JPS6365079A - Surface coated head alloy for cutting tool having high resistance to chipping - Google Patents

Surface coated head alloy for cutting tool having high resistance to chipping

Info

Publication number
JPS6365079A
JPS6365079A JP20879786A JP20879786A JPS6365079A JP S6365079 A JPS6365079 A JP S6365079A JP 20879786 A JP20879786 A JP 20879786A JP 20879786 A JP20879786 A JP 20879786A JP S6365079 A JPS6365079 A JP S6365079A
Authority
JP
Japan
Prior art keywords
coating layer
hard coating
cutting
hard
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20879786A
Other languages
Japanese (ja)
Other versions
JPH0788569B2 (en
Inventor
Hironori Yoshimura
吉村 寛範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP61208797A priority Critical patent/JPH0788569B2/en
Publication of JPS6365079A publication Critical patent/JPS6365079A/en
Publication of JPH0788569B2 publication Critical patent/JPH0788569B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce a surface coated hard alloy for cutting tools having high resistance to chipping by specifying the compressive residual stress of a hard coating layer consisting of carbide, etc., of group 4a metals at the time of forming said hard coating layer on the surface of a base body consisting of a WC-base sintered hard alloy, etc. CONSTITUTION:The hard coating layer consisting of the single layer of one kind among the groups of the carbide, nitride and oxide of the group 4a metals of the periodic table and the solid solns., of >=2 kinds thereof or plural layers of >=2 kinds thereof is formed on the surface of the base body consisting of any among the WC-base sintered hard alloy, TiCN-base cermet or high speed steel. The formation of the hard coating layer is executed by a cluster in beam method without using an ion plating method to decrease the compressive residual stress in the hard coating layer to <=0.7Pa. The generation of exfoliation in the hard coating layer is thereby prevented and the surface coated hard alloy for cutting tools which exhibits the resistance to chipping and exhibits the excellent wear resistance for a long period of time is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 、 この発明は、すぐれた耐欠損性を有し、かつ耐摩耗
性にもすぐれ、特に切削工具として用いた場合に、硬質
被覆層の剥離なく、すぐれた切削を発揮する表面被覆硬
質合金に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention has excellent fracture resistance and wear resistance, and particularly when used as a cutting tool, the hard coating layer can be easily peeled off. It relates to a surface-coated hard alloy that exhibits excellent cutting performance.

〔従来の技術〕[Conventional technology]

一般に、炭化タングステン(以下weで示す)基超硬合
金や、炭窒化チタン(以下T1CNで示す)基サーメッ
ト、さらに高速度鋼で構成された基体の表面に、元素周
期律表の4a族金属の炭化物、窒化物、および酸化物、
並びにこれらの2種以上の固溶体からなる群のうちの1
種の単層または2種以上の複層からなる硬質被覆層をイ
オンブレーティング法によシ形成してなる表面被覆硬質
合金が切削工具として用いられている。
In general, metals from Group 4a of the Periodic Table of Elements are applied to the surface of a substrate made of tungsten carbide (hereinafter referred to as WE)-based cemented carbide, titanium carbonitride (hereinafter referred to as T1CN)-based cermet, or high-speed steel. carbides, nitrides, and oxides,
and one of the group consisting of two or more of these solid solutions
A surface-coated hard alloy formed by forming a hard coating layer consisting of a single layer of seeds or a multilayer of two or more types by an ion blasting method is used as a cutting tool.

〔発明が鱗決しようとする問題点〕[Problems that the invention attempts to determine]

