JPS6365395B2 - - Google Patents

Info

Publication number
JPS6365395B2
JPS6365395B2 JP17357484A JP17357484A JPS6365395B2 JP S6365395 B2 JPS6365395 B2 JP S6365395B2 JP 17357484 A JP17357484 A JP 17357484A JP 17357484 A JP17357484 A JP 17357484A JP S6365395 B2 JPS6365395 B2 JP S6365395B2
Authority
JP
Japan
Prior art keywords
tank
sludge
meter
value
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17357484A
Other languages
Japanese (ja)
Other versions
JPS6157295A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59173574A priority Critical patent/JPS6157295A/en
Publication of JPS6157295A publication Critical patent/JPS6157295A/en
Publication of JPS6365395B2 publication Critical patent/JPS6365395B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 この発明は、有機性廃水の活性汚泥処理法の最
終工程に用いられる沈澱槽に関するものである。 「従来の技術」 従来、有機性廃水の脱リンを伴なう活性汚泥法
による処理は、第2図に示すような工程により行
なわれている。 すなわち、原廃水および返送汚泥は、まず嫌気
性槽1に送られる。この嫌気性槽1はDO(溶存
酸素)濃度が低く保たれた槽であつて、この槽1
に送られた返送汚泥中の微生物は、その性質によ
りここで廃水中にリンを放出する。そして、この
微生物は廃水の流れと共に脱窒素槽2を介して硝
化槽3へ送られる。 上記脱窒素槽2では、活性汚泥中の脱窒素菌が
硝化槽3から返送されてくる廃水中に含まれてい
る硝酸性窒素および亜硝酸性窒素(NOx―N)
に結合している酸素を利用して、原廃水中の
BOD成分(有機栄養源)を同化するので、NOx
―Nの窒素は窒素ガスとして大気中に放出され、
これにより窒素が除去される。 ついで、この脱窒素された廃水は、硝化槽3に
導入される。この脱窒素槽2から送られてくる廃
水には原廃水中に含有されていた有機性窒素およ
びアンモニア性窒素が含まれており、硝化槽3で
は活性汚泥中の亜硝酸化菌、硝化菌によりこれら
窒素成分の硝化が行なわれる。さらに、この硝化
槽3では、返送汚泥中の微生物によりリン分の除
去が行なわれる。すなわち、この硝化槽3は好気
性状態(DOが高い状態)にあるので、ここに送
られてきた活性汚泥中の微生物は、その性質に基
づき廃水中のリンを前記嫌気性槽1で放出した以
上に取込み、これにより廃水中のリン分が除去さ
れる。 上記のように処理された廃水は、一部前記脱窒
素槽2に返送(循環)され、残部は沈澱槽4に送
られる。この沈澱槽4はホツパー型の容器で、こ
の沈澱槽4では、硝化槽3から送られてきた処理
水中にある活性汚泥を沈澱分離し、上澄液を滅
菌、希釈等の処理を経て最終処理水として放流し
ている。なお、分離された汚泥の一部は、前記嫌
気性槽1への返送汚泥とされ、残部は余剰汚泥と
して別途処理されている。 「発明が解決しようとする問題点」 上記従来の沈澱槽においては、下記のような問
題点があり、その解決が望まれている。 沈澱槽内の沈澱汚泥中のDO濃度は、第2図に
示すように上澄液に対し急激に低くなつており、
しかも経時的に低下し、さらにはDO濃度が零に
なつた後もつづいて酸化還元電位(ORP)値が
低下する。そのため、沈澱汚泥中で硝酸性窒素
(NO3―N)の脱窒が起つたり、炭酸ガスが放出
されたりして汚泥中に気泡が蓄積してスカムの浮
上が多発し、それに伴なつて処理水(上澄液)の
BOD値、COD値、SS値、トータルリン量(以
下、T―P値と称す)などの水質項目が悪化す
る。特にT―P値については、上記のようにDO
値さらにORP値の低下のため、沈澱槽中は強く
嫌気状態となるので、汚泥中の微生物がその性質
によりリンを放出し、その結果、処理水中のリン
濃度が上昇し、水質が悪化してしまう。さらに
は、前記浮上スカムの生体内に取込まれたリン分
に起因して処理水中のT―P値が一層増加してし
まう。 この発明は上記事情に鑑みてなされたもので、
沈澱汚泥内の脱窒や炭酸ガスの発生によるスカム
の浮上および汚泥中からのリン分の溶脱を防止
し、処理水質の改善を図ることのできる沈澱槽を
提供することを目的とするものである。 「問題点を解決するための手段」 この発明に係る曝気沈澱槽は、沈澱槽の内部の
沈澱汚泥内の酸化還元電位を測定する酸化還元電
位(ORP)計または/および同汚泥内の溶存酸
素濃度を測定する溶存酸素濃度計を設けるととも
に、この酸化還元電位計または/および溶存酸素
濃度(DO)計の測定値が所定値を逸脱した時に
槽内の曝気を行なう曝気装置を取付け、さらにこ
の沈澱槽に曝気停止時に槽内の上澄み処理水を放
流する放流装置を取りつけたものである。 「作用」 上記構成よれば、ORP計または/およびDO計
の測定値に基づいて槽内を間歇的に曝気して槽内
の酸化還元電位を所定の値以上に保持し、それに
よつて槽内が嫌気性状態になることを防止するこ
とができ、その結果、汚泥内の脱窒や炭酸ガスに
よるスカムの浮上および汚泥中からのリン分の溶
脱を防止し、処理水質の改善を図ることができ
る。 以下、この発明を実施例により詳しく説明す
る。 「実施例」 第1図はこの発明の一実施例を示すもので、図
中符号5はポツパー型をした沈澱槽を示すもので
ある。この沈澱槽1の中央にはセンターウエル6
が設けられており、同沈澱槽1の一側部には上記
センターウエル6内上部に開口する汚泥混合液導
入用の配管7が取りつけられている。また、この
沈澱槽5内の他側部には、その先端検出部8aを
沈澱汚泥中に挿入するようにして酸化還元電位
(ORP)計8が取付けられている。これに対し、
沈澱槽5内の一側部には、先端散気口9a、曝気
配管9b、電磁弁9cおよび送風機9dとからな
る曝気装置9が設けられており、前記ORP計8
の測定値に基づいて作動するように構成されてい
る。さらに同沈澱槽5内の他側部には、越流ぜき
10a、配管10b、および排出ポンプ10cと
からなる放流装置10が設けられており、排出ポ
ンプ10cが前記ORP計8および送風機9dと
に電気的に接続されているタイマ11に電気的に
接続されている。上記越流ぜき10aは水面下
0.5〜3cmに越流端をもつフロート稼動ぜきであ
り、水面の上下に応じて上下し、常に汚泥沈澱後
の上澄水を水面から一定の深さ(0.5〜3cm)で
吸引出来る構造を有している。 次に上記構成の曝気沈澱槽の作用を説明する。 まず、活性汚泥処理の終了した(あるいは途中
の)汚泥混合液を配管7を通してセンターウエル
6内に流入させる(この汚泥混合液の流入は連続
でも間欠でもどちらでもかまわない)。そして
ORP計8の測定値により送風機9dおよび排出
ポンプ10cが稼動または停止する。すなわち、
ORP値が所定値(例えば―50mV)より低下した
ら送風機9dにより配管9bを介して散気口9a
から構内に散気する。この曝気により槽内の
ORP値が一定値(一般に前記所定値より30〜
200mV位高くとる)に上昇したら、曝気を停止
し、一定時間(あるいは一定レベルを達するま
で)、静置した後、一定時間あるいは一定レベル
まで上澄水を水面近傍にフロートする越流ぜき1
0aから排出ポンプ10cにより処理水として放
流する。ここで、レベルにより制御する場合は図
示していないがレベル計が必要であり、時間より
制御する場合はタイマ11を介することが必要で
ある。また、曝気および/または上澄みの引抜き
の制御を上記電磁弁9c等を介して行なう場合
は、ORP計8(あるいはレベル計)からの電気
信号により時にはタイマ11を介し、上記電磁弁
11を作動させて行なうことは言うまでもない。
なお、放流装置10として越流ぜき10aを用い
るかわりにサイフオン構造のものを使用してもよ
い。 上記のように、この曝気沈澱槽によれば、常に
槽内のORP値を所定値以上(槽内を所定以上に
嫌気性状態としない値)に維持することができる
ので、沈澱汚泥からのリンの溶脱は皆無に等しく
なり、処理水質の向上が図れる。さらに、同上の
理由により汚泥内の脱窒や炭酸ガスの発生を抑え
ることができ、スカムが浮上することがなく、
BOD値、COD値、SS値などの水質項目が悪化す
ることがない。 このような本発明の曝気沈澱槽の効果を確認す
るために、従来の沈澱槽との生活排水を対象とし
た処理水質の比較をしたところ、下表のように大
幅な改善が得られたことが判明した。
"Field of Industrial Application" The present invention relates to a settling tank used in the final step of an activated sludge treatment method for organic wastewater. "Prior Art" Conventionally, the treatment of organic wastewater by an activated sludge method involving dephosphorization has been carried out by the steps shown in FIG. That is, the raw wastewater and return sludge are first sent to the anaerobic tank 1. This anaerobic tank 1 is a tank in which the concentration of DO (dissolved oxygen) is kept low.
