JPS6366326A - Production of high-strength carbon fiber - Google Patents

Production of high-strength carbon fiber

Info

Publication number
JPS6366326A
JPS6366326A JP20579486A JP20579486A JPS6366326A JP S6366326 A JPS6366326 A JP S6366326A JP 20579486 A JP20579486 A JP 20579486A JP 20579486 A JP20579486 A JP 20579486A JP S6366326 A JPS6366326 A JP S6366326A
Authority
JP
Japan
Prior art keywords
fibers
carbon
gas
carbon fibers
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20579486A
Other languages
Japanese (ja)
Inventor
Akitaka Kikuchi
菊池 彰隆
Keizo Hosoi
細井 啓造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP20579486A priority Critical patent/JPS6366326A/en
Publication of JPS6366326A publication Critical patent/JPS6366326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To readily obtain the titled fibers suitable as a carbon-fiber reinforced composite material which is a raw material for structural materials, etc., of aircraft, in high yield for a short treating time, by heat-treating carbon fibers in an atmosphere containing a hydrogen halide gas and hydrocarbon. CONSTITUTION:Carbon fibers are heat-treated at >=1,000 deg.C, preferably 1,300-1,400 deg.C temperature in an atmosphere containing a hydrogen halide gas, preferably hydrogen chloride gas and carbon dioxide gas to afford the aimed fibers. Furthermore, the heat-treating time is preferably 20-100sec. The carbon fibers which are a raw material are obtained by flameproofing fibers prepared from an acrylonitrile based copolymer containing >=90wt% acrylonitrile units at 240-350 deg.C and carbonizing the flameproofed fibers at 1,200-1,500 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高強度炭素繊維の製造方法に関し、さらに詳
しくは、炭素繊維を特殊な雰囲気下で処理することによ
って、よシ強度の高い炭素繊維を高収率で製造する方法
に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing high-strength carbon fiber, and more specifically, to a method for producing high-strength carbon fiber by treating carbon fiber in a special atmosphere. The present invention relates to a method for producing fibers with high yield.

一般に、炭素繊維は比強度、比弾性率等の機械的特性に
優れておシ、そのため、この炭素繊維を強化材とした炭
素繊維強化複合材料(以下、「cFRPJと略称する)
は、航空機の構造材をはじめ、宇宙開発機器、自動車部
品およびスポーツ用品にまで広く利用されつつある。そ
して、近年特に、航空機、宇宙開発機器に関しては、よ
り軽量で、しかも、より高強度のCFRP が要求され
ている。
In general, carbon fibers have excellent mechanical properties such as specific strength and specific modulus of elasticity. Therefore, carbon fiber reinforced composite materials (hereinafter abbreviated as "cFRPJ") using carbon fibers as reinforcement materials
is being widely used in aircraft structural materials, space development equipment, automobile parts, and sporting goods. In recent years, particularly for aircraft and space development equipment, there has been a demand for lighter weight and higher strength CFRP.

CFRPの強度は、複合剤に従って変化することが一般
的に知られている。即ち、CFRPの強度は、これを構
成する成分の強度に、それぞれの体積分率を乗じたもの
の和となる。そのため、CFRPを製造する場合、この
CFRP中に含有される炭素繊維の体積が同一であれば
、強度の高い炭素繊維を用いたCFRPの方が、より強
度が高くなる。従って、より高強度のCFRPを得る念
めに、このCFRP用の炭素繊維そのものの高強度化が
、以前にも増して、ますます要求されている。
It is generally known that the strength of CFRP varies according to the composite agent. That is, the strength of CFRP is the sum of the intensities of its constituent components multiplied by their respective volume fractions. Therefore, when manufacturing CFRP, if the volume of carbon fibers contained in the CFRP is the same, the CFRP using carbon fibers with higher strength will have higher strength. Therefore, in order to obtain CFRP with even higher strength, there is an increasing demand for higher strength of the carbon fiber itself for CFRP than ever before.

