JPH02207852A - Pulverizer - Google Patents

Pulverizer

Info

Publication number
JPH02207852A
JPH02207852A JP2639789A JP2639789A JPH02207852A JP H02207852 A JPH02207852 A JP H02207852A JP 2639789 A JP2639789 A JP 2639789A JP 2639789 A JP2639789 A JP 2639789A JP H02207852 A JPH02207852 A JP H02207852A
Authority
JP
Japan
Prior art keywords
chamber
impeller
rotary impeller
air
classification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2639789A
Other languages
Japanese (ja)
Other versions
JPH0642947B2 (en
Inventor
Toru Moriwaki
徹 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Paudal Co Ltd
Original Assignee
Fuji Paudal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Paudal Co Ltd filed Critical Fuji Paudal Co Ltd
Priority to JP1026397A priority Critical patent/JPH0642947B2/en
Publication of JPH02207852A publication Critical patent/JPH02207852A/en
Publication of JPH0642947B2 publication Critical patent/JPH0642947B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)
  • Crushing And Pulverization Processes (AREA)

Abstract

PURPOSE:To enhance efficiency of comminution by constituting a fine grinding mill so that a supplied raw material for pulverization can be ground to powder narrow in the width of particle size distribution without exceeding limiting particle size. CONSTITUTION:A crushing means 2 is constituted of a rotary disk 9 fixed to a first driving shaft 8, a purality of joining members 12 held to the rotary disk 9, two pieces of annular disks 13, 14 fixed to both ends of the joining members 12 and necessary pieces of blade plates 15 held to the annular disks 13, 14. Further the inner surface of a classification chamber C is formed into an oblique wall face narrowed according to approach to a carrier chamber D. A cylindrical rotary impeller 3 is provided to the inside of the chamber C and held to a second driving shaft 30. Further many strip-form blades are formed to the outer circumferential face of the impeller 3. Furthermore an annular air reservoir 39 is provided to the boundary of the classification chamber C and the carrier chamber D. This reservoir 39 is connected to the outside and also connected to both the chamber C and the carrier chamber D via the prescribed gaps 40, 41.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は微粉砕機に関し、主として、鉱石。[Detailed description of the invention] (Industrial application field) This invention relates to a fine grinder, mainly for ores.

セラミックス、食品などの固形物を粉砕して粒度分布幅
の狭い微粉(100μm前後から数μm)を作るのに用
いられる。
It is used to crush solid materials such as ceramics and foods to create fine powder with a narrow particle size distribution (from around 100 μm to several μm).

(従来の技術) 従来のこの種装置としては、例えば、特公昭50−21
695号公報と、実公昭60−39081号公報とに開
示されたものが知られている。
(Prior art) As a conventional device of this kind, for example,
Those disclosed in Japanese Utility Model Publication No. 695 and Japanese Utility Model Publication No. 60-39081 are known.

これらの公報に開示された装置では、粉砕ロータにより
粉砕された粉体は、気流に乗せられて上端が大径の截頭
円錐状の案内板に沿って粉砕ロータと向応の分級用羽根
車の上端に向って運ばれる。
In the devices disclosed in these publications, the powder pulverized by the pulverizing rotor is carried by an air stream and passed along a truncated conical guide plate with a large diameter at the upper end between the pulverizing rotor and a co-receiving classification impeller. carried towards the top of the

分級用羽根車では、粉砕された粉体中の微粉のみが排風
機による気流によって羽根車内を通過され、装置の出口
側へと移動される。しかし、羽根車内を通過しない粉体
中の粗粉は、案内板の内側に沿って下降し、案内板の下
端を潜って外方に移動されるときに、粉砕ロータにより
再度粉砕作用を受ける。
In the classification impeller, only the fine powder in the pulverized powder is passed through the impeller by the airflow from the exhaust fan and moved to the exit side of the device. However, the coarse powder in the powder that does not pass through the impeller descends along the inside of the guide plate, passes under the lower end of the guide plate and is moved outward, and is again subjected to the crushing action by the crushing rotor.

これらの装置においては、粉体中の微粉と粗粉の分級は
、回転羽根車の遠心力の影響を大きく受ける粗粉を截頭
円錐状の案内板に沿って上下方向に循環を繰り返しなが
ら粉砕ロータにより粉砕し、粉体中の微粉を羽根車の回
転による遠心力に逆って排風機の気流に乗せ、羽根車の
内方に導く吸引作用により行なわれていた。分級作用に
より装置から取り出される粉体の粒径は、排風機の風量
と羽根車の回転による遠心力とを変えることにより所望
のものが得られていた。
In these devices, the fine powder and coarse powder in the powder are classified by pulverizing the coarse powder, which is greatly affected by the centrifugal force of a rotating impeller, while repeatedly circulating it up and down along a truncated cone-shaped guide plate. The powder is pulverized by a rotor, and the fine powder in the powder is placed in the airflow of an exhaust fan against the centrifugal force caused by the rotation of the impeller, and the suction action is used to guide it inside the impeller. The desired particle size of the powder taken out from the device by the classification action was obtained by changing the air volume of the blower and the centrifugal force caused by the rotation of the impeller.

(発明が解決しよう・とする課題) 前記従来の装置では、粉体を運ぶ気流は羽根車の上側大
径部から羽根車へ流入するため、羽根車の下側小径部は
気流の通過速度が遅く、気流の粉体粒子に対する搬送力
が小さい。これに対し、羽根車による遠心力はその半径
に比例するので、羽根車の下側はど小径にして、同一の
粉体粒径に対して、羽根のどの位置でも気流による搬送
力Cと羽根車による遠心力Fの関係が同じになるように
配慮されていた。
(Problems to be Solved by the Invention) In the conventional device described above, since the airflow carrying the powder flows into the impeller from the upper large diameter part of the impeller, the passing speed of the airflow is lower in the lower small diameter part of the impeller. It is slow and the carrying force of the airflow on powder particles is small. On the other hand, since the centrifugal force caused by the impeller is proportional to its radius, the lower diameter of the impeller can be made smaller, and for the same powder particle size, the conveying force C due to the airflow and the impeller at any position on the impeller can be reduced. Care was taken to ensure that the relationship between centrifugal force F due to the car was the same.

しかしながら、通過気流の設定流量が変ると羽根に沿う
通過速度の低減割合が異なるだけでなく、この低減割合
は、羽根車の半径の低減割合とは必ずしも一致しなくな
る。それ故、ある風量に対しては、羽根の全長に対して
遠心力F/搬送力Cの値をほぼ同じにすることができて
も、何れの風量に対しても、羽根車の全長について、常
に同一の遠心力F/搬送力Cを望むことは、実際上不可
能となる。このため、羽根車の両端において篩目に相当
する限界粒径が異なるだけでなく、装置出口で得られる
粉砕された粉体の粒度分布幅が広くなる不都合があった
However, if the set flow rate of the passing airflow changes, not only will the rate of reduction in the passing velocity along the blade differ, but this rate of reduction will not necessarily match the rate of reduction in the radius of the impeller. Therefore, for a certain air volume, the value of centrifugal force F/conveying force C can be made almost the same for the entire length of the impeller, but for any air volume, for the entire length of the impeller, It is practically impossible to always desire the same centrifugal force F/conveying force C. For this reason, there are disadvantages in that not only the critical particle size corresponding to the sieve mesh differs at both ends of the impeller, but also the particle size distribution width of the pulverized powder obtained at the exit of the device becomes wide.