Microorganisms in the returned sludge sent to the sludge release phosphorus into the wastewater here due to their nature. The microorganisms are then sent to the nitrification tank 3 via the denitrification tank 2 along with the flow of wastewater. In the denitrification tank 2, denitrification bacteria in the activated sludge convert nitrate nitrogen and nitrite nitrogen (NOx-N) contained in the wastewater returned from the nitrification tank 3.
in raw wastewater by using oxygen bound to
As it assimilates BOD components (organic nutrients), NOx
-N nitrogen is released into the atmosphere as nitrogen gas,
This removes nitrogen. This denitrified wastewater is then introduced into the nitrification tank 3. The wastewater sent from this denitrification tank 2 contains organic nitrogen and ammonia nitrogen contained in the raw wastewater, and in the nitrification tank 3, the nitrifying bacteria and nitrifying bacteria in the activated sludge are These nitrogen components are nitrified. Furthermore, in this nitrification tank 3, phosphorus content is removed by microorganisms in the returned sludge. In other words, since this nitrification tank 3 is in an aerobic state (high DO), the microorganisms in the activated sludge sent here release phosphorus in the wastewater in the anaerobic tank 1 based on their properties. This removes phosphorus from the wastewater. A portion of the wastewater treated as described above is returned (circulated) to the denitrification tank 2, and the remainder is sent to the sedimentation tank 4. This sedimentation tank 4 is a hopper type container, and in this sedimentation tank 4, the activated sludge in the treated water sent from the nitrification tank 3 is separated by sedimentation, and the supernatant liquid is sterilized, diluted, etc., and then subjected to final treatment. It is released as water. Note that a part of the separated sludge is returned to the anaerobic tank 1 as sludge, and the remainder is treated separately as surplus sludge. "Problems to be Solved by the Invention" The conventional settling tank described above has the following problems, and it is desired to solve them. As shown in Figure 2, the DO concentration in the settled sludge in the settling tank is rapidly lower than that in the supernatant liquid.
Furthermore, the oxidation-reduction potential (ORP) value continues to decrease over time, and even after the DO concentration reaches zero. As a result, denitrification of nitrate nitrogen (NO 3 -N) occurs in the settled sludge, and carbon dioxide gas is released, causing air bubbles to accumulate in the sludge and scum to float frequently. of treated water (supernatant liquid)
Water quality items such as BOD value, COD value, SS value, and total phosphorus amount (hereinafter referred to as TP value) deteriorate. In particular, regarding the T-P value, DO
Furthermore, due to the decrease in the ORP value, the sedimentation tank becomes strongly anaerobic, so the microorganisms in the sludge release phosphorus due to their nature, resulting in an increase in the phosphorus concentration in the treated water and a deterioration in water quality. Put it away. Furthermore, the TP value in the treated water further increases due to the phosphorus content taken into the living body of the floating scum. This invention was made in view of the above circumstances,
The purpose of the present invention is to provide a settling tank that can improve the quality of treated water by preventing denitrification in settled sludge, surfacing of scum due to generation of carbon dioxide, and leaching of phosphorus from sludge. . "Means for Solving the Problems" The aeration and settling tank according to the present invention includes an oxidation-reduction potential (ORP) meter that measures the redox potential in the settled sludge inside the settling tank, and/or an oxidation-reduction potential (ORP) meter that measures the redox potential in the settled sludge inside the settling tank, and/or an oxidation-reduction potential (ORP) meter that measures the redox potential in the settled sludge inside the settling tank, and In addition to installing a dissolved oxygen concentration meter to measure the concentration, an aeration device is installed to aerate the tank when the measured value of this oxidation-reduction potential meter and/or dissolved oxygen concentration (DO) meter deviates from a predetermined value. The sedimentation tank is equipped with a discharge device that discharges the supernatant treated water inside the tank when aeration is stopped. "Function" According to the above configuration, the