JPS6365058A - Heat resistant austenitic steel - Google Patents

Heat resistant austenitic steel

Info

Publication number
JPS6365058A
JPS6365058A JP20965986A JP20965986A JPS6365058A JP S6365058 A JPS6365058 A JP S6365058A JP 20965986 A JP20965986 A JP 20965986A JP 20965986 A JP20965986 A JP 20965986A JP S6365058 A JPS6365058 A JP S6365058A
Authority
JP
Japan
Prior art keywords
less
corrosion
steel
resistance
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20965986A
Other languages
Japanese (ja)
Other versions
JPH07116556B2 (en
Inventor
Yoshihiro Uematsu
植松 美博
Teruo Tanaka
照夫 田中
Naoto Hiramatsu
直人 平松
Isamu Shimizu
勇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP61209659A priority Critical patent/JPH07116556B2/en
Publication of JPS6365058A publication Critical patent/JPS6365058A/en
Publication of JPH07116556B2 publication Critical patent/JPH07116556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the characteristics of a heat resistant austenitic steel such as the heat resistance and sensitivity to intergranular corrosion by increasing the Si content in the steel or further adding a specified amount of Nb and/or Ti, Ca, a rare earth element and/or Y, B or Cu. CONSTITUTION:A member which is repeatedly heated and cooled in an atmosphere where corrosion by a salt at high temp. or by a molten salt becomes a problem is made of a heat resistant austenitic steel having a compsn. consisting of, by weight, <0.06% C, 4-6% Si, <2.0% Mn, 12-20% Ni, 16-23% Cr and the balance Fe or further contg. 0.1-1.0% Nb and/or Ti satisfying Nb/(C+N)>=8, Ti/(C+N)>=4 and (Ti+0.5Nb)/(C+N)>=4, 0.001-0.05% Ca, 0.001-0.05% in total of one or more kinds or rare earth elements and/or Y, 0.0005-0.010% B or 0.5-2.5% Cu. The steel may contain two or more kinds of such additional elements in combination. Th heat resistant austenitic steel has superior characteristics at high temp.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は内燃機関の排ガス浄化システム、各種ボイラー
、高炉羽口バーナーあるいは廃棄物焼却炉など高温の腐
食性雰囲気で、特に、高塩基腐食または溶融塩腐食等、
塩を含む腐食が問題となる雰囲気で繰り返し加熱・冷却
を受けるような用途に使用される加工性に優れたオース
テナイト系耐熱鋼に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is applicable to exhaust gas purification systems for internal combustion engines, various boilers, blast furnace tuyere burners, waste incinerators, and other high-temperature corrosive atmospheres, particularly in high-base corrosion or Molten salt corrosion, etc.
This invention relates to an austenitic heat-resistant steel that has excellent workability and is used in applications where it is repeatedly heated and cooled in environments where salt-containing corrosion is a problem.

(従来の技術) 自動車の排気ガス浄化システム、各種のボイラー、焼却
炉あるいは高炉羽口バーナーなどの厳しい腐食環境下で
使用される耐熱鋼に要求される特性としては高温強度特
性、耐高温酸化特性、酸化スケールの剥離抵抗などの一
般的耐熱性に加えて、燃焼雰囲気での高温ガス腐食ある
いはPbO,VzOsなどの各種酸化物、PbC1*、
NaC1,MgC1x、KClなどの塩化物などを含む
雰囲気での耐高製塩腐食および、さらに高温での溶融塩
腐食抵抗がある。さらに、例えば、冷却時には凝縮水に
よる湿食の問題もある。このような厳しい環境の下では
耐熱性表面処理鋼板ではもたず、耐熱用ステンレス鋼が
用いられ、このうち、耐熱性以外に加工性および溶接性
が要求される用途ではオーステナイト系ステンレス鋼が
選択される。
(Prior art) The properties required of heat-resistant steel used in severe corrosive environments such as automobile exhaust gas purification systems, various boilers, incinerators, and blast furnace tuyere burners include high-temperature strength properties and high-temperature oxidation resistance properties. In addition to general heat resistance such as peeling resistance of oxide scale, high temperature gas corrosion in combustion atmosphere or various oxides such as PbO, VzOs, PbC1*,
It has high salt corrosion resistance in an atmosphere containing chlorides such as NaCl, MgClx, KCl, etc., and also has molten salt corrosion resistance at high temperatures. Furthermore, for example, there is a problem of moisture corrosion due to condensed water during cooling. In such a harsh environment, heat-resistant stainless steel is used instead of heat-resistant surface-treated steel sheets.Of these, austenitic stainless steel is selected for applications that require workability and weldability in addition to heat resistance. be done.

SO5304で代表されるオーステナイト系耐熱鋼は大
気中で繰り返し加熱・冷却を受けるとフェライト系耐熱
鋼に比ベスケールが剥離するという問題があり、これは
オーステナイト系耐熱鋼の熱膨張が大きく加熱・冷却を
受けると素地とスケールとの熱膨張差によってスケール
に亀裂を生じ剥離するもので、これが大きな欠点となっ
ていた。これに対し、例えば特公昭56−25507に
開示されているように、高Si含有のオーステナイト系
ステンレス鋼が種々開発され、従来の5tlS 304
に比ベスケールの剥離抵抗の著しい改善がなされ、SO
3310Sに匹敵するか、それ以上の特性を示すように
なった。しかしながら、最近になってこれらの鋼でもな
お腐食が生じる問題が発生した。
When heat-resistant austenitic steels such as SO5304 are repeatedly heated and cooled in the atmosphere, the scale peels off compared to ferritic heat-resistant steels. When exposed to heat, the scale cracks and peels off due to the difference in thermal expansion between the base material and the scale, which has been a major drawback. In response to this, various austenitic stainless steels with high Si content have been developed, as disclosed in Japanese Patent Publication No. 56-25507, and the conventional 5tlS 304
Significant improvement in peeling resistance was achieved compared to SO
It now shows characteristics comparable to or better than 3310S. However, recently a problem has arisen in which even these steels still suffer from corrosion.