また、羽根車の上端とハウジングとの間の隙間では、当
然のことながら、羽根が欠落しているために、ハウジン
グに垂下フランジの如き障害物が設けられているが、こ
の部分は、羽根車を通過する気流の近道となる個所であ
るため、通過速度が設計風速と一致せず、また、粉体粒
子に対する遠心力の作用が他の個所より小さくなる。こ
のため、目的とする限界粒径より大きな、通常トビと称
される粒子がこの部分から微粉中に混入して微粉の質を
低下することがあった。
In addition, in the gap between the upper end of the impeller and the housing, as a matter of course, the blade is missing, so an obstacle such as a hanging flange is provided on the housing. Since this is a shortcut for the airflow passing through, the passing speed does not match the design wind speed, and the action of centrifugal force on the powder particles is smaller than at other locations. For this reason, particles that are larger than the intended particle size limit and are commonly referred to as black particles may be mixed into the fine powder from this portion, degrading the quality of the fine powder.

この発明は、従来の技術の有するこのような問題点に鑑
みてなされたものであり、その目的とするところは、供
給される粉砕用原料を限界粒度を越えずに、しかも粒度
分布幅の狭い粉体に粉砕することができるとともに、粉
砕効率の高い微粉砕機を提供しようとするものである。
This invention was made in view of the problems of the prior art, and its purpose is to reduce the particle size of the supplied raw material for pulverization without exceeding the particle size limit, and with a narrow particle size distribution. It is an object of the present invention to provide a fine grinder that can grind into powder and has high grinding efficiency.

(課題を解決するための手段) 上記目的を達成するために、この発明における模型の装
置では、粉砕室に給気口からの吸引空気とともに供給さ
れる粉砕用原料を回転式の粉砕手段で粉砕し、次の分級
室に空気搬送される粉砕物中の一定粒度以下の微粉を分
級室内に設けられる回転羽根車の吸気通路を通して搬送
室に接続される排風機により装置外に取り出すとともに
、前記微粉以外の粗粒をそれに働く遠心力を利用して粉
砕手段側に戻し繰り返し粉砕する微粉砕機において、粉
砕手段は第1駆動軸に固設の回転円板と、この回転円板
の周縁部と直角に保持される複数個の結合部材と、この
結合部材の両端に回転円板と平行に固定される2個の環
状円板と、これらの環状円板に保持されて外方に突出す
る所要個数の羽根板とで構成され、分級室の内面は搬送
室寄りに挟まる傾斜壁面に形成され、その室内中心部に
第2駆動軸に保持された回転羽根車が設けられ、回転羽
根車は粉砕手段側の端面が閉塞された円筒形で、外周面
において軸線方向に形成した短冊形の羽根が多数設けら
れ、分級室の傾斜壁面は搬送室との境界において回転羽
根車の外周面と近接する内周面に外部に通ずる環状の空
気溜りが設けられ、空気溜りは回転羽根車との間に形成
される反対方向の一次側隙間と二次側隙間とにより分級
室と搬送室とに連絡されるようにしたものである。
(Means for Solving the Problems) In order to achieve the above object, in the model device of the present invention, the raw material for crushing that is supplied to the crushing chamber together with suction air from the air supply port is crushed by a rotary crushing means. Then, the fine powder of a certain particle size or less in the pulverized material that is air-transported to the next classification chamber is taken out of the apparatus by an exhaust fan connected to the transfer chamber through the intake passage of a rotary impeller installed in the classification chamber, and the fine powder In a pulverizer that repeatedly crushes other coarse particles by returning them to the pulverizing means side using centrifugal force acting on the pulverizing means, the pulverizing means includes a rotating disk fixed to a first drive shaft, and a peripheral portion of the rotating disk. A plurality of coupling members held at right angles, two annular disks fixed to both ends of the coupling members in parallel with the rotating disk, and a required portion held by these annular disks and protruding outward. The inner surface of the classification chamber is formed by an inclined wall surface sandwiched between the conveyor chambers, and a rotary impeller held by a second drive shaft is installed in the center of the chamber. It has a cylindrical shape with a closed end face on the means side, and has a large number of rectangular blades formed in the axial direction on the outer circumferential surface, and the inclined wall surface of the classification chamber is close to the outer circumferential surface of the rotary impeller at the boundary with the transfer chamber. An annular air pocket communicating with the outside is provided on the inner circumferential surface, and the air pocket is connected to the classification chamber and the transfer chamber by a primary side gap and a secondary side gap in opposite directions formed between the rotating impeller and the rotating impeller. It was designed so that

粉砕された微粉を歩留り良く取り出すために、空気溜り
と分級室を連絡する一次側隙間は、空気溜りと搬送室を
連絡する二次側隙間より隙間寸法が大きく、かつ回転羽
根車の長さ方向の寸法が短く形成することが好ましい。
In order to take out the pulverized fine powder with a high yield, the primary gap that connects the air reservoir and the classification chamber is larger than the secondary gap that connects the air reservoir and the transfer chamber, and the gap size is larger in the length direction of the rotary impeller. It is preferable to form it with short dimensions.

そして、微粉砕機を縦型にするために、粉砕手段と回転
羽根車とは、それぞれ垂直な第1.第2駆動軸に取り付
けられ、分級室の傾斜壁面部に回転羽根車の外周面と対
向する粉砕用原料の供給装置が設けられるとともに、粉
砕手段の下側に水平な吸気通路が設けられるようにして
もよい。
In order to make the pulverizer vertical, the pulverizing means and the rotary impeller are each provided with a vertical first pulverizer. A grinding material supply device is attached to the second drive shaft and faces the outer peripheral surface of the rotary impeller on the inclined wall of the classification chamber, and a horizontal intake passage is provided below the grinding means. You can.

(作 用) 粉砕用原料を供給して装置を運転すると、一方の駆動軸
によって回転される羽根板を備えた粉砕手段と、他方の
駆動軸によって回転される回転羽根車、および搬送室に
接続される排風機とにより、装置内空間部に給気口から
搬送出口に向かう搬送気流が形成される。粉砕室に供給
された粉砕用原料は、搬送気流によって回転円板の周辺
部に搬送され、ここで原料は羽根板および粉砕室の周壁
への衝突作用を受けて粉砕される。
(Function) When the raw material for pulverization is supplied and the device is operated, a pulverizer equipped with a vane plate rotated by one drive shaft, a rotary impeller rotated by the other drive shaft, and a transfer chamber are connected. A conveying airflow from the air supply port toward the conveyance outlet is formed in the internal space of the device by the exhaust fan. The raw material for pulverization supplied to the pulverization chamber is conveyed to the periphery of the rotating disk by the conveying air flow, where the raw material is pulverized by colliding with the blades and the peripheral wall of the pulverization chamber.

粉砕後の粉体は、環状円板の周縁部と粉砕室の内壁との
間から分級室の周辺部に対して駆動軸方向に吹き出され
る搬送気流により運ばれ、分級室の傾斜内壁面によって
偏向されて回転羽根車の外周面に対してほぼ一様に分散
される。また、回転羽根車の外周面に設けた吸気通路を
通過する搬送気流の速度についても同様にほぼ一様とな
る。それ故、回転羽根車の外周面においては、搬送気流
の通過する羽根車の半径方向の速度は、軸方向と周方向
のいずれにおいてもほぼ一様となる。
The powder after pulverization is carried by a conveying airflow blown out from between the peripheral edge of the annular disk and the inner wall of the crushing chamber toward the periphery of the classification chamber in the direction of the drive shaft, and is transported by the inclined inner wall surface of the classification chamber. It is deflected and distributed almost uniformly over the outer peripheral surface of the rotary impeller. Further, the speed of the conveying airflow passing through the intake passage provided on the outer circumferential surface of the rotary impeller is also substantially uniform. Therefore, on the outer circumferential surface of the rotary impeller, the velocity in the radial direction of the impeller through which the carrier airflow passes is substantially uniform in both the axial direction and the circumferential direction.