inside of the tank is intermittently aerated based on the measured values of the ORP meter and/or DO meter to maintain the oxidation-reduction potential inside the tank at a predetermined value or higher. As a result, it is possible to prevent denitrification in the sludge, the surfacing of scum due to carbon dioxide gas, and the leaching of phosphorus from the sludge, thereby improving the quality of treated water. can. Hereinafter, this invention will be explained in detail with reference to Examples. ``Embodiment'' FIG. 1 shows an embodiment of the present invention, and reference numeral 5 in the figure indicates a popper-shaped settling tank. In the center of this settling tank 1 is a center well 6.
A piping 7 for introducing the sludge mixture, which opens at the upper part of the center well 6, is attached to one side of the settling tank 1. Further, an oxidation-reduction potential (ORP) meter 8 is attached to the other side of the sedimentation tank 5 so that its tip detection portion 8a is inserted into the settled sludge. In contrast,
An aeration device 9 consisting of a tip diffuser 9a, an aeration pipe 9b, a solenoid valve 9c, and a blower 9d is provided on one side of the sedimentation tank 5, and the ORP meter 8
is configured to operate based on the measured value of. Further, on the other side of the sedimentation tank 5, a discharge device 10 is provided which includes an overflow weir 10a, piping 10b, and a discharge pump 10c, and the discharge pump 10c is connected to the ORP total 8 and the blower 9d. The timer 11 is electrically connected to the timer 11 which is electrically connected to the timer 11 . The above overflow weir 10a is below the water surface.
It is a floating weir with an overflow end of 0.5 to 3 cm, which moves up and down according to the rise and fall of the water surface, and has a structure that allows it to always suck up the supernatant water after sludge settling at a constant depth (0.5 to 3 cm) from the water surface. are doing. Next, the operation of the aeration sedimentation tank having the above configuration will be explained. First, the sludge mixture after activated sludge treatment (or in the middle) is made to flow into the center well 6 through the pipe 7 (the sludge mixture may flow continuously or intermittently). and
The blower 9d and the discharge pump 10c are operated or stopped according to the measured value of the ORP meter 8. That is,
When the ORP value falls below a predetermined value (for example, -50mV), the blower 9d sends the air through the air diffuser 9a through the pipe 9b.
diffuse air into the premises. This aeration causes the inside of the tank to
The ORP value is a constant value (generally 30~
When the aeration rises to about 200 mV (higher than 200 mV), stop the aeration, let it stand for a certain period of time (or until it reaches a certain level), and then open the overflow weir 1 to float the supernatant water near the water surface for a certain period of time or until it reaches a certain level.
It is discharged as treated water from 0a by a discharge pump 10c. Here, when controlling based on level, a level meter (not shown) is required, and when controlling based on time, it is necessary to use a timer 11. When controlling aeration and/or supernatant withdrawal via the solenoid valve 9c, etc., the solenoid valve 11 is actuated by an electric signal from the ORP meter 8 (or level meter), sometimes via the timer 11. It goes without saying that we should do it.
In addition, instead of using the overflow weir 10a as the discharge device 10, a device having a siphon structure may be used. As mentioned above, according to this aeration sedimentation tank, the ORP value in the tank can always be maintained at a predetermined value or higher (a value that does not make the tank interior more anaerobic than the predetermined value), so phosphorus from the settled sludge is removed. The leaching of water becomes almost non-existent, and the quality of treated water can be improved. Furthermore, for the same reason as above, denitrification and carbon dioxide generation in the sludge can be suppressed, and scum will not float to the surface.
Water quality items such as BOD value, COD value, and SS value will not deteriorate. In order to confirm the effects of the aeration sedimentation tank of the present invention, we compared the treated water quality of domestic wastewater with a conventional sedimentation tank, and found that a significant improvement was obtained as shown in the table below. There was found.