すなわち、大量廃棄物処理等に用いる焼却炉、高炉の羽
口バーナー、重油ボイラー、内燃機関の排ガス管などで
使用されている部材の一部に著しい高温腐食を生じてい
る例がみつかり問題となっている。これらの腐食事例を
調査した結果、共通した現象として粒界腐食型の加速酸
化が発生しており高温で塩の付着した状態あるいは溶融
塩状態での腐食であり、特に塩化物を含む塩による高温
腐食が著しいことがわかった。この高塩基腐食に対して
は既存の耐熱用ステンレス鋼である5US304.5U
S302B 、 SO3χM15J1.5US321.
および5US310Sなどいずれも十分ではなく新たな
材料開発が望まれている。
In other words, there have been cases where severe high-temperature corrosion has occurred in some parts used in incinerators used for mass waste treatment, blast furnace tuyere burners, heavy oil boilers, exhaust gas pipes of internal combustion engines, etc., and this has become a problem. ing. As a result of investigating these corrosion cases, we found that a common phenomenon is accelerated oxidation of the intergranular corrosion type, which is corrosion at high temperatures with salt attached or in a molten salt state. It was found that corrosion was significant. The existing heat-resistant stainless steel 5US304.5U is effective against this high-base corrosion.
S302B, SO3χM15J1.5US321.
and 5US310S are not sufficient, and the development of new materials is desired.

以下には溶融塩も含めて卓に高塩基腐食とよぶ。In the following, molten salt is also included and will be referred to as high base corrosion.

〔発明の目的〕[Purpose of the invention]

本発明は耐熱性に優れ、特に耐高温塩腐食特性に優れ、
かつ粒界腐食感受性も合せて改善した加工用オーステナ
イト系耐熱鋼を提供することを目的とする。
The present invention has excellent heat resistance, especially high temperature salt corrosion resistance,
The object of the present invention is to provide an austenitic heat-resistant steel for processing which also has improved susceptibility to intergranular corrosion.

〔発明の目的を達成する手段〕[Means for achieving the purpose of the invention]

本発明は、前述の問題点を改善する研究を行った結果、
基本組成がC50,06%、 Si:2.5〜10%。
The present invention was developed as a result of research to improve the above-mentioned problems.
Basic composition: C50.06%, Si:2.5-10%.

MnS2.0%、 Ni:12〜20%、Cr:16=
23%からなることを特徴とし、さらに必要に応じて微
量のCaおよび/または希土類元素もしくはYが添加さ
れ、かつ、(C+ N)%に応じて適量のTiあるいは
Nbを添加することで上記の目的の材料が得られること
がわがうた。すなわち、本発明の主題である耐高温塩腐
食特性の改善に対してはSi量を従来の範囲から大きく
高Si側に移行させ、さらに必要に応じてSiとの複合
でCaおよび/あるいは希土類元素もしくはYを添加す
ることによって高塩基腐食環境下での保護皮膜を補強し
、かつ、適量のNbおよび/あるいはTiの添加によっ
て使用時の鋭敏化を防止し、粒界浸食型の高塩基腐食と
休止時の湿食による粒界腐食をともに改善するものであ
る。
MnS2.0%, Ni:12-20%, Cr:16=
23%, and a trace amount of Ca and/or rare earth element or Y is added as necessary, and an appropriate amount of Ti or Nb is added depending on the (C+N)% to achieve the above. My song is that I can obtain the desired material. That is, in order to improve high-temperature salt corrosion resistance, which is the subject of the present invention, the amount of Si is significantly shifted from the conventional range to the high Si side, and if necessary, Ca and/or rare earth elements are added in combination with Si. Alternatively, by adding Y, the protective film can be reinforced in a high base corrosion environment, and by adding an appropriate amount of Nb and/or Ti, sensitization during use can be prevented, thereby preventing grain boundary erosion type high base corrosion. This also improves intergranular corrosion caused by wet corrosion during rest.

(発明の構成) すなわち、本発明によれば、重量%で、C: 0.06
%以下 Si:4%を越え10%以下、 Mn : 2.0以下 Ni : 12〜20% Cr : 16〜23% を含有し、必要に応じ、 HbとTiの1種または2種を0.1〜1.0%を含有
し、かつ、Nb/(CAM)≧8 、Ti/ (CAM
)≧4または(Ti + 0.5Nb) / (C+ 
N)≧4を満足し、さらに、 Ca : O,OO1〜0.05%、 または希土類元素もしくはYの1種または2種以上を0
.001〜0.1%を含有し、また、さらに、 Bを0.0005〜0.010%、Cuを0.5〜2.
5%を含有してもよく、 残部がFeおよび製鋼上の不可避的不純物よりなるオー
ステナイト系耐熱鋼を提供するものである。
(Structure of the invention) That is, according to the invention, in weight %, C: 0.06
% or less Si: more than 4% and less than 10%, Mn: less than 2.0, Ni: 12-20%, Cr: 16-23%, and if necessary, one or both of Hb and Ti may be added at 0.0%. 1 to 1.0%, and Nb/(CAM)≧8, Ti/(CAM
)≧4 or (Ti + 0.5Nb) / (C+
N) ≧ 4, and further contains 1 to 0.05% of Ca: O, OO, or 0 of one or more of rare earth elements or Y.
.. 001 to 0.1%, and further contains 0.0005 to 0.010% of B and 0.5 to 2.0% of Cu.
The present invention provides an austenitic heat-resistant steel that may contain 5% of Fe, with the remainder consisting of Fe and unavoidable impurities during steel manufacturing.