分級室内の粉体は、搬送気流による回転羽根車内への吸
引作用と回転羽根車の旋回気流による遠心作用の両方を
受ける。しかし、粉体中の微粉に対しては吸引作用の方
が大きく、粉体中の粗粒に対しては遠心作用の方が大き
く働くため、分級室内では、微粉は回転羽根車の羽根の
間を通って搬送室側に移動するが、粗粒は回転羽根車内
に移動することができず、装置の性能や運転条件によっ
て決まる限界粒度を境にして粉砕された粉体の分級が行
なわれる。
The powder in the classification chamber is subjected to both the suction action into the rotary impeller by the conveying airflow and the centrifugal action by the swirling airflow of the rotary impeller. However, the suction action is stronger on the fine particles in the powder, and the centrifugal action is stronger on the coarse particles in the powder. However, coarse particles cannot move into the rotary impeller, and the pulverized powder is classified at a critical particle size determined by the performance and operating conditions of the device.

回転羽根車内に移動できない粗粒は、粉砕手段の羽根板
による吸引作用によって粉砕手段の周辺部に移動して、
前記限定粒度以下になるまで繰り返し粉砕作用を受ける
ため、装置出口で得られる粉体の粒度分布幅は狭くなる
Coarse particles that cannot be moved into the rotary impeller are moved to the periphery of the crushing means by the suction action of the blades of the crushing means.
Since the particle size is repeatedly pulverized until the particle size falls below the limit particle size, the particle size distribution width of the powder obtained at the outlet of the apparatus becomes narrow.

その上、空気溜りは圧力空気源または外部に通じて大気
圧より高いか、はぼ大気圧と等しく、また分級室と搬送
室は回転羽根車と排風機の回転により負圧となっている
ため、運転時には、環状の空気溜り全周から一次側隙間
に二次側隙間を通して空気の流出が起る。このため、回
転羽根車の外周部に移動されてきた粉体は、−次側隙間
に侵入しなくなり、搬送室に搬送された微粉は、二次側
隙間に侵入するのを阻止される。
Furthermore, the air pocket is connected to a pressurized air source or to the outside, so the pressure is higher than or almost equal to atmospheric pressure, and the classification chamber and transfer chamber have negative pressure due to the rotation of the rotary impeller and exhaust fan. During operation, air flows from the entire circumference of the annular air pocket into the primary gap through the secondary gap. Therefore, the powder that has been moved to the outer circumference of the rotary impeller does not enter the secondary gap, and the fine powder that has been transferred to the transfer chamber is prevented from entering the secondary gap.

(実施例) 第1図ないし第4図はこの発明の一実施例を示したもの
である。
(Embodiment) FIGS. 1 to 4 show an embodiment of the present invention.

第1図にふいて、本体ケース内は給気口50と接続され
る供給装置lを備えた供給室A1粉砕手段2を収納する
粉砕室81回転羽根車3を収納する分級室C1および搬
送出口4を排風機に接続される搬送室りとからなってお
り、供給室へと搬送室りの外側中央部には、それぞれ水
平方向に突出する軸受ケース5.6がそれらのフランジ
部5a。
As shown in FIG. 1, the main body case includes a supply chamber A1 equipped with a supply device l connected to an air supply port 50, a crushing chamber 81 housing the crushing means 2, a classification chamber C1 housing the rotary impeller 3, and a transport outlet. 4 and a transfer chamber connected to an exhaust fan, and at the outer central portions of the supply chamber and the transfer chamber, bearing cases 5 and 6 projecting in the horizontal direction are located at their flange portions 5a.

6aの重合部分をねじ止めされている。The overlapping portion of 6a is screwed.

8は軸受ケース5内の軸受7,7に支持された水平方向
の第1駆動軸で、この第1駆動軸8の一端は粉砕室Bま
で突出されるとともに、他端は軸受ケース5より外方に
突出されている。粉砕室B内の第1駆動軸8には、粉砕
手段2を構成する回転円板9のボス部9aがキー10に
よって一体に結合され、回転円板9は第1駆動軸8の先
端小径部に形成されたおねじ部と螺合するナラ)11に
より第1駆動軸8の軸方向への移動を阻止されている。
Reference numeral 8 denotes a horizontal first drive shaft supported by bearings 7, 7 in the bearing case 5. One end of the first drive shaft 8 projects to the crushing chamber B, and the other end extends outside the bearing case 5. It is protruding towards the side. A boss portion 9a of a rotary disk 9 constituting the crushing means 2 is integrally connected to the first drive shaft 8 in the crushing chamber B by a key 10, and the rotary disk 9 is connected to a small diameter portion at the tip of the first drive shaft 8. Movement of the first drive shaft 8 in the axial direction is prevented by a nut 11 which is threadedly engaged with a male threaded portion formed in the first drive shaft 8.

軸受ケース5より外方に突出している第1駆動軸8の他
端は、粉砕手段2を回転する図示しない駆動モータに減
速手段を介して結合されている。
The other end of the first drive shaft 8 protruding outward from the bearing case 5 is connected to a drive motor (not shown) that rotates the crushing means 2 via a speed reduction means.

粉砕手段2は、第1駆動軸8に取り付けられる回転円板
9と、この回転円板9の周縁部と直角に交叉して放射方
向に突出する複数個、例えば8個の結合部材12と、こ
の結合部材12の左右両端に固定される回転円板9と平
行な2個の環状円板13.14と、これらの環状円板1
3.14の周辺部に保持されて外方に突出する所要個数
の羽根板15とで構成された、いわゆるターボ型羽根車
で、回転によって強力なファン効果を発揮する性能を有
する。
The crushing means 2 includes a rotating disk 9 attached to the first drive shaft 8, a plurality of, for example, eight, coupling members 12 that protrude in the radial direction and intersect at right angles to the peripheral edge of the rotating disk 9. Two annular disks 13 and 14 parallel to the rotating disk 9 are fixed to both left and right ends of the coupling member 12, and these annular disks 1
This is a so-called turbo-type impeller, which is composed of a required number of vanes 15 that are held on the periphery of a 3.14 blade and protrude outward, and has the ability to exert a powerful fan effect when rotated.

第1駆動軸8に取り付けられる回転円板9は、第1駆動
軸8に装着のスペーサー16によって位置決めされ、装
置本体の内周面の手前には、各羽根板15の先端部との
隙間δ1が設定された値(例えば、l mm前後)を保
ち、環状円板14の外周面と設定された隙間δ2(例え
ば、10m+n前後)を保つように歯付ライニング部材
17が挿入され、この歯付ライニング部材17の外周部
と装置本体の内周面との間に環状の冷却用ジャケット1
8が形成されている。粉砕室Bの供給室A側の側面には
、環状円板13と羽根板15とに対向して歯付ライニン
グ部材17に当接する環状のサイドライニング部材19
が取り付けられている。
The rotating disk 9 attached to the first drive shaft 8 is positioned by a spacer 16 attached to the first drive shaft 8, and in front of the inner peripheral surface of the device body, there is a gap δ1 between the tip of each vane plate 15. The toothed lining member 17 is inserted so as to maintain a set value (for example, around 1 mm) and maintain a set gap δ2 (for example, around 10 m+n) with the outer peripheral surface of the annular disk 14. An annular cooling jacket 1 is provided between the outer circumference of the lining member 17 and the inner circumference of the device body.
8 is formed. On the side surface of the supply chamber A side of the grinding chamber B, an annular side lining member 19 is provided which faces the annular disc 13 and the blade plate 15 and abuts against the toothed lining member 17.
is installed.

回転円板9、結合部材12、環状円板13.14、およ
び羽根板15の結合は、例えば、第3図に示す構成によ
って行なうことができる。
The rotary disk 9, the coupling member 12, the annular disks 13, 14, and the vanes 15 can be connected, for example, by the configuration shown in FIG.