【表】 なお、上記実施例では、ORP計を設け、その
測定値に基づいて、曝気槽するように構成した
が、このORP計の替りに、または一緒にDO計を
設け、DO値またはDO値とORP値とに基づいて
曝気の制御を行なうようにしても同様の効果を得
ることができる。 また、この発明は、従来例(第2図)に示した
生物脱リンを伴なう活性汚泥法を主に対象とした
もので、それは本発明の曝気沈澱槽が槽内を好気
性状態にすることができるのに対し、脱リンを伴
なう活性汚泥法では下記に述べるように特に嫌気
性状態になりやすいためである。 すなわち、汚泥混合液中の汚泥の酸素吸収速度
は、標準活性汚泥法で10〜15mgO2/gMLSS/
hrに対し、生物脱リンを伴なう場合は、好気性槽
での曝気時間および嫌気性槽での滞留時間によつ
ても異なるが大略17〜30mgO2/gMLSS/hrと
標準法の1.5〜2倍の酸素吸収速度を有している。
従つて、それだけ沈澱槽でDOが使われる速度が
速く嫌気化しやすい。汚泥混合液中のDO濃度を
2.5mg/とすると、MLSS3000〜4000mg/で
2〜3分で汚泥槽内のDOはほとんどなくなつて
しまう。また、生物脱リンを伴なう場合、SVI値
(汚泥の沈澱しやすさを示す値。小さい程沈澱し
やすい。)が小さく、それだけ沈降性がよくなる
ため沈澱汚泥の密度が高くなり、それだけ沈澱槽
中が(標準活性泥法でSVI80〜150のものが生物
脱リン法では50〜100)嫌気化しやすい。 しかし、この発明の曝気沈澱槽は、生物脱リン
を伴なう活性汚泥法ばかりでなく、曝気槽から直
接沈澱槽に処理水を導く構成の標準的な活性汚泥
法にも有効であり、適用されるべきものである。 「効果」 以上説明したように、この発明に係る曝気沈澱
槽によれば、ORP計または/およびDO計の測定
値に基づいて槽内を間歇的に曝気して槽内の酸化
還元電位または/および溶存酸素濃度を所定の値
以上に保持し、それによつて槽内が嫌気性状態に
なることを防止することができ、その結果、汚泥
内の脱窒や炭酸ガスによるスカムの浮上および汚
泥中からのリン分の溶脱を防止し、処理水質の改
善を図ることができる。
[Table] In the above embodiment, an ORP meter was provided and the aeration tank was configured based on the measured value. However, a DO meter was provided instead of or together with the ORP meter to determine the DO value or DO value. A similar effect can be obtained by controlling aeration based on the ORP value and the ORP value. In addition, this invention is mainly aimed at the activated sludge method that involves biological dephosphorization shown in the conventional example (Figure 2), in which the aeration sedimentation tank of the present invention maintains the inside of the tank in an aerobic state. This is because activated sludge methods that involve dephosphorization are particularly susceptible to anaerobic conditions, as described below. In other words, the oxygen absorption rate of sludge in the sludge mixture is 10 to 15 mgO 2 /gMLSS/ in the standard activated sludge method.
hr, when biological dephosphorization is involved, it varies depending on the aeration time in the aerobic tank and residence time in the anaerobic tank, but it is approximately 17 to 30 mgO 2 /gMLSS/hr and 1.5 to 1.5 in the standard method. It has twice the oxygen absorption rate.
Therefore, the rate at which DO is used in the settling tank is faster and it is more likely to become anaerobic. DO concentration in sludge mixture
If it is 2.5mg/, the DO in the sludge tank will almost disappear in 2-3 minutes at MLSS 3000-4000mg/. In addition, when biological dephosphorization is involved, the SVI value (a value that indicates the ease with which sludge settles. The smaller it is, the easier it is to settle.) is small, and the settling property becomes better, so the density of the settled sludge becomes higher, and the settling rate increases accordingly. The inside of the tank tends to become anaerobic (SVI of 80 to 150 in the standard activated mud method is 50 to 100 in the biological dephosphorization method). However, the aeration sedimentation tank of the present invention is effective not only for activated sludge methods that involve biological dephosphorization, but also for standard activated sludge methods in which treated water is directly led from the aeration tank to the settling tank. It should be done. "Effect" As explained above, according to the aeration sedimentation tank according to the present invention, the inside of the tank is intermittently aerated based on the measured values of the ORP meter and/or the DO meter, and the oxidation-reduction potential inside the tank is By maintaining the dissolved oxygen concentration above a predetermined value, it is possible to prevent the inside of the tank from becoming anaerobic.As a result, denitrification in the sludge, scum floating due to carbon dioxide gas, and It is possible to prevent leaching of phosphorus from the water and improve the quality of treated water.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す構成図、第
2図は従来行なわれている有機性廃水の脱リンを
伴なう活性汚泥処理法を示す工程図、第3図は従
来の沈澱槽内の溶存酸素濃度分布を示す図であ
る。 5……沈澱槽、8……酸化還元電位(ORP)
計、9……曝気装置、10……放流装置。
Figure 1 is a block diagram showing an embodiment of the present invention, Figure 2 is a process diagram showing a conventional activated sludge treatment method involving dephosphorization of organic wastewater, and Figure 3 is a diagram showing a conventional sedimentation method. It is a figure showing dissolved oxygen concentration distribution in a tank. 5...Sedimentation tank, 8...Oxidation-reduction potential (ORP)
Total, 9...aeration device, 10...discharge device.