(発明の詳細な説明) 以下には本発明を具体的に説明する0本発明の合金組成
ならびに各添加元素の添加目的ならびに組成範囲の限定
理由を述べる。
(Detailed Description of the Invention) Below, the present invention will be specifically explained. The alloy composition of the present invention, the purpose of addition of each additive element, and the reason for limiting the composition range will be described.

C:強力なオーステナイト形成元素であり、高温強度を
得るためには必要な元素であるが、Cは高温でCr元素
と結合し、粒界にCrxsChとして打出し、粒界近傍
にCr欠乏層を形成するので高塩基腐食の進行を助長す
るとともに、休止時に凝縮水による粒界腐食が生じるの
で低い方が好ましく、上限を0.06%4以下とした。
C: A strong austenite-forming element, which is necessary to obtain high-temperature strength. C combines with the Cr element at high temperatures and is ejected into the grain boundaries as CrxsCh, creating a Cr-depleted layer near the grain boundaries. The lower the content is, the more preferable it is, and the upper limit is set to 0.06%4 or less, since this promotes the progression of high base corrosion and causes intergranular corrosion due to condensed water during rest.

Si:耐酸化性および耐高温塩腐食性を改善する上で最
も重要な元素で2.5%以下では耐高温塩腐食性に十分
な効果が得られず、一方10%以上では高温で多量のσ
相を町出し、靭性が劣化する。また、δフェライトが増
し熱間加工性が問題となり、さらに、硬さが増す為、加
工性が低下するので上限をlO九以下とした。
Si: The most important element for improving oxidation resistance and high-temperature salt corrosion resistance. If it is less than 2.5%, a sufficient effect on high-temperature salt corrosion resistance cannot be obtained. On the other hand, if it is more than 10%, a large amount of σ
The phase is released and the toughness deteriorates. Further, the increase in δ ferrite poses a problem in hot workability, and furthermore, the increase in hardness reduces workability, so the upper limit was set to 1O9 or less.

Mn:熱間加工性改善に有効であるが耐酸化性を低下さ
せるので上限を2.0%とする。
Mn: Effective for improving hot workability, but reduces oxidation resistance, so the upper limit is set to 2.0%.

Niニオ−ステナイト系ステンレス鋼の基本的合金元素
であり、また合金元素として耐酸化性、耐高温塩腐食特
性の改善に有効である0本発明では耐高温温塩腐食の点
から高Stを含有するため、熱間加工性を阻害するζフ
ェライトを生成しやすいので、成分バランスを考慮して
Xiの下限を12%とした。一方、多量のXiは製品原
価を上げるため好ましくないので上限を20%とした。
Ni is a basic alloying element of Niiostenitic stainless steel, and is effective as an alloying element for improving oxidation resistance and high-temperature salt corrosion resistance. Therefore, the lower limit of Xi was set at 12% in consideration of the component balance, since ζ ferrite that inhibits hot workability is likely to be generated. On the other hand, a large amount of Xi is undesirable because it increases the product cost, so the upper limit was set at 20%.

Crニステンレス鋼の耐食性および耐酸化性を維持する
ために最も基本的な元素であり、本発明の対象とする用
途では16%未満では十分な効果が得られない、一方、
23%を越えて添加すると、Si含有量との関係からδ
フェライトを多量に生成するので上限を23%とした。
Cr is the most basic element for maintaining the corrosion resistance and oxidation resistance of stainless steel, and in the applications targeted by the present invention, sufficient effects cannot be obtained with less than 16%.
If it is added in excess of 23%, due to the relationship with the Si content, δ
Since a large amount of ferrite is generated, the upper limit was set at 23%.

Nb:粒界浸食型の高塩基腐食および休止時の凝縮水に
よる湿食を防止するためにCを0.06%以下に抑えて
いるが、これでも不十分な場合にはNbを添加して粒界
へのCrの崖、′gイ乙その打出を防止する。このNb
はC,、Nと結合して微細なNb(C,N)を形成し、
耐食性のみならず高温強度、とりわけクリーブ強度の改
善に大きな効果を有する。Cr炭。
Nb: C is kept below 0.06% to prevent grain boundary erosion type high base corrosion and wet corrosion due to condensed water during rest, but if this is still insufficient, Nb may be added. Prevents Cr cliffs from ejecting to grain boundaries. This Nb
combines with C,,N to form fine Nb(C,N),
It has a great effect on improving not only corrosion resistance but also high-temperature strength, especially cleave strength. Cr charcoal.

窒化物の打出を防止するには重量比で Nb/ (C+ N)≧8のNbが必要であるが、さら
に高温強度を向上させる目的からも0.1%以上のNb
添加が必要である。一方、1.0%以上のNb添加はδ
フエライト量を増加させるので熱間加工性を害し、また
δ相の杓′出を加速するので靭性が低下する。
Nb with a weight ratio of Nb/(C+N)≧8 is required to prevent nitride hammering, but Nb with a weight ratio of 0.1% or more is also required for the purpose of improving high-temperature strength.
Addition is necessary. On the other hand, when Nb is added more than 1.0%, δ
Since it increases the amount of ferrite, it impairs hot workability, and it also accelerates the extrusion of the δ phase, resulting in a decrease in toughness.

Ti : Hbと同一の目的からTiの添加も有効であ
る。
Ti: Addition of Ti is also effective for the same purpose as Hb.