しかし、上記の従来表面被覆硬質合金においては、これ
を例えば高速シ切削などの高負荷条件の切削や断続切削
に切削工具として用いた場合、硬質被覆層に剥離が発生
し易く、比較的短時間で使用寿命に至るのが現状である
However, when using the above-mentioned conventional surface-coated hard alloy as a cutting tool for high-load cutting such as high-speed cutting or interrupted cutting, the hard coating layer tends to peel off, and the hard coating layer tends to peel off in a relatively short period of time. Currently, it reaches the end of its useful life.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上述のような観点から、硬質被
覆層に剥離のない、耐欠損性にすぐれた表面被覆硬質合
金を開発すべく研究を行なった結果、(a)  上記の
従来表面被覆硬質合金の硬質被覆層には約0.9 C)
Pa以上の高い圧縮残留応力が存在し、この圧縮残留応
力の存在が原因で硬質被覆層に剥離が発生し易くなるこ
と。
Therefore, from the above-mentioned viewpoints, the present inventors conducted research to develop a surface-coated hard alloy with excellent chipping resistance and whose hard coating layer does not peel off. Approximately 0.9 C) for the hard coating layer of the coated hard alloy
The presence of a high compressive residual stress of Pa or more, and the presence of this compressive residual stress makes it easy for the hard coating layer to peel off.

(b)  硬質被覆層における圧縮残留応力をQ、7G
Pa以下に低減すると、硬質被覆層の剥離現象が著しく
抑制されるようになること。
(b) The compressive residual stress in the hard coating layer is Q, 7G
When the pressure is reduced to below Pa, the peeling phenomenon of the hard coating layer is significantly suppressed.

(C)  硬質被覆層の形成を、従来用いられているイ
オンブレーティング法に代って、クラスターイオンビー
ム法にて行なうと、この結果の硬質被覆層における圧縮
残留応力は0.70Pa以下に低減するようになること
(C) When the hard coating layer is formed using the cluster ion beam method instead of the conventionally used ion blasting method, the resulting compressive residual stress in the hard coating layer is reduced to 0.70 Pa or less. To learn to do things.

以上(a)〜(C)に示される知見を得たのである。The findings shown in (a) to (C) above were obtained.

この発明は、上記知見にもとづいてなされたものであっ
て、WCC超超硬合金T1CN基サーメット、および高
速度鋼のうちのいずれかで構成された基体の表面に、ク
ラスターイオンビーム法によシ、元素周期律表の4a族
金属の炭化物、窒化物、および酸化物、並びにこれらの
2種以上の固溶体からなる群のうちの1種の単層または
2種以上の複層を形成することによって、前記硬質被覆
層における圧縮残留応力を0.7 GPa以下とし、も
って高速シ切削や断続切削に用いた場合にも硬質被覆層
に剥離発生のない、すぐれた耐欠損性を示し、長期に亘
ってすぐれた耐摩耗性を発揮する切削工具用表面被覆硬
質合金に特徴を有するものである。
This invention was made based on the above knowledge, and is based on the cluster ion beam method. , by forming a single layer or a multilayer of two or more of the group consisting of carbides, nitrides, and oxides of Group 4a metals of the Periodic Table of the Elements, and solid solutions of two or more of these. , the compressive residual stress in the hard coating layer is set to 0.7 GPa or less, and the hard coating layer exhibits excellent fracture resistance without peeling even when used for high-speed cutting or interrupted cutting, and has excellent fracture resistance over a long period of time. This is a surface-coated hard alloy for cutting tools that exhibits excellent wear resistance.

なお、硬質被覆層の圧縮残留応力は、周知のX線応力測
定法によって容易に測定することができる。
Note that the compressive residual stress of the hard coating layer can be easily measured by a well-known X-ray stress measuring method.

〔実施例〕〔Example〕

つぎに、この発明の表面被覆硬質合金を実施例によシ具
体的に説明する。
Next, the surface-coated hard alloy of the present invention will be specifically explained using examples.

実施例 1 基体として、rso規格p20の組成、および同規格5
NGN 432の形状(スロー7ウエイチツプ)をもっ
たWCC超超硬合金製チップ用意し、このチップを第1
図に概略説明図で示されるクラスターイオンビーム装置
に、下向き基板1上に並べた状態で装着し、第1表に示
される条件で、るつぼ2内に装入した金属3を加熱コイ
ル4によシ加熱して蒸発させ、この蒸発金属をイオン化
電極5および加速電極6を通過する間に反応させ、前記
チップの表面に同じく第1表に示される組成および平均
層厚の硬質被覆層を形成することによって本発明表面被
覆硬質合金(以下本発明被覆合金という)1〜7をそれ
ぞれ製造した。
Example 1 As a substrate, the composition of RSO standard p20 and the same standard 5
Prepare a WCC cemented carbide tip with the shape of NGN 432 (slow 7-way tip), and use this tip as the first
The cluster ion beam device shown schematically in the figure is mounted on the downward facing substrate 1, and the metal 3 charged into the crucible 2 is heated by the heating coil 4 under the conditions shown in Table 1. The evaporated metal is heated to evaporate, and the evaporated metal is reacted while passing through the ionization electrode 5 and the acceleration electrode 6, to form a hard coating layer on the surface of the chip with the composition and average layer thickness also shown in Table 1. Surface-coated hard alloys of the present invention (hereinafter referred to as coated alloys of the present invention) 1 to 7 were manufactured by this method.

