufacturing system
JPS6366584B2 (en)
WO2024077715A1 (en) Ultrafine grinding system for rhizome traditional chinese medicine
JP3129997B2 (en) Crusher
JPS6136463B2 (en)
JPS6366583B2 (en)
JPH0642737Y2 (en) Impact crusher with built-in classification mechanism
JPS6366582B2 (en)
JPS6332505B2 (en)
JPS64100B2 (en)
NZ198677A (en) Pulveriser with classifier
JPS6499B2 (en)
JPS59196751A (en) Finely crushing apparatus
JPS5973065A (en) Super-pulverizer
JPS6366580B2 (en)
JPH02207852A (en) Pulverizer
JPS6498B2 (en)
JP2553933B2 (en) Centrifugal fluid pulverizer