TIはC,Nと結合してTi(C,N)を形成して、耐
食性のみならずクリープ強度の改善に大きな効果を有す
る。Cr炭、窒化物の打出を防止するには重量比でTi
/(CAM)≧4のTiが必要であるが、さらに高温強
度を向上させる目的からも0.1%以上のTi添加が必
要である。一方、1.0%以上のTi添加はδフエライ
ト量を増加させるので熱間加工性を害し、またσ相の打
出を加速するので靭性が劣化する。
TI combines with C and N to form Ti(C,N), which has a great effect on improving not only corrosion resistance but also creep strength. To prevent the ejection of Cr carbon and nitrides, the weight ratio of Ti is
Ti of /(CAM)≧4 is required, and it is also necessary to add 0.1% or more of Ti for the purpose of further improving high-temperature strength. On the other hand, addition of 1.0% or more of Ti increases the amount of δ ferrite, which impairs hot workability, and accelerates the extrusion of the σ phase, resulting in deterioration of toughness.

Tiはまた加工性の改善にも効果がある。Ti is also effective in improving processability.

なお、HbとTiはいずれか一方を含むだけでもよいが
、複合で添加する場合には (Ti + 0. 5Nb) / (C+ N)≧4を
満足すればCr炭、窒化物の前出防止にを効である。
Note that Hb and Ti may be contained in just one of them, but if they are added in combination, satisfying (Ti + 0.5Nb) / (C + N) ≧ 4 will prevent the formation of Cr carbon and nitrides. It is effective.

Caと希土類元素およびY:耐高温塩腐食に対する耐性
は基本的にはCrとSiによって維持される。
Ca, rare earth elements and Y: Resistance to high temperature salt corrosion is basically maintained by Cr and Si.

しかしながら、これは高温での連続使用時では十分な保
護性を有するものの、断続的な加熱・冷却がある時には
スケール剥離などの為にしばしば腐食の進行を生じ、こ
のために断続加熱・冷却ではスケールのlA離低抵抗高
める必要がある。このような問題に対しては耐高温塩腐
食を改善するため部側での連続使用時の耐高温塩腐食の
改善に効果的で、また、希土類元素およびYは高塩基腐
食環境下での加熱・冷却時のスケール剥離抵抗の改善に
有効であり、従って、好ましくは複合で添加する。
However, although this has sufficient protection during continuous use at high temperatures, when there is intermittent heating and cooling, corrosion often occurs due to scale exfoliation, and for this reason, when there is intermittent heating and cooling, the scale It is necessary to increase the lA separation resistance. For such problems, it is effective in improving high temperature salt corrosion resistance during continuous use on the part side, and rare earth elements and Y are effective in improving high temperature salt corrosion resistance during continuous use on the part side. - It is effective in improving the scale peeling resistance during cooling, so it is preferably added in combination.

この場合、Caは少な(とも0.001%を要し、0.
05%は実際的に含有させられる上限である。希される
ことはなく、かつ高価な元素であるため、0.05%を
上限とする。
In this case, Ca is small (both require 0.001% and 0.001%).
05% is the upper limit that can be practically contained. Since it is a rare and expensive element, the upper limit is set at 0.05%.

以上の組成に加えて、さらに、要求される特性に応じて
、高温強度および熱間加工性の改善のためにBを、また
、成形加工性および溶接性の改善からCuを添加する。
In addition to the above composition, depending on the required properties, B is added to improve high temperature strength and hot workability, and Cu is added to improve formability and weldability.

この場合、Bは少な(ともo、ooos%を要するが、
一方0.01%を越えるとかえって熱間加工性を悪くす
るので上限は0.01%とする。CJAは少なくとも0
.5%を要するが、一方2.5%を越えると結晶粒界に
偏析して熱間加工性を著しくそこねるので、2.5%を
上限とする。
In this case, B is small (both o and ooos% are required, but
On the other hand, if it exceeds 0.01%, hot workability will deteriorate, so the upper limit is set at 0.01%. CJA is at least 0
.. 5% is required, but if it exceeds 2.5%, it segregates at grain boundaries and seriously impairs hot workability, so the upper limit is set at 2.5%.

〔実施例〕〔Example〕

つぎに、本発明鋼について実施例を挙げて説明する。第
1表に各種試験に用いた鯛の46j成分を示す、これら
の鋼は本発明鋼、本発明に規定する範囲外の比較調とJ
IS規格鋼である。これらの鋼は真空溶解炉で溶製され
、鍛造によって直径25鶴(25鶴φ)の丸棒および厚
さ40龍 (40鶴t)の板とした。丸棒は1050°
〜1150℃の範囲で溶体化熱処理後J I 5G()
567およびZ2272に規定される高温引張およびク
リープ破断試験片に加工した。
Next, the steel of the present invention will be described with reference to Examples. Table 1 shows the 46j components of sea bream used in various tests.
IS standard steel. These steels were melted in a vacuum melting furnace and forged into round bars with a diameter of 25 Tsuru (25 Tsuru φ) and plates with a thickness of 40 Tsuru (40 Tsuru t). Round bar is 1050°
J I 5G () after solution heat treatment in the range of ~1150℃
567 and Z2272.

鍛造板は抽出温度1200℃で熱延し、4ntとし、以
降、通常の冷延・焼鈍によって1.5fltの板を作製
し、各種試験に供した。
The forged plate was hot-rolled at an extraction temperature of 1200° C. to 4 nt, and thereafter, a 1.5 flt plate was produced by normal cold rolling and annealing, and was subjected to various tests.

以下に、実験結果を詳細に説明する。The experimental results will be explained in detail below.