〔従来の技術〕[Conventional technology]

上述のような高強度CFRPを従来からある汎用タイプ
の炭素繊維(引張強度300′に!g/■)を用いて製
造することは困難であシ、よシ一層高強度の炭素繊維を
使用する必要がある。
It is difficult to manufacture the above-mentioned high-strength CFRP using conventional general-purpose carbon fibers (tensile strength of 300'!g/■), so it is better to use carbon fibers with even higher strength. There is a need.

航空機産業をはじめとする各産業分野からの。from various industrial fields including the aircraft industry.

このような要請に対して、炭素繊維の高強度化のための
研究が現在活発に行われており、すでにいくつかの方法
が提案されている・ 例えば、特開昭58−214534号、特開昭59−1
37512号によれば、炭素繊維製造用プリカーサ−の
製造条件や得られたプリカーサ−の焼成条件を最適な範
囲に特定する事によって、およそ460〜480に2/
fi2の引張強度を有する炭素繊維が得られている。
In response to these demands, research is currently being actively conducted to increase the strength of carbon fibers, and several methods have already been proposed. Showa 59-1
According to No. 37512, by specifying the manufacturing conditions of a precursor for carbon fiber production and the firing conditions of the obtained precursor to an optimal range, the carbon fiber production can be made by approximately 2/2 to 460 to 480.
Carbon fibers having a tensile strength of fi2 have been obtained.

また、特開昭58−214527号によれば、引張強度
がおよそ420〜450に9/mである特定の炭素繊維
を原料に用いて、さらに二段階の表面処理を施すことに
よりて、490kl?/m2以上の引張強度を有する炭
素繊維が得られている。
Furthermore, according to Japanese Patent Application Laid-Open No. 58-214527, a specific carbon fiber having a tensile strength of about 420 to 450/m is used as a raw material, and by further performing two stages of surface treatment, 490 kl? Carbon fibers having a tensile strength of /m2 or more have been obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように、従来技術では、通常の炭素化工程までの
処理で発現する引張強度は、およそ460〜480 k
g/lxm2が限界であり、前述の特開昭58−214
527号に記載されているように、490に9As2以
上の引張強度を有する炭素繊維を得るためには、得られ
た炭素繊維を68%の濃硝酸中、120℃で45分間、
または、硝酸中で45分間とbう長い処理時間を要し、
さらには用いた硝酸を除去するために、水洗工程を設け
ねばならず、製造プロセスが複雑になり、コスト的にも
不利をまぬがれなかった。
As mentioned above, in the conventional technology, the tensile strength developed through the normal carbonization process is approximately 460 to 480 k.
g/lxm2 is the limit, and the above-mentioned Japanese Patent Application Laid-Open No. 58-214
As described in No. 527, in order to obtain carbon fibers having a tensile strength of 9As2 or more in 490, the obtained carbon fibers are heated in 68% concentrated nitric acid at 120°C for 45 minutes.
Alternatively, it requires a longer treatment time of 45 minutes in nitric acid;
Furthermore, in order to remove the nitric acid used, a water washing step must be provided, which complicates the manufacturing process and is unavoidable in terms of cost.