即ち、結合部材12を回転円板9の周辺部に間隔をあけ
て設けた切り欠き9aに対して複数個嵌合し、溶接その
他の手段により固定する。回転円板9と直角に交叉する
結合部材12の供給室A側端部に、環状円板13を溶接
などの手段により固定する。この環状円板13には、内
面下端部に内周面側に厚さ力S薄くなる傾斜面13cが
形成されており、外面上端部に一定深さの環状切り欠き
13aが設けられるとともに、外周面に環状切り欠き1
3aの下側を越える径方向の外周切り欠き13bが所要
個数設けられている。
That is, a plurality of coupling members 12 are fitted into notches 9a provided at intervals on the periphery of the rotating disk 9, and fixed by welding or other means. An annular disk 13 is fixed to the supply chamber A side end of the coupling member 12 that intersects the rotating disk 9 at right angles by means such as welding. This annular disc 13 has an inclined surface 13c formed at the lower end of the inner surface, the thickness of which becomes thinner toward the inner peripheral surface, and an annular cutout 13a of a constant depth at the upper end of the outer surface. Circular cutout 1 on the surface
A required number of radial outer peripheral notches 13b extending beyond the lower side of 3a are provided.

次いで、結合部材12の分級室C側端部に、環状円板1
3の場合と対応する環状切り欠き14aと、外周切り欠
き14とを備えた環状円板14を溶接などの手段により
固定する。一方の環状円板13の内周側は、傾斜面13
cの部分で回転円板9の外周側と一部対向する位置関係
で固着されるが、外径が同じ寸法の他方の環状円板14
には、傾斜面13Cに対応する部分がなく、その分だけ
内径寸法が環状円板13の内径より大きくなっていて、
内周面は回転円板9の外周より若干外方に位置するよう
に固着される。
Next, an annular disk 1 is attached to the end of the coupling member 12 on the classification chamber C side.
An annular disc 14 having an annular notch 14a corresponding to case 3 and an outer peripheral notch 14 is fixed by means such as welding. The inner peripheral side of one annular disk 13 has an inclined surface 13
The other annular disk 14 is fixed in a position partially facing the outer circumferential side of the rotating disk 9 at the part c, but has the same outer diameter.
does not have a portion corresponding to the inclined surface 13C, and the inner diameter thereof is larger than the inner diameter of the annular disk 13,
The inner circumferential surface is fixed so as to be located slightly outward from the outer circumference of the rotating disk 9.

環状円板は13は外周部の環状切り欠き13aに一定厚
さの第1リング20が嵌合され、この第117ング20
は溶接その他の手段により環状円板13に固定される。
In the annular disc 13, a first ring 20 of a constant thickness is fitted into an annular notch 13a on the outer periphery, and this 117th ring 20
is fixed to the annular disk 13 by welding or other means.

環状円板13.14の対応する位置に設けられた各外周
切り欠き13bと14bの部分には、左右両端部に直方
形の切り欠き15a、15aを備えた羽根板15が分級
室C側から横方向に挿入され、一方の切り欠き15aは
、第1’Jング20と係合している。そして、他方の環
状円板14の環状切り欠き14aと各羽根板15の切り
欠き15aとによって形成される環状凹部に第2リング
21を嵌合し、環状円板14にねじ止めすることにより
各羽根板15の取り換えが可能になっている。粉砕手段
20回転に伴う遠心力による羽根板15のとび出しは第
1.第2リング20.21との係合によって防止される
In each of the outer circumferential notches 13b and 14b provided at the corresponding positions of the annular disk 13 and 14, a blade plate 15 having rectangular notches 15a and 15a at both left and right ends is inserted from the classification chamber C side. It is inserted laterally, and one notch 15a is engaged with the first 'J ring 20. Then, the second ring 21 is fitted into the annular recess formed by the annular notch 14a of the other annular disc 14 and the notch 15a of each vane plate 15, and is screwed to the annular disc 14. The blade plate 15 can be replaced. The blade plate 15 protrudes due to the centrifugal force caused by the 20 revolutions of the crushing means. This is prevented by engagement with the second ring 20.21.

なお、各羽根板15の取り付けは、他の構成によって行
なってもよい。即ち、第5図に示すように、環状円板1
3.14の各外周切り欠き13b。
Note that each blade plate 15 may be attached using other configurations. That is, as shown in FIG.
3.14 each outer circumference notch 13b.

14bの先端部にそれらの幅寸法より若干大きな円筒形
切り欠き13bl、14blを形成するとともに、各羽
根板15の両側面の駆動軸側に円筒形切り欠き13b1
.14bl と係合する円柱突部15b、15bを形成
し、環状円板13.14の横方向から嵌合した各羽根板
15の両端を第1リング20と第2リング21とにより
、横方向への分離を防止した場合である。この場合、粉
砕手段2の回転に伴う遠心力による羽根板15のとび出
しは、羽根板15の円柱突部15b、15bと環状円板
13.14の円筒形切り欠き13b1.14blとの係
合によって防止される。
Cylindrical notches 13bl and 14bl, which are slightly larger than the width dimensions thereof, are formed at the tips of the blades 14b, and cylindrical notches 13b1 are formed on both sides of each blade plate 15 on the drive shaft side.
.. The first ring 20 and the second ring 21 form cylindrical protrusions 15b, 15b that engage with the annular disk 13. This is a case where separation of the two is prevented. In this case, the protrusion of the blade plate 15 due to the centrifugal force accompanying the rotation of the crushing means 2 is caused by the engagement between the cylindrical protrusions 15b, 15b of the blade plate 15 and the cylindrical cutout 13b1.14bl of the annular disk 13.14. This is prevented by

駆動軸8より上方の供給室A内には、駆動軸8と直角な
方向にフィードスクリューを備えた供給装置lが設けら
れ、この供給装置lは、微粉砕機の装置外に設けられた
図示しないモータにより駆動され、フィードホッパー(
図示せず)内の粉砕用原料を粉砕室Bに供給する。軸受
7に当接するスペーサー16とこれに嵌合して軸受ケー
ス5の内側開口部を塞ぐフロントカバー22の重合部に
は、環状の空気溜り23が形成されており、この空気溜
り23は、その両側の供給室へと軸受ケース5内の空間
部に連通されるとともに、軸受ケース5に設けられた通
気路24により圧力空気源または外気と連通されている
。と5は軸受ケース5の開口部に取り付けられた外側蓋
板である。
In the supply chamber A above the drive shaft 8, there is provided a supply device 1 having a feed screw in a direction perpendicular to the drive shaft 8. Not driven by a motor, the feed hopper (
(not shown) is supplied to the grinding chamber B. An annular air pocket 23 is formed at the overlapping part of the spacer 16 that contacts the bearing 7 and the front cover 22 that fits into the spacer and closes the inner opening of the bearing case 5. The supply chambers on both sides are communicated with a space inside the bearing case 5, and are also communicated with a pressurized air source or the outside air through a ventilation path 24 provided in the bearing case 5. and 5 are outer cover plates attached to the opening of the bearing case 5.

それ故、運転中は、圧力空気源または外気と通じている
空気溜り23から外気より圧′力の低い負圧状態の供給
室A側に空気が流出し、供給室A内の粉体がスペーサー
16とフロントカバー22との隙間部分に侵入するのを
阻止するため、粉体が侵入した場合に起す各種トラブル
の発生は防止される。
Therefore, during operation, air flows from the air reservoir 23 communicating with the pressurized air source or the outside air to the supply chamber A side, which is in a negative pressure state and has a lower pressure than the outside air, and the powder in the supply chamber A is transferred to the spacer. Since powder is prevented from entering the gap between the powder 16 and the front cover 22, various troubles that may occur if powder enters are prevented.