Claims (1)

【特許請求の範囲】[Claims] 1 有機性廃水の活性汚泥処理法の最終工程であ
る処理水中の活性汚泥の沈殿分離工程に用いられ
る沈殿槽において、この沈殿槽に内部の沈殿汚泥
内の酸化還元電位を測定する酸化還元電位計また
は/および同汚泥内の溶存酸素濃度を測る溶存濃
度計を設けるとともに、この酸化還元電位計また
は/および溶存酸素濃度計の測定値が所定値以下
となつた時に槽内の曝気を行なう曝気装置を取付
け、さらにこの沈殿槽に前記酸化還元電位計また
は/および溶存酸素濃度計の測定値が一定値に上
昇した場合に行なう曝気停止時に槽内の上澄み処
理水を放流する放流装置を取付けたことを特徴と
する曝気沈澱槽。
1. In a settling tank used in the sedimentation separation process of activated sludge in treated water, which is the final step of the activated sludge treatment method for organic wastewater, a redox potential meter is installed in this settling tank to measure the redox potential of the settled sludge inside the settling tank. Or/and an aeration device that is equipped with a dissolved concentration meter that measures the dissolved oxygen concentration in the sludge, and that aerates the tank when the measured value of the oxidation-reduction potentiometer or/and dissolved oxygen concentration meter falls below a predetermined value. and a discharge device for discharging the supernatant treated water in the tank when the aeration is stopped when the measured value of the oxidation-reduction potential meter and/or dissolved oxygen concentration meter rises to a certain value. An aerated sedimentation tank featuring:
JP59173574A 1984-08-21 1984-08-21 Aeration sedimentation tank Granted JPS6157295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59173574A JPS6157295A (en) 1984-08-21 1984-08-21 Aeration sedimentation tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59173574A JPS6157295A (en) 1984-08-21 1984-08-21 Aeration sedimentation tank