本発明者らは、炭素繊維の高強度化の方策について、鋭
意研究を重ねた結果、比較的簡単に、しかも短時間の処
理によって、高強度、特に500 kl?/ll112
以上の引張強度を有する高強度炭素繊維が得られる方法
を見出し、さきに特許出願を行った(特願昭61−68
787号)。この方法は、炭素繊維をハロダン化水素ガ
スと水蒸気を含有する雰囲気中で少くとも1000℃以
上の温度で加熱処理することを特徴とする。
The inventors of the present invention have conducted extensive research into ways to increase the strength of carbon fibers, and have found that high strength, especially 500 kl? /ll112
He discovered a method for obtaining high-strength carbon fibers with tensile strength above and filed a patent application (Japanese Patent Application No. 61-68
No. 787). This method is characterized by heat-treating carbon fibers at a temperature of at least 1000° C. in an atmosphere containing hydrogen halide gas and water vapor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、さらに検討を重ねた結果、上記方法にお
いて、水蒸気に代えて二酸化炭素ガスを用いることによ
って、上記方法と同様に高強度の炭素繊維が工業的有利
に、特に比較的高収率(すなわち、低減された重量損失
)で得られることを見出し、本発明を完成した。
As a result of further studies, the present inventors found that by using carbon dioxide gas in place of water vapor in the above method, high-strength carbon fibers can be produced industrially advantageously, especially in relatively high yields, as in the above method. The present invention has been completed based on the discovery that a reduced weight loss can be obtained.

すなわち、本発明は、炭素繊維をハロダン化水素ガスと
二酸化炭素ガスを含有する雰囲気中で、少くとも100
0℃以上の温度で加熱処理することを特徴とする高強度
炭素繊維の製造方法を提供する。
That is, in the present invention, carbon fibers are heated at least 100% in an atmosphere containing hydrogen halide gas and carbon dioxide gas.
Provided is a method for producing high-strength carbon fiber, which is characterized by heat treatment at a temperature of 0° C. or higher.

本発明に用いる炭素繊維は特に限定されるものではなく
、例えば、プリカーチーを原料として、これを酸化処理
して耐炎化繊維とし、その後少くとも800℃以上の温
度にて製造された炭素繊維等を用いることができる。特
に、引張強度が500に!9/憩2以上の高強度炭素繊
維を製造するには、原料炭素繊維としては、引張強度が
400〜450ゆ/四2のものを使用することが好まし
い。
The carbon fibers used in the present invention are not particularly limited, and for example, carbon fibers made by using Puricurchi as a raw material, oxidizing it to make it flame-resistant fiber, and then manufacturing it at a temperature of at least 800°C. Can be used. Especially, the tensile strength is 500! In order to produce high-strength carbon fibers with a tensile strength of 9/2 or more, it is preferable to use raw carbon fibers with a tensile strength of 400 to 450 Y/42.

プリカーサ−としては、アクリロニトリル系合成繊維、
石油・石炭系ピッチから得られfC,繊維、レーヨンな
どのセルロース系繊維、フェノール樹脂系繊維などの炭
素繊維の製造に常用されるものを用いることができる。
As a precursor, acrylonitrile synthetic fiber,
Those commonly used in the production of carbon fibers, such as fC fibers obtained from petroleum/coal-based pitches, cellulose fibers such as rayon, and phenol resin fibers, can be used.

中でも、少くとも90重量%のアクリロニトリル単位を
含有するアクリロニトリル系共重合体から、周知の方法
によって製造された繊維が好ましい。特に、単糸繊度0
.5〜1.5デニール、単糸本数1,000〜30,0
00本の繊維束が好ましい。不純物や欠陥が少なく、緻
密な構造を市し、かつ高配向度の繊維束は特に好ましい
Among these, fibers produced by known methods from acrylonitrile copolymers containing at least 90% by weight of acrylonitrile units are preferred. In particular, single yarn fineness 0
.. 5-1.5 denier, number of single threads 1,000-30,0
00 fiber bundles are preferred. Fiber bundles with few impurities and defects, a dense structure, and a high degree of orientation are particularly preferred.

耐炎化繊維としては、上述のような、プリカーサ−を空
気で代表される酸化性雰囲気中で熱風循環炉またVi/
および加熱ローラーを用いて、200〜400℃、好ま
しくti240℃〜350℃で所定の時間熱処理するこ
とによって得ることができる。
The flame-resistant fibers are prepared by heating the precursor in an oxidizing atmosphere such as air in a hot air circulation furnace or in a Vi/
It can be obtained by heat treatment using a heating roller at 200 to 400°C, preferably 240 to 350°C for a predetermined time.