第1図はNaC1の塗布試験による耐高温塩腐食特性に
及ぼすSiの影響をYの0℃×20時間の条件で示す、
*布試験は単振法に準じて行った。即ち、ア寞セトンに
NaC1を懸濁し、これを試験片に20■l−の割合で
均一に塗布し、所定の炉温に保持された電気炉中に装入
した。
Figure 1 shows the influence of Si on the high temperature salt corrosion resistance properties of NaCl coating test under Y conditions of 0°C x 20 hours.
*The fabric test was conducted according to the simple vibration method. That is, NaCl was suspended in acetone, and this was uniformly applied to a test piece at a rate of 20 l-, and the test piece was placed in an electric furnace maintained at a predetermined furnace temperature.

この図から、Siを4%以上添加すると腐食減量は著し
く低減しており、耐高温塩腐食特性として十分な特性を
得るにはI+%以上のSi添加が必要であることがわか
る。一般に、オーステナイト系ステンレス鋼の優れた耐
熱性はその表面に形成されるCr1esの保護性皮膜に
よるが、この皮膜は大気酸化に対してはきわめて強固で
あるが、本発明の対象としている高塩基腐食環境下では
保護性が劣り、加速的に腐食が進行する。これに対し、
第1m    &、すa3)(−図 Siを午%以上添加することで、高塩基腐食に強い保護
性の皮膜が形成されたものと考えられる。
From this figure, it can be seen that when Si is added in an amount of 4% or more, the corrosion weight loss is significantly reduced, and that it is necessary to add Si in an amount of I+% or more to obtain sufficient high-temperature salt corrosion resistance. In general, the excellent heat resistance of austenitic stainless steel is due to the protective film of Cr1es formed on its surface. Although this film is extremely strong against atmospheric oxidation, Under environmental conditions, protection is poor and corrosion progresses at an accelerated pace. On the other hand,
It is thought that by adding more than 1% of Si, a protective film resistant to high base corrosion was formed.

第2図は前記と同様の塗布法(20時間)によって高塩
基腐食の温度依存性を調べ、高温強度特性に及ぼすCa
の効果を示したものである。600@〜Yの0℃の範囲
ではCaの効果は認められないが、800℃になるとC
aによる腐食減量の低減効果が認められる。従ってCa
をSiとの複合で添加することによって耐高温塩腐食の
進行を防止できる。
Figure 2 shows the effect of Ca on high-temperature strength properties by investigating the temperature dependence of high-base corrosion using the same coating method (20 hours) as described above.
This shows the effect of No effect of Ca is observed in the 0℃ range from 600@ to Y, but at 800℃, C
The effect of reducing corrosion weight loss due to a. Therefore, Ca
By adding in combination with Si, it is possible to prevent the progress of high temperature salt corrosion.

第3図は飽和Na(” l溶液を用いて繰り返し加熱−
浸漬試験を行ったもので、5分間浸漬、120分間65
0℃に加熱、5分間空冷のサイクルを40回繰り返した
場合の重量減少をみたものである。この図より、市販の
JIS規格鋼種では高塩基腐食の抵抗が本発明鋼に比べ
著しく低いことがわかる。また、本発明鋼の中でも特に
希土類元素を含む鋼が繰り返し高温堪腐食環境下での耐
性が高いことがわかる。
Figure 3 shows repeated heating using a saturated Na("l) solution.
It was immersed for 5 minutes and 65 minutes for 120 minutes.
The weight loss was observed when the cycle of heating to 0° C. and air cooling for 5 minutes was repeated 40 times. From this figure, it can be seen that the commercially available JIS standard steel types have significantly lower resistance to high base corrosion than the steel of the present invention. Furthermore, it can be seen that among the steels of the present invention, steels containing rare earth elements have particularly high resistance to repeated high-temperature corrosion environments.

第2表に600′″〜800℃における高温短時間引張
特性を示す0本発明鋼は優れた高温強度特性を第3表 
クリープ破断試験結果 (温度Yの0℃、応力16.12.10  kg/ a
m”)破断時間(hr)    破断伸び(%)有すこ
とがわかる。
Table 2 shows the high temperature short-time tensile properties at 600'''~800℃.Table 3 shows the excellent high temperature strength properties of the steel of the present invention.
Creep rupture test results (temperature Y 0℃, stress 16.12.10 kg/a
m'') Breaking time (hr) Breaking elongation (%)

第3表にYの0℃、応力16.12.10 kt/璽−
2の条件でクリープ破断試験を行った結果を示す6本発
明鋼はクリープ破断強度も高いことがわかる。
Table 3 shows Y at 0℃, stress 16.12.10 kt/h
It can be seen that the steel of the present invention has a high creep rupture strength.

本発明の鋼の中で、Si単独添加の鋼は高温短時間引張
強さは高いがクリープ破断強度はそれ程高くはない、し
かし、高SiでさらにNb、Tiを添加した濶は長時間
強度が著しく改善されている。なお、3の添加は長時間
側の強度改善に有効であり、こ1はおもにクリープ延性
の改善によるものと思わする。
Among the steels of the present invention, the steel with only Si added has high high-temperature short-time tensile strength, but the creep rupture strength is not so high. However, the steel with high Si and further addition of Nb and Ti has low long-term strength. Significantly improved. Note that the addition of 3 is effective in improving long-term strength, and this 1 is thought to be mainly due to the improvement in creep ductility.