また、比較の目的で、同じ基体を用い、これを第2図に
概略説明図で示されるイオンブレーティング装置に、下
向き基板1上に並べた状態で装着し、同じく第1表に示
される条件で、るつぼ2内の金属3を並設したエレクト
ロンビーム7により加熱蒸発させ、この蒸発金属がイオ
ン化電極5を通過する間に反応させ、前記チップ表面に
同じく第1表に示される組成および平均層厚の硬質被覆
層を形成することによって、従来表面被覆硬質合金(以
下従来被覆合金という)1〜7をそれぞれ製造した。
For the purpose of comparison, the same substrate was mounted on the ion blating device shown schematically in FIG. Then, the metal 3 in the crucible 2 is heated and evaporated by the electron beam 7 arranged in parallel, and the evaporated metal is reacted while passing through the ionization electrode 5, so that the composition and average layer shown in Table 1 are formed on the chip surface. Conventional surface-coated hard alloys (hereinafter referred to as conventional coated alloys) 1 to 7 were each manufactured by forming a thick hard coating layer.

ついで、この結果得られた各種の被覆合金について、硬
質被覆層の圧縮残留応力をX線を用いて測定すると共に
、 被削材: SNCM 439 (硬さ:HB230)、
切削速度:130m/阻、 送り=0.5朋/ rev、、 切込み:1.5mm。
Next, for the various coating alloys obtained as a result, the compressive residual stress of the hard coating layer was measured using X-rays.
Cutting speed: 130m/rev, feed = 0.5mm/rev, depth of cut: 1.5mm.

切削時間:20+m、 の条件での鋼の連続切削試験、並びに、被削材: SN
CM 439 (硬さ:HB270)、切削速度二1o
om/臥、 送り: 0.3 mx / rev、、切込み:2M、 切削時間:3禮、 の条件での鋼の断続切削試験を行ない、前者の連続切削
試験では切刃の逃げ面摩耗幅を測定すると共に、硬質被
覆層の状況を観察し、また後者の断続切削試験では、1
0本の試験切刃数のうちの欠損発生切刃数を測定した。
Continuous cutting test of steel under the conditions of cutting time: 20+m, and work material: SN
CM 439 (hardness: HB270), cutting speed 21o
An interrupted cutting test was conducted on steel under the following conditions: 0.3 mx/rev, feed: 0.3 mx/rev, depth of cut: 2 m, cutting time: 3 m, and in the former continuous cutting test, the flank wear width of the cutting edge was At the same time as measuring, the condition of the hard coating layer was also observed, and in the latter interrupted cutting test, 1
The number of chipped cutting edges out of the number of 0 test cutting edges was measured.

これらの結果を第1表に示した。These results are shown in Table 1.

実施例 2 基体として、T1CN基サーメット製で、形状がSMM
C) 432のスローアウェイチップを用いる以外は、
実施例1におけると同様に、第1表に示される条件にて
本発明被覆合金8および従来被覆合金8をそれぞれ製造
した。
Example 2 The base is made of T1CN-based cermet and has an SMM shape.
C) Except using a 432 throw-away tip.
In the same manner as in Example 1, the coating alloy 8 of the present invention and the conventional coating alloy 8 were manufactured under the conditions shown in Table 1, respectively.

これらの被覆合金についても、X線を用いて硬質被覆層
の圧縮残留応力を測定すると共に、被削材:80M41
5(硬さ:HB150)、切削速度: 2007Fl 
/mia。
Regarding these coating alloys, the compressive residual stress of the hard coating layer was measured using X-rays, and the workpiece material: 80M41
5 (hardness: HB150), cutting speed: 2007Fl
/mia.