本発明で用いられる炭素繊維は1例えば前記耐炎化繊維
を非酸化性雰囲気中、800〜1800℃、好ましくは
、1200〜1500℃の温度で炭素化処理することに
よって得られる。また、前記耐炎化繊維の炭素化工程を
、酸化性のガスを含む雰囲気中で行うことにより得られ
る繊維異面が気相酸化された炭素繊維や、一旦炭素化工
程を経た未酸化処理炭素繊維を酸化性のガス中で酸化処
理する気相酸化や電気分解反応を用いた電解酸化、さら
には、酸化剤を含んだ溶液を用いた液相酸化によって表
面酸化処理された炭素繊維を用いてもよい。また、炭化
水素ガスを原料として気相中で生成した気相成長法炭素
繊維を用いることもできる。
The carbon fibers used in the present invention can be obtained, for example, by carbonizing the flame-resistant fibers described above in a non-oxidizing atmosphere at a temperature of 800 to 1800°C, preferably 1200 to 1500°C. Furthermore, carbon fibers obtained by carrying out the carbonization process of the flame-resistant fibers in an atmosphere containing an oxidizing gas, and carbon fibers whose fiber surfaces have been oxidized in a vapor phase, and unoxidized carbon fibers that have undergone a carbonization process Carbon fibers whose surface has been oxidized by gas-phase oxidation in an oxidizing gas, electrolytic oxidation using an electrolysis reaction, or liquid-phase oxidation using a solution containing an oxidizing agent can also be used. good. Further, it is also possible to use vapor-grown carbon fibers produced in the vapor phase using hydrocarbon gas as a raw material.

本発明に於ける加熱処理温度は、1000℃以上、好ま
しくは、1300℃〜1400℃である。
The heat treatment temperature in the present invention is 1000°C or higher, preferably 1300°C to 1400°C.

本発明が目的とする強度の向上は、1000℃以上の加
熱処理温度で発現し、特に1300℃〜1400℃では
、原料である炭素繊維内部の炭素質組成が変質すること
なく、均質なものが得られる。また、上述の加熱温度に
於ける処理時間は10秒以上が好ましく、特に20〜1
00秒が好ましい。10秒以上の場合には、引張強度の
向上効果が充分認められ、ま次100秒以内の場合には
、原料である炭素繊維の重量減少が非常に少なく、最高
の引張強度が得られる。
The improvement in strength that is the objective of the present invention occurs at a heat treatment temperature of 1000°C or higher, and in particular at 1300°C to 1400°C, the carbonaceous composition inside the raw material carbon fiber does not change in quality and a homogeneous carbon fiber is produced. can get. Further, the treatment time at the above-mentioned heating temperature is preferably 10 seconds or more, particularly 20 to 1
00 seconds is preferred. When the heating time is 10 seconds or more, a sufficient effect of improving the tensile strength is observed, and when the heating time is 100 seconds or less, the weight loss of the raw material carbon fiber is very small and the highest tensile strength is obtained.

雰囲気ガスとしてのハロゲン化水素ガスさシては、フッ
化水素ガス、塩化水素ガス、臭化水素ガス専のハロゲン
化水素ガス、または炭素繊維の加熱処理温度で熱分解に
より、前述のハロゲン化水素を生成する様なハロゲン化
合物を加熱処理系に添加することにより、発生するハロ
ゲン化水素を用いてもよいが、実用上、塩化水素ガスの
使用が好ましい。
The hydrogen halide gas used as the atmospheric gas is hydrogen halide gas exclusively for hydrogen fluoride gas, hydrogen chloride gas, hydrogen bromide gas, or the aforementioned hydrogen halide gas by thermal decomposition at the heat treatment temperature of carbon fibers. Hydrogen halide generated by adding a halogen compound that produces 2 to the heat treatment system may be used, but from a practical standpoint, it is preferable to use hydrogen chloride gas.