第4表に、650℃で2時間の鋭敏化熱処理後、J 1
. S GO575に準じて硫酸・硫酸銅腐食試験をテ
い粒界腐食感受性を調査した。この表より零発11t!
Aは比較鋼に比べ粒界腐食感受性はきわめて低いことが
わかる。
Table 4 shows that after sensitization heat treatment at 650°C for 2 hours, J 1
.. A sulfuric acid/copper sulfate corrosion test was conducted in accordance with SGO575 to investigate susceptibility to intergranular corrosion. From this table, 11 tons from zero!
It can be seen that A has extremely low susceptibility to intergranular corrosion compared to the comparative steel.

第5表に室温における機械的性賀および硬さを示す、こ
の表よりTiあるいはNbの添加によって伸びの向上が
認められ、特にTiは軟質化に有効であり、またCuの
複合添加によって軟π化と同時に仲第5表  機械的性
質 板厚−2,0龍 引張試験片−JIS13B号 硬さ一ビッカース硬さく荷重10kg)びも向上する。
Table 5 shows the mechanical properties and hardness at room temperature. From this table, it is recognized that the addition of Ti or Nb improves the elongation. Ti is particularly effective for softening, and the combined addition of Cu makes the elongation softer. At the same time, the thickness (Table 5 Mechanical Properties Plate Thickness - 2.0 Dragon Tensile Test Piece - JIS No. 13B Hardness - Vickers Hardness Load 10kg) also improves.

(発明の効果〕 以上の実施例が示すように、従来、高塩基腐食あるいは
溶融塩腐食環境下では既存のオーステナイト系ステンレ
ス鋼では十分実用に耐えうる鋼がなく、そのために材料
温度の低減あるいは部材の早期交換によって対応せざる
を得なかったが、本発明鋼はステンレス系耐熱鋼として
十分な耐熱性を有しかつ、製造性および加工性にも優れ
ていることより、本発明鋼は時代の要請に答えるものと
して技術的、社会的、経済的に大きな効果を示すものと
思われる。
(Effects of the Invention) As shown in the above examples, in the past, there were no existing austenitic stainless steels that could withstand practical use in high base corrosion or molten salt corrosion environments, and for this reason, it was necessary to reduce the material temperature or However, the steel of the present invention has sufficient heat resistance as a stainless steel heat-resistant steel, and has excellent manufacturability and workability. It is believed that this will have great technological, social, and economic effects in response to these demands.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は塗布法によるNaCl高温塩高食塩腐食特性0
℃X20時間でみたもので、腐食減量に及ぼすSt添加
の影響を示す。 第2図は塗布法によるNaCl高塩基腐食特性を600
℃〜800℃X20時間でみたもので、腐食減量と試験
温度の関係を本6発明鋼と比較鋼およびJIS規格鋼に
ついて示す。 第3図は飽和NaCJ溶液(20℃)を用いて、5分間
浸漬、120分間650℃に加熱、5分間空冷のサイク
ルを40回繰り返した場合の重J[少を示す。
Figure 1 shows NaCl high temperature salt high salt corrosion characteristics 0 due to coating method.
℃×20 hours, showing the influence of St addition on corrosion loss. Figure 2 shows the NaCl high base corrosion characteristics by coating method.
The relationship between corrosion weight loss and test temperature is shown for the sixth invention steel, comparative steel, and JIS standard steel, as seen over 20 hours at 800°C. Figure 3 shows the heavy J [low] when a cycle of immersion for 5 minutes, heating at 650°C for 120 minutes, and air cooling for 5 minutes was repeated 40 times using a saturated NaCJ solution (20°C).

Claims (1)