送り : 0.36 all/ rev、、切込み二0
.5認、 切削時間:20mIL、 の条件での鋼の連続切削試験、並びに、被削材: SN
CM 439 (硬さ:HB250)、切削速度:15
0m/飄、 送り二〇、 25 M / rev、、切込み22間、 切削時間、3阻、 の条件での鋼の断続切削試験を行ない、実施例1におけ
ると同様に、前者の連続切削試験では切刃の逃げ面摩耗
幅を測定すると共に、硬質被覆層の状況を観察し、後者
の断続切削試験では1o本の試験切刃数のうちの欠損発
生数を測定した。これらの結果を第1表に示した。
Feed: 0.36 all/rev, depth of cut 20
.. Continuous cutting test of steel under the conditions of 5 approval, cutting time: 20 mIL, and work material: SN
CM 439 (hardness: HB250), cutting speed: 15
An interrupted cutting test was conducted on steel under the following conditions: 0 m/speed, feed rate of 20, 25 M/rev, depth of cut of 22, and cutting time of 3 mm. As in Example 1, in the former continuous cutting test, In addition to measuring the flank wear width of the cutting edge, the condition of the hard coating layer was observed, and in the latter intermittent cutting test, the number of defects among 10 tested cutting edges was measured. These results are shown in Table 1.

実施例 3 基体として、高速度鋼製で、形状が直径:6朋φ×長さ
:50Mの2枚方エンドミルを用いる以外は、実施例1
におけると同様に、第1表に示される条件にて本発明被
覆合金9および従来被覆合金9を製造した。
Example 3 Example 1 except that a two-sided end mill made of high-speed steel and having a diameter of 6 mm x length of 50 m was used as the base.
Coated alloy 9 of the present invention and conventional coated alloy 9 were manufactured under the conditions shown in Table 1 in the same manner as in Table 1.

同様に、この結果得られた被覆合金について、硬質被覆
層の圧縮残留応力を測定すると共に、被削材:5KD−
61(硬さ:HRC34)、切削速度:25m/隠、 送り:o、o15mx/刃、 切込み:深さS HXX幅間間 切削油:油性使用、 の条件で鋼の側面切削試験を行ない、切刃の外周2番摩
耗が0.3 rnxに至るまでの切削長を測定すると共
に、硬質被覆の状況を観察した。これらの結果を第1表
に示した。
Similarly, for the resulting coated alloy, the compressive residual stress of the hard coating layer was measured, and the workpiece material: 5KD-
61 (Hardness: HRC34), Cutting speed: 25m/hide, Feed: o, o15mx/blade, Depth of cut: S HXX width Cutting oil: Oil-based, A side cutting test on steel was conducted under the following conditions. The cutting length until the second outer circumference wear of the blade reached 0.3 rnx was measured, and the state of the hard coating was observed. These results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明被覆合金1〜9は、
いずれもすぐれた耐摩耗性と耐欠損性を示すのに対して
、従来被覆合金1〜9においては、硬質被覆層における
圧縮残留応力が約0.7 GPa以上と高いので、硬質
被覆層には剥離が発生し、耐欠損性も低く、相対的に劣
った耐摩耗性しか示さないことが明らかである。
From the results shown in Table 1, the coated alloys 1 to 9 of the present invention are:
All of them exhibit excellent wear resistance and chipping resistance, but in conventional coating alloys 1 to 9, the compressive residual stress in the hard coating layer is as high as about 0.7 GPa or more, so the hard coating layer It is clear that peeling occurs, chipping resistance is low, and relatively poor wear resistance is exhibited.