二酸化炭素ガスは、通常市販されているゲンペ詰のもの
であっても良いし、または、炭素繊維の加熱処理温度で
、熱分解により、前述の二酸化炭素を生成する様な炭酸
化合物を、加熱処理系に添加することにより発生する二
酸化炭素を用いても曳いが、二酸化炭素ガスそのものを
用いた方が操業が安定するので好ましい。
The carbon dioxide gas may be a commercially available carbon dioxide gas, or a carbonic acid compound that generates carbon dioxide by thermal decomposition at the heat treatment temperature of carbon fibers may be heat-treated. Although it is possible to use carbon dioxide generated by adding it to the system, it is preferable to use carbon dioxide gas itself because the operation becomes more stable.

また、雰囲気ガスに於て、ハロゲン化水素ガス及び二酸
化炭素ガスに加えて、希釈剤として、他のガスを用いる
ことができる。希釈剤としては、窒素ガス、アルコ9ン
fス等で代表される不活性ガスが好ましい。
Further, in the atmospheric gas, in addition to hydrogen halide gas and carbon dioxide gas, other gases can be used as diluents. The diluent is preferably an inert gas such as nitrogen gas or alcohol.

二酸化炭素ガスの量としては、雰囲気中に占める二酸化
炭素ガス濃度が1.0容量チ以上であることが好ましく
、特に4〜40容量チであることがより好ましい。二酸
化炭素ガス濃度が4容量−以上の場合には、本発明の目
的である高強度化の効果がよく発揮され、また40容量
チ以下の場合には本発明の目的とする高強度炭素繊維が
、特に高収率で得られる。
As for the amount of carbon dioxide gas, it is preferable that the concentration of carbon dioxide gas in the atmosphere is 1.0 by volume or more, and particularly preferably 4 to 40 by volume. When the carbon dioxide gas concentration is 4 volumes or more, the effect of increasing the strength, which is the objective of the present invention, is well exhibited, and when it is 40 volumes or less, the high strength carbon fiber, which is the objective of the present invention, is well exhibited. , especially in high yields.

また、二酸化炭素ガスとハロゲン化水素ガスの割合とし
ては、二酸化炭素ガスに対するハロゲン化水素ガスの容
量比が0.001以上であることが好ましく、さらに該
容量比が0.05〜0.25の場合は、より好ましい。
Further, as for the ratio of carbon dioxide gas to hydrogen halide gas, it is preferable that the volume ratio of hydrogen halide gas to carbon dioxide gas is 0.001 or more, and more preferably the volume ratio is 0.05 to 0.25. It is more preferable if

該容量比が0.001以上の場合、本発明の目的とする
高強度化が、特に充分に発現される。
When the capacity ratio is 0.001 or more, the objective of the present invention, which is to increase the strength, is particularly sufficiently achieved.

〔発明の効果〕〔Effect of the invention〕

本発明方法によって得られる炭素繊維の引張強度は、本
発明方法を施す以前の原料炭素繊維と比べて、かなりの
向上が認められ、特に、条件を最適化することによって
、引張強度が500k19/■2以上の高強度炭素繊維
を得ることができる。さらに、本発明方法では、比較的
容易に、しかも、短時間の処理によって引張強度の向上
効果が発現し、しかも重量減少率もかなり小さい。
The tensile strength of the carbon fibers obtained by the method of the present invention has been significantly improved compared to the raw material carbon fibers obtained before the method of the present invention. Two or more high strength carbon fibers can be obtained. Furthermore, in the method of the present invention, the effect of improving tensile strength is achieved relatively easily and in a short time, and the weight loss rate is also quite small.