Publications (2)

Publication Number Publication Date
JPS6157295A JPS6157295A (en) 1986-03-24
JPS6365395B2 true JPS6365395B2 (en) 1988-12-15

Family

ID=15963083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59173574A Granted JPS6157295A (en) 1984-08-21 1984-08-21 Aeration sedimentation tank

Country Status (1)

Country Link
JP (1) JPS6157295A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142688A (en) * 1992-11-02 1994-05-24 Daiki Kk Control method for intermittent aeration in purifying method for sewage of intermittent aeration type

Also Published As

Publication number Publication date
JPS6157295A (en) 1986-03-24

Similar Documents

Publication Publication Date Title
AU2002301606B2 (en) Batch Style Wastewater Treatment Apparatus Using Biological Filtering Process and Wastewater Treatment Method Using The Same
Henze et al. Rising sludge in secondary settlers due to denitrification
Stegmann et al. Leachate treatment
US7329349B2 (en) Water treatment
JPH0655190A (en) Method for controlling intermittent aeration-type activated sludge technique
KR101537755B1 (en) Apparatus for treating landfill leachate using aerobic granular sludge and treatment method using thereof
JP3399443B2 (en) High-load biological treatment method
JP2002119993A (en) Method and apparatus for treating wastewater
KR100306665B1 (en) Microbial Reactor and Drainage Treatment Method
JPS6365395B2 (en)
WO2003101896A1 (en) Apparatus and method for waste water treatment
Hajsardar et al. Nitrogen removal from ammonium-rich pharmaceutical wastewater. A comparison between sequencing batch reactor (SBR) and sequencing batch biofilm reactor (SBBR)
KR20230088734A (en) Method for treating wastewater effluent by densifying sludge in a series of batch reactors
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JP2004041981A (en) Organic waste water treatment method and its system
KR100698385B1 (en) A removal method of organics and nitrogen compounds of wastewater using porosit media a2/o process
JP2759308B2 (en) Method and apparatus for treating organic wastewater
JPH09174071A (en) Method for treating organic sewage and apparatus therefor
Kayser Activated sludge process
JP5801506B1 (en) Operation method of biological denitrification equipment
JPH091172A (en) Biological treatment device
JPS60139396A (en) Removal of phosphorous and nitrogen from bod- containing water
JP2003225693A (en) Method for drainage treatment
JPH0116559B2 (en)
JPH08192179A (en) Device for setting residence time of sludge in activated sludge process