上述のように、この発明の表面被覆硬質合金は、硬質被
覆層における圧縮残留応力が、0.7 ()Pa以下と
きわめて低いので、これを高送り切削や断続切削などに
切削工具として用いた場合には、硬質被覆層の剥離なく
、すぐれた耐欠損性を示し、かつ前記硬質被覆層がすぐ
れた耐摩耗性をもつことと含まって、著しく長期に亘っ
てすぐれた切削性能を発揮するのである。
As mentioned above, the surface-coated hard alloy of the present invention has extremely low compressive residual stress of 0.7 () Pa or less in the hard coating layer, so it can be used as a cutting tool for high-feed cutting, interrupted cutting, etc. In some cases, the hard coating layer exhibits excellent chipping resistance without peeling, and the hard coating layer has excellent wear resistance, and exhibits excellent cutting performance over an extremely long period of time. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はイオンブレーティング装置を示す概略説明図、
第2図はクラスターイオンビーム装置を示す概略説明図
である。 1・・・基板、      2・・・るつぼ、3・・・
金属、      4・・・加熱コイル、5・・・イオ
ン化電極、 6・・・加速電極、7・・・エレクトロン
ビーム。
FIG. 1 is a schematic explanatory diagram showing an ion brating device,
FIG. 2 is a schematic explanatory diagram showing a cluster ion beam device. 1... Substrate, 2... Crucible, 3...
Metal, 4... Heating coil, 5... Ionization electrode, 6... Accelerating electrode, 7... Electron beam.

Claims (2)

【特許請求の範囲】[Claims] (1)炭化タングステン基超硬合金、炭窒化チタン基サ
ーメット、および高速度鋼のうちのいずれかで構成され
た基体の表面に、元素周期律表の4a族金属の炭化物、
窒化物、および酸化物、並びにこれらの2種以上の固溶
体からなる群のうちの1種の単層または2種以上の複層
からなる硬質被覆層を形成してなる表面被覆硬質合金に
おいて、上記硬質被覆層の圧縮残留応力を0.7GPa
以下としたことを特徴とする耐欠損性のすぐれた切削工
具用表面被覆硬質合金。
(1) A carbide of a group 4a metal of the periodic table of elements,
In a surface-coated hard alloy formed by forming a hard coating layer consisting of a single layer or a multilayer of two or more of nitrides, oxides, and solid solutions of two or more of these, the above-mentioned The compressive residual stress of the hard coating layer is 0.7 GPa.
A surface-coated hard alloy for cutting tools with excellent fracture resistance, characterized by the following:
(2)上記硬質被覆層をクラスターイオンビーム法にて
形成してなる特許請求の範囲第(1)項記載の耐欠損性
のすぐれた切削工具用表面被覆硬質合金。
(2) A surface-coated hard alloy for a cutting tool having excellent fracture resistance as set forth in claim (1), wherein the hard coating layer is formed by a cluster ion beam method.
JP61208797A 1986-09-04 1986-09-04 Surface coated hard alloy for cutting tools with excellent fracture resistance Expired - Lifetime JPH0788569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61208797A JPH0788569B2 (en) 1986-09-04 1986-09-04 Surface coated hard alloy for cutting tools with excellent fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208797A JPH0788569B2 (en) 1986-09-04 1986-09-04 Surface coated hard alloy for cutting tools with excellent fracture resistance

Publications (2)

Publication Number Publication Date
JPS6365079A true JPS6365079A (en) 1988-03-23
JPH0788569B2 JPH0788569B2 (en) 1995-09-27

Family

ID=16562276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208797A Expired - Lifetime JPH0788569B2 (en) 1986-09-04 1986-09-04 Surface coated hard alloy for cutting tools with excellent fracture resistance

Country Status (1)