また、本発明の方法を、未表面酸化処理の炭素繊維につ
いて実施すると、比表面積が向上し、また光電子分光分
析装置□J CA )による表面の構成原子の割合の測
定から、該高強度炭素繊維表面の酸素原子数が原料炭素
繊維表面の酸素原子数と比べて増加したことが認められ
た。
In addition, when the method of the present invention is carried out on carbon fibers whose surface has not been oxidized, the specific surface area is improved, and measurements of the ratio of constituent atoms on the surface using a photoelectron spectrometer (JCA) show that the high-strength carbon fibers It was observed that the number of oxygen atoms on the surface was increased compared to the number of oxygen atoms on the surface of the raw carbon fiber.

〔実施例〕〔Example〕

以下、本発明を実施例について具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to Examples.

実施例 l アクリロニトリル□系合成繊維(単糸デニール1.3d
、フィラメント数6000)を空気中240℃において
40分間、さらに260℃において20分間加熱して耐
炎化繊維を得、さらに非酸化性雰囲気中、最高処理温度
1300℃で炭素化して、引張強度434に9/m2.
 TEX 420 vl 000m。
Example l Acrylonitrile □-based synthetic fiber (single yarn denier 1.3 d
, 6000 filaments) was heated in air at 240°C for 40 minutes and then at 260°C for 20 minutes to obtain a flame-resistant fiber, which was then carbonized in a non-oxidizing atmosphere at a maximum processing temperature of 1300°C to have a tensile strength of 434. 9/m2.
TEX 420vl 000m.

CFRPでの層関せん断強度9.7 晒−2の炭素繊維
を得次。なお; ESCAによる炭素繊維表面の0/C
値は0.07であった。
Next, carbon fibers with a laminar shear strength of 9.7 and bleaching-2 in CFRP were obtained. Note: 0/C of carbon fiber surface by ESCA
The value was 0.07.

この炭素繊維を用い、二酸化炭素ガス濃度が1.9容量
チ、塩化水素ガスが2.0容量チ、窒素ガスが96.1
容量チからなる雰囲気中、1300tl::にて38秒
間加熱処理を行い、高強度炭素繊維を得た。
Using this carbon fiber, the concentration of carbon dioxide gas was 1.9 volumes, hydrogen chloride gas was 2.0 volumes, and nitrogen gas was 96.1 volumes.
A heat treatment was performed for 38 seconds at 1,300 tl in an atmosphere consisting of a capacitance of 1,000 liters to obtain high-strength carbon fibers.

得られた高強度炭素繊維を用い、JIS−R−7601
−5・3・2に記載の方法に準じてストランドを作製し
、引張強度及びTEXを測定した。結果を第1表に示す
、″また、該高強度炭素繊維の層関せん断強度は11.
8kl?/m2、KSCA K ヨる0/C値は0.1
5であった。
Using the obtained high strength carbon fiber, JIS-R-7601
Strands were produced according to the method described in -5.3.2, and the tensile strength and TEX were measured. The results are shown in Table 1. Also, the interlaminar shear strength of the high-strength carbon fiber was 11.
8kl? /m2, KSCA K Yoru0/C value is 0.1
It was 5.

実施例 2 実施例1において、二酸化炭素ガス濃度を20容量俤、
塩化水素ガスを1.0容量チ、窒素ガスを79容it%
とじた以外は全て同様な処理を行ない、同様にして、ス
トランドを作製した。物性測定の結果は第1表に示す。
Example 2 In Example 1, the carbon dioxide gas concentration was set to 20 volumes,
1.0 volume of hydrogen chloride gas, 79 volume it% of nitrogen gas
A strand was produced in the same manner, except for binding. The results of physical property measurements are shown in Table 1.

比較例 1 実施例1において、雰囲気ガスを窒素のみとした以外は
、全く同様な処理を行ない、ストランドの物性測定を行
なった。結果を第1表に示す。
Comparative Example 1 The same treatment as in Example 1 was performed except that only nitrogen was used as the atmospheric gas, and the physical properties of the strands were measured. The results are shown in Table 1.