分級室Cの中央部に設けられる回転羽根車3は中空円筒
形で、その外周面には、設定された中心角で軸線方向と
平行な短冊形の羽根26が円周に沿って多数設けられて
おり、隣接する羽根26゜26の間に、回転羽根車3の
外周面を貫通する吸気通路27が形成されている。回転
羽根車3は、搬送室りに臨出する部分を円錐形のボス部
28から突出する数枚のステープレート29と一体に結
合されていて、軸受ケース6から突出する水平方向の第
2駆動軸30の基端側にボス部28と係合するキー31
により一体に結合されている。また、回転羽根車3の粉
砕室B側先端の開口部は、円形の閉塞板32によって粉
砕室B側との連通が遮断されている。
The rotary impeller 3 provided in the center of the classification chamber C has a hollow cylindrical shape, and a large number of rectangular blades 26 are provided along the circumference at a set center angle and parallel to the axial direction on its outer peripheral surface. An intake passage 27 passing through the outer peripheral surface of the rotary impeller 3 is formed between the adjacent blades 26 and 26. The rotary impeller 3 has a portion extending into the transfer chamber that is integrally connected to several stay plates 29 that protrude from a conical boss portion 28, and a horizontal second drive that protrudes from the bearing case 6. A key 31 that engages with the boss portion 28 on the base end side of the shaft 30
are integrally connected by. Further, the opening at the tip of the rotary impeller 3 on the side of the crushing chamber B is blocked from communicating with the side of the crushing chamber B by a circular closing plate 32 .

回転羽根車3は、閉塞板32を第2駆動軸30の端面に
ねじ止めするボルト33により、回転羽根車3のボス部
28と軸受ケース6内の軸受34との間に挿入された位
置決めスペーサー35を介して軸受34の内輪に押圧さ
れている。
The rotary impeller 3 has a positioning spacer inserted between the boss portion 28 of the rotary impeller 3 and the bearing 34 in the bearing case 6 by a bolt 33 that screws the blocking plate 32 to the end face of the second drive shaft 30. 35 and is pressed against the inner ring of the bearing 34.

分級室Cの内壁面は粉砕手段2に近い側の一部分が水平
で、中間部分が搬送室り側へ45°前後の傾斜角度で小
径となる円錐面になっていて、搬送室り側に隣接する側
は、段差を有する水平部分となっている。この段差を有
する水平部分には、分級室Cの円錐面に接続して回転羽
根車3の吸気通路27側に彎曲する内面を備えるととも
に、回転羽根車3の外周面に近接して搬送室りとの仕切
りを行なう円錐状カバー36が、ボルト37により搬送
室りとの仕切り壁38に固定されている。
A part of the inner wall surface of the classification chamber C is horizontal on the side near the crushing means 2, and the middle part is a conical surface with a small diameter inclined at an angle of about 45 degrees toward the transfer chamber side, and is adjacent to the transfer chamber side. The side facing the building is a horizontal part with a step. The horizontal portion having the step has an inner surface connected to the conical surface of the classification chamber C and curved toward the intake passage 27 of the rotary impeller 3, and a transfer chamber adjacent to the outer peripheral surface of the rotary impeller 3. A conical cover 36 is fixed to a partition wall 38 between the transport chamber and the transfer chamber by bolts 37.

円錐状カバー36は、回転羽根車3の外周面と嵌合する
内周面の部分に、環状の空気溜り39が形成されている
。空気溜り39は、回転羽根車3の外周面と円錐状カバ
ー36の内周面との間に形成される半径方向の寸法δ3
の一次側隙間40により、分級室C側と連通されており
、空気溜り39の反対側は、同じように形成される半径
方向の寸法δ4(δ4〈δ、)の二次側隙間41により
搬送室り側に連通されている。−次側隙間40の長さ1
3は、二次側隙間41の長さI14より若干短く定めら
れる。
The conical cover 36 has an annular air pocket 39 formed in a portion of the inner circumferential surface that fits with the outer circumferential surface of the rotary impeller 3 . The air pocket 39 has a radial dimension δ3 formed between the outer peripheral surface of the rotary impeller 3 and the inner peripheral surface of the conical cover 36.
The primary side gap 40 communicates with the classification chamber C side, and the opposite side of the air pocket 39 is conveyed through a secondary side gap 41 with a radial dimension δ4 (δ4<δ,) formed in the same way. It is connected to the room side. -Length 1 of the next side gap 40
3 is determined to be slightly shorter than the length I14 of the secondary side gap 41.

円錐状カバー36の搬送室り側に形成される環状の閉鎖
空間42は、円錐状カバー36に設けられた連通路43
により空気溜り39に連絡されるとともに、装置本体に
設けられた連通路44により装置外と連絡されている。
An annular closed space 42 formed on the transfer chamber side of the conical cover 36 is connected to a communication path 43 provided in the conical cover 36.
It is connected to the air reservoir 39 by the air reservoir 39, and is also connected to the outside of the device by a communication path 44 provided in the main body of the device.

それ故、運転中負圧になっている分級室Cと搬送室りに
は、圧力空気源または外気と連通された空気溜り39の
空気が一次側隙間40と二次側隙間41を通して絶えず
吹き出し、回転羽根車3と円錐状カバー36との回転部
隙間に分級前の気流中の粉体の侵入することを妨げて、
この粉体が搬送室りに短絡するのを防止する。
Therefore, the air in the air reservoir 39, which is in communication with the pressurized air source or the outside air, is constantly blown out through the primary side gap 40 and the secondary side gap 41 into the classification chamber C and the transfer chamber, which are under negative pressure during operation. Preventing powder in the airflow before classification from entering into the rotating part gap between the rotary impeller 3 and the conical cover 36,
This prevents the powder from short-circuiting to the transfer chamber.

ステープレート29の最大径部は、渦巻状に形成された
搬送室りの最小断面に近接した大きさに定められており
、軸受ケース6の内側開口は、スペーサー35の外周と
嵌合するリアカバー45により塞がれている。軸受34
と対向するスペーサー35とリアカバー45の重合部に
は、通気路46によって圧力空気源または外気と連通さ
れる環状の空気溜り47が設けられ、この空気溜り47
は、スペーサー35の外周とリアカバー45の内周との
間に形成されるシール用隙間48により搬送室りと連絡
されている。それ故、運転中は負圧の搬送室り内に通気
路46、空気溜り47、およびシール用隙間48を通っ
て空気の流出によるエアーシールが行なわれ、搬送室り
内の微粉は、搬送出口4に接続された図示しない排風機
により搬送室りから取り出される。
The maximum diameter of the stay plate 29 is determined to be close to the minimum cross section of the spirally formed transfer chamber, and the inner opening of the bearing case 6 is connected to the rear cover 45 which fits into the outer periphery of the spacer 35. is blocked by. Bearing 34
An annular air pocket 47 is provided at the overlapping portion of the spacer 35 and the rear cover 45 facing each other, and the annular air pocket 47 communicates with a pressure air source or the outside air through a ventilation path 46.
is connected to the transfer chamber by a sealing gap 48 formed between the outer periphery of the spacer 35 and the inner periphery of the rear cover 45. Therefore, during operation, air sealing is performed by air flowing out through the ventilation path 46, air reservoir 47, and sealing gap 48 in the transfer chamber under negative pressure, and the fine powder in the transfer chamber is removed from the transfer exit. 4 is taken out from the transfer chamber by an unillustrated exhaust fan connected to 4.

軸受ケース6の外側蓋板49から外側に突出した第2駆
動軸30は、減速手段を介してモータ(共に図示せず)
に接続され、粉砕手段2と別個に回転し得るようになっ
ている。
The second drive shaft 30 protruding outward from the outer cover plate 49 of the bearing case 6 is connected to a motor (both not shown) via a speed reduction means.
The crushing means 2 is connected to the crushing means 2 and can be rotated separately from the crushing means 2.