【特許請求の範囲】 1 重量%で、 C:0.06%以下、 Si:4%を越え10%以下、 Mn:2.0%以下、 Ni:12〜20%、 Cr:16〜23%、 を含有し、 残部がFeおよび製鋼上の不可避的不純物よりなり、各
種の耐熱性に優れかつ耐高温塩腐食に対して著しい抵抗
を有する加工用オーステナイト系耐熱鋼。 2 重量%で、 C:0.06%以下、 Si:4%を越え10%以下、 Mn:2.0%以下、 Ni:12〜20%、 Cr:16〜23%、 NbまたはTiの1種または2種を0.1〜1.0%含
有し、かつ、Nb/(C+N)≧8、Ti/(C+N)
≧4または(Ti+0.5Nb)/(C+N)≧4を満
足し、残部がFeおよび製鋼上の不可避的不純物よりな
り、各種の耐熱性に優れかつ耐高温塩腐食に対して著し
い抵抗を有する加工用オーステナイト系耐熱鋼。 3 重量%で、 C:0.06%以下、 Si:4%を越え10%以下、 Mn:2.0%以下、 Ni:12〜20%、 Cr:16〜23%、 Ca:0.001〜0.05%、 を含有し、 残部がFeおよび製鋼上の不可避的不純物よりなり、各
種の耐熱性に優れかつ耐高温塩腐食に対して著しい抵抗
を有する加工用オーステナイト系耐熱鋼。 4 重量%で、 C:0.06%以下、 Si:4%を越え10%以下、 Mn:2.0%以下、 Ni:12〜20%、 Cr:16〜23%、 Ca:0.001〜0.05%、 NbとTiの1種または2種を0.1〜1.0%含有し
、かつ、Nb/(C+N)≧8、Ti/(C+N)≧4
、または(Ti+0.5Nb)/(C+N)≧4を満足
し、残部がFeおよび製鋼上の不可避的不純物よりなり
、各種の耐熱性に優れかつ耐高温塩腐食に対して著しい
抵抗を有する加工用オーステナイト系耐熱鋼。 5 重量%で、 C:0.06%以下、 Si:4%を越え10%以下、 Mn:2.0%以下、 Ni:12〜20%、 Cr:16〜23%、 Ca:0.001〜0.05%、 希土類元素およびYの1種または2種以上を合計で0.
001〜0.05% を含有し、 残部がFeおよび製鋼上の不可避的不純物よりなり、各
種の耐熱性に優れかつ耐高温塩腐食に対して著しい抵抗
を有する加工用オーステナイト系耐熱鋼。 6 重量%で、 C:0.06%以下、 Si:4%を越え10%以下、 Mn:2.0%以下、 Ni:12〜20%、 Cr:16〜23%、 Ca:0.001〜0.05%、 希土類元素およびYの1種または2種以上を合計で0.
001〜0.05%を含有し、 HbとTiの1種または2種を0.1〜1.0%含有し
、かつ、Nb/(C+N)≧8、Ti/(C+N)≧4
、または(Ti+0.5Nb)/(C+N)を満足し、
残部がFeおよび製鋼上の不可避的不純物よりなり、各
種の耐熱性に優れかつ耐高温塩腐食に対して著しい抵抗
を有する加工用オーステナイト系耐熱鋼。 7 重量%で、 C:0.06%以下、 Si:4%を越え10%以下、 Mn:2.0%以下、 Ni:12〜20%、 Cr:16〜23%、 Ca:0.001〜0.05%、 希土類元素およびYの1種または2種以上を合計で0.
001〜0.05%、 NbとTiの1種または2種を0.1〜1.0%含有し
、かつ、Nb/(C+N)≧8、Ti/(C+N)≧4
、または(Ti+0.5Nb)/(C+N)≧4を満足
し、さらにB:0.0005〜0.010% Cu:0.5〜2.5%、 を含有し、 残部がFeおよび製鋼上の不可避的不純物よりなり、各
種の耐熱性に優れかつ耐高温塩腐食に対して著しい抵抗
を有する加工用オーステナイト系耐熱鋼。 8 重量%で、 C:0.06%以下、 Si:4%を越え10%以下、 Mn:2.0%以下、 Ni:12〜20%、 Cr:16〜23%、 希土類元素およびYの1種または2種以上を合計で0.
001〜0.05%、 含有し、 残部がFeおよび製鋼上の不可避的不純物よりなり、各
種の耐熱性に優れかつ耐高温塩腐食に対して著しい抵抗
を有する加工用オーステナイト系耐熱鋼。
[Claims] 1% by weight: C: 0.06% or less, Si: more than 4% and 10% or less, Mn: 2.0% or less, Ni: 12-20%, Cr: 16-23% , The remainder consists of Fe and unavoidable impurities during steel manufacturing, and has excellent various heat resistance and remarkable resistance to high-temperature salt corrosion. 2% by weight, C: 0.06% or less, Si: more than 4% and 10% or less, Mn: 2.0% or less, Ni: 12-20%, Cr: 16-23%, 1 of Nb or Ti Contains 0.1 to 1.0% of one or two species, and Nb/(C+N)≧8, Ti/(C+N)
Processing that satisfies ≧4 or (Ti+0.5Nb)/(C+N)≧4, with the remainder consisting of Fe and unavoidable impurities in steelmaking, and has excellent heat resistance and remarkable resistance to high-temperature salt corrosion. Austenitic heat-resistant steel. 3% by weight, C: 0.06% or less, Si: more than 4% and 10% or less, Mn: 2.0% or less, Ni: 12-20%, Cr: 16-23%, Ca: 0.001 An austenitic heat-resistant steel for processing, which contains ~0.05% of the following, with the remainder consisting of Fe and unavoidable impurities during steel manufacturing, and has excellent various heat resistance and remarkable resistance to high-temperature salt corrosion. 4% by weight, C: 0.06% or less, Si: more than 4% and 10% or less, Mn: 2.0% or less, Ni: 12-20%, Cr: 16-23%, Ca: 0.001 ~0.05%, contains 0.1 to 1.0% of one or both of Nb and Ti, and Nb/(C+N)≧8, Ti/(C+N)≧4
, or (Ti+0.5Nb)/(C+N)≧4, with the remainder consisting of Fe and unavoidable impurities in steel manufacturing, and has excellent heat resistance and remarkable resistance to high-temperature salt corrosion. Austenitic heat-resistant steel. 5% by weight, C: 0.06% or less, Si: more than 4% and 10% or less, Mn: 2.0% or less, Ni: 12-20%, Cr: 16-23%, Ca: 0.001 ~0.05%, a total of 0.05% of one or more of rare earth elements and Y.
001 to 0.05%, the balance being Fe and unavoidable impurities during steel manufacturing, and having excellent various heat resistance and remarkable resistance to high-temperature salt corrosion. 6% by weight, C: 0.06% or less, Si: more than 4% and 10% or less, Mn: 2.0% or less, Ni: 12-20%, Cr: 16-23%, Ca: 0.001 ~0.05%, a total of 0.05% of one or more of rare earth elements and Y.
001 to 0.05%, contains 0.1 to 1.0% of one or both of Hb and Ti, and Nb/(C+N)≧8, Ti/(C+N)≧4
, or (Ti+0.5Nb)/(C+N),
An austenitic heat-resistant steel for machining, the remainder of which is Fe and unavoidable impurities during steelmaking, and which has excellent heat resistance in various types and remarkable resistance to high-temperature salt corrosion. 7% by weight, C: 0.06% or less, Si: more than 4% and 10% or less, Mn: 2.0% or less, Ni: 12-20%, Cr: 16-23%, Ca: 0.001 ~0.05%, a total of 0.05% of one or more of rare earth elements and Y.
001 to 0.05%, contains 0.1 to 1.0% of one or both of Nb and Ti, and Nb/(C+N)≧8, Ti/(C+N)≧4
, or (Ti+0.5Nb)/(C+N)≧4, and further contains B: 0.0005 to 0.010% Cu: 0.5 to 2.5%, the balance being Fe and steel-making An austenitic heat-resistant steel for machining that is composed of unavoidable impurities, has excellent heat resistance, and has remarkable resistance to high-temperature salt corrosion. 8% by weight, C: 0.06% or less, Si: more than 4% and 10% or less, Mn: 2.0% or less, Ni: 12-20%, Cr: 16-23%, rare earth elements and Y. One or more types in total of 0.
An austenitic heat-resistant steel for processing, containing 0.001 to 0.05%, the remainder consisting of Fe and unavoidable impurities during steel manufacturing, and having excellent various heat resistance and remarkable resistance to high-temperature salt corrosion.
JP61209659A 1986-09-08 1986-09-08 Austenitic heat resistant steel for processing Expired - Lifetime JPH07116556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61209659A JPH07116556B2 (en) 1986-09-08 1986-09-08 Austenitic heat resistant steel for processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61209659A JPH07116556B2 (en) 1986-09-08 1986-09-08 Austenitic heat resistant steel for processing