比較例 2 実施例1において、雰囲気ガスを二酸化炭素ガス濃度2
0容量チ、窒素ガス80容量チとした以外は、全て同様
な処理を行ない、同様にして、ストランド強度を測定し
た。結果は第1表に示す。
Comparative Example 2 In Example 1, the atmospheric gas was changed to a carbon dioxide gas concentration of 2.
The same treatment was performed except that the volume of nitrogen gas was 0 and the volume of nitrogen gas was 80, and the strand strength was measured in the same manner. The results are shown in Table 1.

比較例 3 実施例1において、雰囲気ガスを塩化水素ガス1.0容
f俤、窒素ガス99.0容量チとした以外は、全て同様
な処理を行ない、同様にして、ストランドの物性測定を
行なった。結果を第1表に示す。
Comparative Example 3 All the same treatments as in Example 1 were carried out except that the atmospheric gases were hydrogen chloride gas of 1.0 volume and nitrogen gas of 99.0 volume, and the physical properties of the strands were measured in the same manner. Ta. The results are shown in Table 1.

実施例 3 実施例1において、雰囲気ガスを、二酸化炭素ガス濃度
20容量チ、臭化水素ガス1.0容量チ、窒素ガス79
容量チとした以外は全て、同様な処理を行ない、同様に
して、ストランド物性を測定した。結果を第1表に示す
Example 3 In Example 1, the atmospheric gases were carbon dioxide gas concentration of 20 volumes, hydrogen bromide gas of 1.0 volumes, and nitrogen gas of 79 volumes.
All of the strands were treated in the same manner except that the capacity was changed to 1, and the physical properties of the strands were measured in the same manner. The results are shown in Table 1.

実施例 4 アクリロニトリル系合成繊維より得られた耐炎化繊維を
酸化性雰囲気中、最高処理温度1350℃で炭素化と同
時に繊維表面を酸化処理して、引張強度460に9/m
 、TEX406.F/1000−炭素繊維を得た。こ
の炭素繊維を用い加熱処理温度1350℃とした以外は
、全て実施例1と同様な処理を行ない、同様にして、ス
トランドを作製した。ストランドの物性測定の結果は第
1表に示す。
Example 4 Flame-resistant fiber obtained from acrylonitrile synthetic fiber was carbonized at the maximum treatment temperature of 1350°C in an oxidizing atmosphere, and the fiber surface was simultaneously oxidized to have a tensile strength of 460 and 9/m.
, TEX406. F/1000-carbon fiber was obtained. A strand was produced in the same manner as in Example 1, except that this carbon fiber was used and the heat treatment temperature was 1350°C. The results of measuring the physical properties of the strands are shown in Table 1.

実施例 5 実施例4において、雰囲気ガスを、二酸化炭素ガス40
容量チ、塩化水素ガス1.0容量チ、窒素〃ス59容量
チとした以外は全て、同様な処理を行ない、同様にして
ストランド物性を測定した。
Example 5 In Example 4, the atmospheric gas was carbon dioxide gas 40
The strand physical properties were measured in the same manner except that the volume was 1.0 vol., the hydrogen chloride gas was 1.0 vol., and the nitrogen gas was 59 vol.

結果を第1光に示す。The results are shown in the first light.

実施例 6 アクリロニトリル系合成繊維より得られた耐炎化繊維を
不活性雰囲気中、最高温度1250℃で炭素化し、その
後、該炭素繊維を陽極とし、電解液中にて、通電し、表
面酸化処理を施して、引張強度467IK!9/m、T
EX316J/1000mの炭素繊維を得た。この炭素
繊維を用い雰囲気ガスを二酸化炭素ガス20容量チ、塩
化水素ガス1.0容量チ、窒素ガス79容量チ、とし、
処理温度1200℃で38秒間加熱処理を施した。得ら
れた炭素繊維の物性を第1表に示す。
Example 6 Flame-resistant fibers obtained from acrylonitrile synthetic fibers were carbonized in an inert atmosphere at a maximum temperature of 1250°C, and then the carbon fibers were used as anodes and energized in an electrolytic solution to undergo surface oxidation treatment. After applying it, the tensile strength is 467IK! 9/m, T
EX316J/1000m carbon fiber was obtained. Using this carbon fiber, the atmospheric gas was set to 20 volumes of carbon dioxide gas, 1.0 volumes of hydrogen chloride gas, and 79 volumes of nitrogen gas.
Heat treatment was performed at a treatment temperature of 1200° C. for 38 seconds. Table 1 shows the physical properties of the obtained carbon fiber.