次に、装置の動作について説明する。Next, the operation of the device will be explained.

微粉砕機の各モータを駆動して装置を運転状態にすると
、供給装置lのフィードスクリューによって供給室Aに
供給された粉砕用原料は、装置内に形成される吸引気流
によって供給室A側の環状円板13の中央部開口を通っ
て回転円板9に沿って粉砕室Bの内周壁側に搬送され、
回転してくる多数の羽根板15と歯付ライニング部材1
7とにより粉砕される。
When each motor of the pulverizer is driven to put the device into operation, the raw material for pulverization supplied to the supply chamber A by the feed screw of the supply device L is transferred to the supply chamber A side by the suction airflow formed in the device. It is conveyed to the inner circumferential wall side of the grinding chamber B along the rotating disk 9 through the central opening of the annular disk 13,
A large number of rotating vanes 15 and toothed lining member 1
7.

粉砕手段2により粉砕された粉砕物は、分級室C側の環
状円板14の外径と歯付ライニング部材17の内径とに
よって形成される周辺部隙間δ2を通って駆動軸方向に
流れる吸引気流により、分級室Cの周壁部に移動する。
The pulverized material pulverized by the pulverizing means 2 passes through the peripheral gap δ2 formed by the outer diameter of the annular disk 14 on the classification chamber C side and the inner diameter of the toothed lining member 17, and flows in the direction of the drive shaft. As a result, it moves to the peripheral wall of the classification chamber C.

分級室C内の粉砕物は、45°前後の傾斜角度を持つ内
壁面に沿って移動する吸引気流により回転羽根車3の径
方向へ向きを変えられる。
The pulverized material in the classification chamber C is turned in the radial direction of the rotary impeller 3 by the suction airflow moving along the inner wall surface having an inclination angle of about 45 degrees.

分級室C内の粉砕物には、吸引気流による回転羽根車3
内への吸引力と、回転羽根車3の周りの旋回気流による
遠心力の両方が作用するが、回転羽根車3の近傍では、
粉砕物中の微粉に対しては吸引力の方が遠心力より大き
く、粉砕物中の粗粒に対しては遠心力の方が吸引力より
大きい。このため、回転羽根車3の径方向に向かう粉砕
物のうち、微粉だけは吸引気流に乗って羽根26の間の
吸気通路27から回転羽根車3内に移動して、回転羽根
車3を支持するステープレート29の間を通り、搬送出
口4から図示していない微粉取り出し装置に運ばれる。
The pulverized material in the classification chamber C is processed by a rotary impeller 3 using suction airflow.
Both the inward suction force and the centrifugal force due to the swirling airflow around the rotary impeller 3 act, but in the vicinity of the rotary impeller 3,
The suction force is greater than the centrifugal force for fine particles in the pulverized material, and the centrifugal force is greater than the suction force for coarse particles in the pulverized material. Therefore, among the crushed materials traveling in the radial direction of the rotary impeller 3, only the fine particles ride the suction airflow and move into the rotary impeller 3 from the intake passage 27 between the blades 26, supporting the rotary impeller 3. The powder passes between the staple plates 29 and is transported from the transport outlet 4 to a fine powder extraction device (not shown).

これに対し、粉砕物中の粗粒は、遠心力の作用によって
回転羽根車3から遠ざけられる。この遠ざけられた粗粒
は、粉砕手段2のターボ形羽根車の吸引作用により、回
転羽根車3の外周と環状円板14の中央開口部との間か
ら羽根板15の周辺部に運ばれ、回転羽根車3内に吸引
される粒度以下になるまで繰り返し粉砕作用を受ける。
On the other hand, coarse particles in the pulverized material are moved away from the rotary impeller 3 by the action of centrifugal force. The separated coarse particles are carried by the suction action of the turbo-type impeller of the crushing means 2 from between the outer periphery of the rotary impeller 3 and the central opening of the annular disk 14 to the periphery of the vane plate 15. The pulverizing action is repeated until the particle size falls below the size that can be sucked into the rotary impeller 3.

この場合、粉砕手段2の回転円板9は循環気流と、粉砕
用原料を粉砕手段20周辺部に搬送する一次気流とを区
分して互に干渉しないようにするため、循環気流によっ
て粉砕手段の方に搬送された粗粒を遅滞なく繰り返し粉
砕して粉砕効率を向上する。
In this case, the rotating disk 9 of the crushing means 2 separates the circulating airflow from the primary airflow that conveys the raw material for crushing to the periphery of the crushing means 20 so that they do not interfere with each other. The coarse particles conveyed in the opposite direction are repeatedly crushed without delay to improve the crushing efficiency.

しかも、分級室Cにおいては、粉砕室Bの出口である隙
間δ2から回転羽根車3の内部のボス部28の周囲のス
ロート部に到る気流の経路が、粉砕室B寄りの場合と搬
送室り寄りの場合にも余り大きさ差がなぐ圧力損失もほ
ぼ同じであるため、回転羽根車3の吸気通路27を通過
する微粉を含んだ気流の侵入速度は、吸気通路27の長
さ方向に関して等しくなる。また、回転羽根車3の円周
方向の気流速度は、数枚のステープレート29の回転作
用によってほぼ一定となっている。
Moreover, in the classification chamber C, the airflow path from the gap δ2, which is the outlet of the crushing chamber B, to the throat part around the boss part 28 inside the rotary impeller 3 is closer to the crushing chamber B, and when the airflow path is closer to the conveyor chamber. Since the pressure loss is almost the same even in the case where there is no significant difference in magnitude, the intrusion speed of the airflow containing fine powder passing through the intake passage 27 of the rotary impeller 3 is as follows in the length direction of the intake passage 27 be equal. Further, the airflow velocity in the circumferential direction of the rotary impeller 3 is kept almost constant due to the rotation of the several stay plates 29.

しかるに、搬送気流が粒子を回転羽根車3の内部に引き
込む力は、粒子の外周長さと気流速度の積に比例するこ
とが知られているため、運転条件によって回転羽根車3
の内部に引き込むことができる限界粒子径は、吸気通路
27の長さ方向にわたって同じにすることができる。
However, it is known that the force with which the conveying airflow draws particles into the rotary impeller 3 is proportional to the product of the outer circumferential length of the particles and the airflow velocity.
The critical particle diameter that can be drawn into the interior of the intake passage 27 can be made the same throughout the length of the intake passage 27.

それ故、この実施例の装置によると、搬送出口4から取
り出される粒子の粒度分布幅は、限界粒子径が羽根の長
さ方向に変化する従来の場合に比べて狭くなり、均一な
微粉を得ることができる。
Therefore, according to the apparatus of this embodiment, the particle size distribution width of the particles taken out from the conveyance outlet 4 is narrower than in the conventional case where the critical particle diameter changes in the length direction of the blade, and uniform fine powder can be obtained. be able to.

また、運転中負圧状態になってい−る装置内には、圧力
空気源または外気に通じている空気溜り23゜39.4
7から粉体を搬送する気流が通過する空間に対して空気
が流出されてエアーシール作用をするため、回転部隙間
への粉砕物の侵入を防止して分級前の気流中の粉体が搬
送室り内へ短絡混入することを防止するとともに、軸受
7,34におけるトラブルの発生を少なくすることがで
きる。
In addition, inside the device which is in a negative pressure state during operation, there is a pressure air source or an air pocket connected to the outside air.
Air flows out from 7 to the space through which the airflow that transports the powder passes and acts as an air seal, preventing the pulverized material from entering the gap between the rotating parts and transporting the powder in the airflow before being classified. It is possible to prevent short circuits from entering the room, and to reduce the occurrence of troubles in the bearings 7, 34.