Country Link
JP (1) JPH0788569B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167564A1 (en) * 2000-06-23 2002-01-02 Linde Gas Aktiengesellschaft Cutting edge with a thermally sprayed coating and method for forming the coating
JP2005262389A (en) * 2004-03-18 2005-09-29 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool for processing titanium alloy
EP1864731A1 (en) * 2005-03-30 2007-12-12 Sumitomo Electric Hardmetal Corp. Edge replacement cutter tip
JP2011011235A (en) * 2009-07-02 2011-01-20 Sumitomo Electric Ind Ltd Covered rotary tool
US9999983B2 (en) 2012-08-31 2018-06-19 Japan Aviation Electronics Industry, Limited Chipping-proof inorganic solid-state material and chipping-proof edge tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3858523A4 (en) 2018-09-28 2022-05-25 Mitsubishi Materials Corporation Surface coated tin-based cermet cutting tool having hard coating layer exhibiting excellent chipping resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135111A (en) * 1982-02-03 1983-08-11 Hitachi Condenser Co Ltd Formation of nitride thin film
JPS60149775A (en) * 1984-01-13 1985-08-07 Mitsubishi Metal Corp Surface coated cermet member for cutting tool
JPS60248879A (en) * 1984-05-23 1985-12-09 Toshiba Tungaloy Co Ltd Surface coated hard alloy and its production
JPS6199678A (en) * 1984-10-22 1986-05-17 Sumitomo Electric Ind Ltd Manufacture of surface coated sintered hard alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135111A (en) * 1982-02-03 1983-08-11 Hitachi Condenser Co Ltd Formation of nitride thin film
JPS60149775A (en) * 1984-01-13 1985-08-07 Mitsubishi Metal Corp Surface coated cermet member for cutting tool
JPS60248879A (en) * 1984-05-23 1985-12-09 Toshiba Tungaloy Co Ltd Surface coated hard alloy and its production
JPS6199678A (en) * 1984-10-22 1986-05-17 Sumitomo Electric Ind Ltd Manufacture of surface coated sintered hard alloy

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167564A1 (en) * 2000-06-23 2002-01-02 Linde Gas Aktiengesellschaft Cutting edge with a thermally sprayed coating and method for forming the coating
JP2005262389A (en) * 2004-03-18 2005-09-29 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool for processing titanium alloy
EP1864731A1 (en) * 2005-03-30 2007-12-12 Sumitomo Electric Hardmetal Corp. Edge replacement cutter tip
EP1864731A4 (en) * 2005-03-30 2009-03-11 Sumitomo Elec Hardmetal Corp Edge replacement cutter tip
US7874770B2 (en) 2005-03-30 2011-01-25 Sumitomo Electric Hardmetal Corp. Indexable insert
EP1864731B2 (en) 2005-03-30 2021-03-24 Sumitomo Electric Hardmetal Corp. Edge replacement cutter tip
JP2011011235A (en) * 2009-07-02 2011-01-20 Sumitomo Electric Ind Ltd Covered rotary tool
US9999983B2 (en) 2012-08-31 2018-06-19 Japan Aviation Electronics Industry, Limited Chipping-proof inorganic solid-state material and chipping-proof edge tool

Also Published As

Publication number Publication date
JPH0788569B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
CN104582881B (en) Surface-coated cutting tool
CN102304692B (en) Hard coating film and method for forming the same
CN104662195B (en) Instrument with TiAlCrSiN PVD coatings
CN109072406B (en) Coated cutting tool
JPH0745707B2 (en) Surface-coated titanium carbonitride-based cermet for high-speed cutting
KR100186910B1 (en) Hard coating of excellent wear resistance and hard coating coated member thereof
JP2009028894A (en) Coated cutting tool
KR20020055444A (en) Hard film for cutting tools, cutting tool coated with hard film, process for forming hard film, and target used to form hard film
JP6525310B2 (en) Coated tools
KR20170138444A (en) A coated cutting tool and a method for coating the cutting tool
WO2014142190A1 (en) Hard film, hard film covered member, and method for manufacturing hard film and hard film covered member
JP2010172989A (en) Surface-coated cutting tool
JP6612864B2 (en) Cutting tools
JPS6365079A (en) Surface coated head alloy for cutting tool having high resistance to chipping
JPS63195268A (en) Cutting tool made of surface coated sintered hard alloy
JPWO2013150603A1 (en) Hard coating for cutting tool and hard coating coated cutting tool
JP3572728B2 (en) Hard layer coated cutting tool
JP2821295B2 (en) Tool components with excellent fracture resistance
JPS62192576A (en) Coated hard alloy
JP2002337006A (en) Coated cutting tool
JP2590316B2 (en) Surface coated cemented carbide cutting tool
JP2006009059A (en) Hard film, hard film-coated tool, and hard film coating method
JPS6360280A (en) Production of surface-coated tungsten carbide-base sintered hard alloy
JPH0919806A (en) Cutting tool covered with hard layer
JPS5918474B2 (en) coated cemented carbide

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term