以下余日Remaining days below

Claims (2)

【特許請求の範囲】[Claims] (1)炭素繊維をハロゲン化水素ガスと二酸化炭素ガス
を含有する雰囲気中で、少くとも1000℃以上の温度
で加熱処理することを特徴とする高強度炭素繊維の製造
方法。
(1) A method for producing high-strength carbon fibers, which comprises heat-treating carbon fibers at a temperature of at least 1000° C. in an atmosphere containing hydrogen halide gas and carbon dioxide gas.
(2)雰囲気中の二酸化炭素ガス濃度が1.0容量%以
上であり、且つ二酸化炭素ガスに対するハロゲン化水素
ガスの容量比が0.001以上である特許請求の範囲第
1項記載の高強度炭素繊維の製造方法。
(2) The high strength according to claim 1, wherein the carbon dioxide gas concentration in the atmosphere is 1.0% by volume or more, and the volume ratio of hydrogen halide gas to carbon dioxide gas is 0.001 or more. Carbon fiber manufacturing method.
JP20579486A 1986-09-03 1986-09-03 Production of high-strength carbon fiber Pending JPS6366326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20579486A JPS6366326A (en) 1986-09-03 1986-09-03 Production of high-strength carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20579486A JPS6366326A (en) 1986-09-03 1986-09-03 Production of high-strength carbon fiber

Publications (1)

Publication Number Publication Date
JPS6366326A true JPS6366326A (en) 1988-03-25

Family

ID=16512790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20579486A Pending JPS6366326A (en) 1986-09-03 1986-09-03 Production of high-strength carbon fiber

Country Status (1)

Country Link
JP (1) JPS6366326A (en)

Similar Documents

Publication Publication Date Title
US4073869A (en) Internal chemical modification of carbon fibers to yield a product of reduced electrical conductivity
JPH0469214B2 (en)
US3497318A (en) Preparation of carbon textiles from polyacrylonitrile base textiles
US4374114A (en) Process for the surface modification of carbon fibers
US3972984A (en) Process for the preparation of carbon fiber
JPS6366326A (en) Production of high-strength carbon fiber
US3592595A (en) Stabilization and carbonization of acrylic fibrous material
JPH0314624A (en) Production of carbon yarn
JPH0321671B2 (en)
US5292408A (en) Pitch-based high-modulus carbon fibers and method of producing same
JPH0116927B2 (en)
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JPS6366325A (en) Production of carbon fiber for high-performance cfrp
JPS60110925A (en) Manufacture of high-performance carbon fiber
JPS5842288B2 (en) High strength carbon fiber and its manufacturing method
JPH02259119A (en) High density graphite yarn and production thereof
JPS6047033A (en) Surface treatment of high-strength carbon fiber
JP3002698B2 (en) Manufacturing method of graphite fiber
JPH0219513A (en) Production of carbon fiber having high strength and high modulus of elasticity
JPH03287860A (en) Production of carbon fiber
JP2930166B2 (en) Carbon fiber production method
JPH0860447A (en) Production of pitch-based carbon yarn
JPH02259118A (en) Graphite fiber having high tensile strength
JPS599272A (en) Acrylonitrile fiber and method
Immanuel et al. Synthesis of carbon cloth by controlled pyrolysis of rayon cloth for aerospace and advanced engineering applications