このうち、分級室Cと搬送室りの両方にエアーシールを
行なう空気溜り39では、隙間寸法が大きく長さが短い
一次側隙間40を通って流出する空気量は、逆の寸法関
係になっている二次側隙間41から流出する空気量より
多くなる。そして、−次側隙間40のエアーシールは、
分級室C内の限界粒子径より大きな粗粒(トビ)が搬送
室り側に移動するのを阻止して粒度分布幅の拡大を防い
で製品の品質を高め、二次側隙間41は、搬送室りに搬
送された微粉が分級室Cに戻るのを阻止して分級効率の
低下するのを防止する。
Of these, in the air pocket 39 that performs air sealing for both the classification chamber C and the transfer chamber, the amount of air flowing out through the primary side gap 40, which has a large gap size and a short length, has an opposite dimensional relationship. The amount of air flowing out from the secondary side gap 41 is larger than the amount of air flowing out from the secondary side gap 41. And, the air seal in the -next side gap 40 is
The secondary side gap 41 prevents coarse particles larger than the limit particle diameter in the classification chamber C from moving to the transfer chamber side, prevents the expansion of the particle size distribution width, and improves the quality of the product. The fine powder transported to the chamber is prevented from returning to the classification chamber C to prevent the classification efficiency from decreasing.

さらに、粉砕手段2と回転羽根車3は別駆動になってい
るため、両者の回転数を調整することにより、所望の粒
度と粒度分布幅を持った製品を能率良く得ることができ
る。
Further, since the crushing means 2 and the rotary impeller 3 are driven separately, by adjusting the rotation speed of both, it is possible to efficiently obtain a product having a desired particle size and particle size distribution width.

第6図はこの発明の他の実施例を示したもので、粉砕手
段2を垂直な第1駆動軸8Aに取り付けるとともに、回
転羽根車3を別の垂直な第2駆動軸30Aに取り付け、
分級室Cの傾斜壁面部に回転羽根車30周側面と対向す
るフィードスクリューを備えた粉砕用原料の供給装置I
Aを設けるとともに、粉砕手段2の下側に水平な給気口
50を設けて縦型の装置とした場合である。第6図で第
1図と同じ符号は、第1図と同じ構成要素を示す。
FIG. 6 shows another embodiment of the present invention, in which the crushing means 2 is attached to a vertical first drive shaft 8A, and the rotary impeller 3 is attached to another vertical second drive shaft 30A.
Grinding raw material supply device I equipped with a feed screw facing the circumferential side of the rotary impeller 30 on the inclined wall surface of the classification chamber C
A is provided, and a horizontal air supply port 50 is provided below the crushing means 2 to form a vertical device. In FIG. 6, the same reference numerals as in FIG. 1 indicate the same components as in FIG. 1.

この構成の場合には、供給装置IAから供給された粉砕
用原料中の微粉の一部は、吸引気流によって直接に回転
羽根車3内に吸引されるが、供給装置IAから粉砕手段
2の方に供給された粉砕用原料は、前記実施例の横型の
場合について述べたと同じ粉砕工程と分級工程とを経て
微粉に粉砕される。得られる作用効果は、前記実施例に
ついて述べた場合と殆ど同じである。
In this configuration, part of the fine powder in the raw material for pulverization supplied from the supply device IA is directly sucked into the rotary impeller 3 by the suction airflow, but the The raw material for pulverization supplied to is pulverized into fine powder through the same pulverization process and classification process as described for the horizontal type in the above embodiment. The obtained effects are almost the same as those described in the previous embodiment.

(発明の効果) この発明は上述の通り構成されているので、次に記載す
る効果を奏する。
(Effects of the Invention) Since the present invention is configured as described above, it produces the following effects.

(1)粉砕手段からの粉砕物を運ぶ気流は、傾斜角度が
45°前後の分級室の内壁面によって回転羽根車の径方
向に向けられ、はぼ同じ流速を持って羽根の長さ方向に
均一に分散されるから、分級室の回転羽根車の近傍では
、粒子を搬送してくる気流の搬送力と回転羽根車の旋回
気流による遠心力との関係は、回転羽根車の羽根のどの
位置でもほぼ同じになる。
(1) The airflow carrying the pulverized material from the pulverizing means is directed in the radial direction of the rotary impeller by the inner wall surface of the classification chamber with an inclination angle of around 45 degrees, and is directed in the length direction of the impeller with approximately the same flow velocity. Because they are uniformly dispersed, in the vicinity of the rotating impeller in the classification chamber, the relationship between the carrying force of the airflow that carries particles and the centrifugal force caused by the swirling airflow of the rotating impeller depends on the position of the blades of the rotating impeller. But it will be almost the same.

したがって、回転羽根車の外周部における限界粒子径を
ほぼ同じにすることができるため、得られる粉砕物の粒
度分布幅を狭くして均一な製品を能率良く得ることがで
きる。
Therefore, the critical particle diameter at the outer circumferential portion of the rotary impeller can be made almost the same, so that the particle size distribution width of the obtained pulverized product can be narrowed and a uniform product can be efficiently obtained.

(2)粉砕手段のファン作用により分級室から粉砕室に
向かう循環気流が形成されるが、粉砕手段の回転円板は
この循環気流と、粉砕用原料を粉砕手段の周辺部に搬送
する一次気流とを区分して互に干渉しないようにするた
め、循環気流によって粉砕手段の方に搬送された粗粒を
遅滞なく繰り返し粉砕して粉砕効率を向上する。
(2) The fan action of the crushing means forms a circulating airflow from the classification chamber to the crushing chamber, and the rotating disk of the crushing means uses this circulating airflow and the primary airflow that conveys the raw material for crushing to the peripheral area of the crushing means. In order to separate the particles and prevent them from interfering with each other, the coarse particles conveyed to the crushing means by the circulating air current are repeatedly crushed without delay to improve the crushing efficiency.

(3)回転羽根車の外周面に対向して設けた空気溜りか
ら、−次側隙間を通して分級室内に流入する気流は、分
級室内の粗粒が搬送室側に移動して微粉中に混入するの
を防止する。また、同じ空気溜りから二次側隙間を通っ
て分級室内に流出する気流は、搬送室の方に搬送されて
いた微粉が分級室の方に戻って分級効果を低下するのを
防止する。
(3) The airflow flowing into the classification chamber from the air pocket provided opposite the outer circumferential surface of the rotary impeller through the negative side gap causes the coarse particles in the classification chamber to move toward the transfer chamber and mix into the fine powder. to prevent Furthermore, the airflow flowing from the same air pocket into the classification chamber through the secondary gap prevents the fine powder that had been transported to the transport chamber from returning to the classification chamber and reducing the classification effect.

(4)粉砕用原料の供給装置を分級室の傾斜壁面部に移
すことにより、装置を容易に縦型に変えることができる
(4) By moving the supply device for the raw material for pulverization to the inclined wall portion of the classification chamber, the device can be easily changed to a vertical type.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の縦断面図、第2図は粉砕
手段の正面図、第3図は粉砕手段の組み立ての一例を示
す要部斜視図、第4図は第1図■−■断面で示した回転
羽根車の断面正面図、第5図は粉砕手段の他の実施例の
組み立てを示す要部斜視図、第6図はこの発明の他の実
施例の縦断面図である。 1、IA・・・供給装置  2・・・粉砕手段3・・・
回転羽根車    8,8A・・・第1駆動軸9・・・
回転円板     12・・・結合部材13.14・・
・環状円板 15・・・羽根板26・・・羽根    
  27・・・吸気通路30.30A・・・第2駆動軸 39・・・環状の空気溜り 40・・・−次側隙間41
・・・二次側隙間   50・・・給気口A・・・供給
室      B・・・粉砕室C・・・分級室    
  D・・・搬送室第4図
Fig. 1 is a longitudinal sectional view of one embodiment of the present invention, Fig. 2 is a front view of the crushing means, Fig. 3 is a perspective view of essential parts showing an example of the assembly of the crushing means, and Fig. 4 is the same as Fig. 1. 5 is a perspective view of essential parts showing the assembly of another embodiment of the crushing means, and FIG. 6 is a longitudinal sectional view of another embodiment of the present invention. be. 1. IA... Feeding device 2... Grinding means 3...
Rotating impeller 8, 8A...first drive shaft 9...
Rotating disk 12...Connecting member 13.14...
・Annular disk 15... vane plate 26... vane
27...Intake passage 30.30A...Second drive shaft 39...Annular air pocket 40...-Next side gap 41
...Secondary side gap 50...Air supply port A...Supply chamber B...Crushing chamber C...Classification chamber
D...Transportation room Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)粉砕室に給気口からの吸引空気とともに供給され
る粉砕用原料を回転式の粉砕手段で粉砕し、次の分級室
に空気搬送される粉砕物中の一定粒度以下の微粉を分級
室内に設けられる回転羽根車の吸気通路を通して搬送室
に接続される排風機により装置外に取り出すとともに、
前記微粉以外の粗粒をそれに働く遠心力を利用して粉砕
手段側に戻し繰り返し粉砕する微粉砕機において、 粉砕手段は第1駆動軸に固設の回転円板と、この回転円
板の周縁部と直角に保持される複数個の結合部材と、こ
の結合部材の両端に回転円板と平行に固定される2個の
環状円板と、これらの環状円板に保持されて外方に突出
する所要個数の羽根板とで構成され、 分級室の内面は搬送室寄りに挟まる傾斜壁面に形成され
、その室内中心部に第2駆動軸に保持された回転羽根車
が設けられ、 回転羽根車は粉砕手段側の端面が閉塞された円筒形で、
外周面において軸線方向に形成した短冊形の羽根が多数
設けられ、 分級室の傾斜壁面は搬送室との境界において回転羽根車
の外周面と近接する内周面に外部に通ずる環状の空気溜
りが設けられ、 空気溜りは回転羽根車との間に形成される反対方向の一
次側隙間と二次側隙間とにより分級室と搬送室とに連絡
されていることを特徴とする微粉砕機。
(1) The raw material for pulverization supplied to the pulverization chamber along with suction air from the air supply port is pulverized by a rotary pulverizer, and the fine powder of a certain particle size or less in the pulverized material is air-transported to the next classification chamber. It is taken out of the equipment by an exhaust fan connected to the transfer chamber through the intake passage of a rotary impeller installed in the room, and
In a pulverizer that repeatedly crushes coarse particles other than the fine powder by returning them to the crushing means side using centrifugal force acting on them, the crushing means includes a rotating disk fixed to a first drive shaft and a peripheral edge of this rotating disk. a plurality of connecting members held perpendicular to the rotating disk, two annular disks fixed to both ends of the connecting members in parallel with the rotating disk, and a disk held by these annular disks and protruding outward. The inner surface of the classification chamber is formed by a sloped wall surface that is sandwiched near the transfer chamber, and a rotary impeller held by a second drive shaft is installed in the center of the chamber. is cylindrical with a closed end face on the crushing means side,
A large number of rectangular blades are provided on the outer peripheral surface in the axial direction, and the inclined wall surface of the classification chamber has an annular air pocket communicating with the outside on the inner peripheral surface adjacent to the outer peripheral surface of the rotary impeller at the boundary with the transfer chamber. A pulverizer, characterized in that the air pocket is connected to the classification chamber and the transfer chamber by a primary side gap and a secondary side gap formed in opposite directions between the rotary impeller and the rotating impeller.
(2)空気溜りと分級室を連絡する一次側隙間は、空気
溜りと搬送室を連絡する二次側隙間より隙間寸法が大き
く、かつ回転羽根車の長さ方向の寸法が短く形成されて
いる特許請求の範囲第1項記載の微粉砕機。
(2) The primary side gap that connects the air pool and the classification chamber has a larger gap size than the secondary side gap that connects the air pool and the transfer chamber, and is formed to have a shorter dimension in the length direction of the rotary impeller. A pulverizer according to claim 1.
(3)粉砕手段と回転羽根車とは、それぞれ垂直な第1
、第2駆動軸に取り付けられ、分級室の傾斜壁面部に回
転羽根車の外周面と対向する粉砕用原料の供給装置が設
けられるとともに、粉砕手段の下側に水平な吸気通路が
設けられた特許請求の範囲第1項または第2項記載の微
粉砕機。
(3) The crushing means and the rotary impeller each have a vertical first
, a supply device for the raw material for pulverization was installed on the second drive shaft, and faced the outer peripheral surface of the rotary impeller on the inclined wall surface of the classification chamber, and a horizontal intake passage was provided below the pulverizing means. A pulverizer according to claim 1 or 2.
JP1026397A 1989-02-04 1989-02-04 Pulverizer Expired - Lifetime JPH0642947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1026397A JPH0642947B2 (en) 1989-02-04 1989-02-04 Pulverizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1026397A JPH0642947B2 (en) 1989-02-04 1989-02-04 Pulverizer

Publications (2)

Publication Number Publication Date
JPH02207852A true JPH02207852A (en) 1990-08-17
JPH0642947B2 JPH0642947B2 (en) 1994-06-08

Family

ID=12192422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1026397A Expired - Lifetime JPH0642947B2 (en) 1989-02-04 1989-02-04 Pulverizer

Country Status (1)

Country Link
JP (1) JPH0642947B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100826129B1 (en) * 2006-06-09 2008-05-06 한국분체기계주식회사 Rotating body for mill machine
KR100942057B1 (en) * 2008-05-22 2010-02-11 강원대학교산학협력단 A classification and shattering equipment
CN113426518A (en) * 2021-06-28 2021-09-24 黄河科技学院 Solid raw material crushing apparatus for chemical machinery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101647681B1 (en) * 2015-03-19 2016-08-23 조해준 Foods pulverizer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100826129B1 (en) * 2006-06-09 2008-05-06 한국분체기계주식회사 Rotating body for mill machine
KR100942057B1 (en) * 2008-05-22 2010-02-11 강원대학교산학협력단 A classification and shattering equipment
CN113426518A (en) * 2021-06-28 2021-09-24 黄河科技学院 Solid raw material crushing apparatus for chemical machinery

Also Published As

Publication number Publication date
JPH0642947B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US6443376B1 (en) Apparatus for pulverizing and drying particulate matter
US5094391A (en) Pneumatic classifier
JP2003071307A (en) Pulverizer
JP4805473B2 (en) Fine grinding device and powder product manufacturing system
JPH0568948A (en) Classification apparatus and crushing equipment equipped with the same
US4428536A (en) Pulverizing and classifying mill
JPH02207852A (en) Pulverizer
KR200182514Y1 (en) Crusher
SU938236A1 (en) Desintegrator-separator
JP2003001127A (en) Chopper
JP2005262147A (en) Powder classifying apparatus
JPH0763642B2 (en) Cement clinker crusher
JP3482669B2 (en) Classifier
JPH0471649A (en) Fine grinding mill
JPH0739772A (en) Roller mill having rotary classifier built therein
JPH0628186Y2 (en) Impact crusher with built-in classification mechanism
JP6767410B2 (en) Crusher
JP2855211B2 (en) Vertical mill
JPS6366582B2 (en)
JPH04256449A (en) Vertical crusher
SU1636043A1 (en) Centrifugal mill
JP2506089B2 (en) High-speed rotary impact crusher
JPH04358546A (en) Fine grinder
SU1036365A1 (en) Percussion action mill
JPH01270982A (en) Air separator