Publications (2)

Publication Number Publication Date
JPS6365058A true JPS6365058A (en) 1988-03-23
JPH07116556B2 JPH07116556B2 (en) 1995-12-13

Family

ID=16576470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61209659A Expired - Lifetime JPH07116556B2 (en) 1986-09-08 1986-09-08 Austenitic heat resistant steel for processing

Country Status (1)

Country Link
JP (1) JPH07116556B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100134A (en) * 1989-09-13 1991-04-25 Nippon Yakin Kogyo Co Ltd Fe-ni series alloy having excellent high temperature corrosion resistance and its manufacture
JPH03104842A (en) * 1989-09-20 1991-05-01 Nisshin Steel Co Ltd Austenitic stainless steel having excellent stress corrosion cracking resistance in chloride environment
CN103826766A (en) * 2011-07-29 2014-05-28 新日铁住金株式会社 Method for producing austenitic stainless steel
CN105506501A (en) * 2014-09-25 2016-04-20 宝钢不锈钢有限公司 Long-life high alloy heat resistant steel and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043011A (en) * 1973-06-19 1975-04-18
JPS50137325A (en) * 1974-04-20 1975-10-31
JPS50137326A (en) * 1974-04-20 1975-10-31
JPS52109421A (en) * 1976-03-10 1977-09-13 Nippon Steel Corp Heat resisting steel with excellent hot and cold workability
JPS52138010A (en) * 1976-05-14 1977-11-17 Sumitomo Metal Ind Ltd Heat resistant steel with excelent hot workability and oxidation re sistance
JPS5591960A (en) * 1978-12-28 1980-07-11 Sumitomo Chem Co Ltd High silicon-nickel-chromium steel with resistance to concentrated

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043011A (en) * 1973-06-19 1975-04-18
JPS50137325A (en) * 1974-04-20 1975-10-31
JPS50137326A (en) * 1974-04-20 1975-10-31
JPS52109421A (en) * 1976-03-10 1977-09-13 Nippon Steel Corp Heat resisting steel with excellent hot and cold workability
JPS52138010A (en) * 1976-05-14 1977-11-17 Sumitomo Metal Ind Ltd Heat resistant steel with excelent hot workability and oxidation re sistance
JPS5591960A (en) * 1978-12-28 1980-07-11 Sumitomo Chem Co Ltd High silicon-nickel-chromium steel with resistance to concentrated

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100134A (en) * 1989-09-13 1991-04-25 Nippon Yakin Kogyo Co Ltd Fe-ni series alloy having excellent high temperature corrosion resistance and its manufacture
JPH0369977B2 (en) * 1989-09-13 1991-11-06 Nippon Yakin Kogyo Co Ltd
JPH03104842A (en) * 1989-09-20 1991-05-01 Nisshin Steel Co Ltd Austenitic stainless steel having excellent stress corrosion cracking resistance in chloride environment
CN103826766A (en) * 2011-07-29 2014-05-28 新日铁住金株式会社 Method for producing austenitic stainless steel
EP2737961A4 (en) * 2011-07-29 2015-06-03 Nippon Steel & Sumitomo Metal Corp Method for producing austenitic stainless steel
CN105506501A (en) * 2014-09-25 2016-04-20 宝钢不锈钢有限公司 Long-life high alloy heat resistant steel and manufacturing method thereof

Also Published As

Publication number Publication date
JPH07116556B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
CN114761594B (en) Ferritic stainless steel sheet
JPH05132741A (en) High strength duplex stainless steel excellent in corrosion resistance
KR930005899B1 (en) Heat-resistant austenitic stainless steel
JP7009278B2 (en) Ferritic stainless steel sheets with excellent heat resistance and exhaust parts and their manufacturing methods
JPH02217439A (en) High strength low alloy steel having excellent corrosion resistance and oxidation resistance
KR20010083939A (en) Cr-mn-ni-cu austenitic stainless steel
JPH0375337A (en) Martensitic stainless steel having high strength and excellent corrosion resistance and its manufacture
JPS6365058A (en) Heat resistant austenitic steel
JPH0472013A (en) Manufacture of two phase stainless steel having excellent corrosion resistance to concentrated sulfuric acid
JP2001271148A (en) HIGH Al STEEL SHEET EXCELLENT IN HIGH TEMPERATURE OXIDATION RESISTANCE
US4043838A (en) Method of producing pitting resistant, hot-workable austenitic stainless steel
JP2801832B2 (en) Fe-Cr alloy with excellent workability
JP5136174B2 (en) High strength steel for bolts with excellent weather resistance and delayed fracture resistance
JP3779043B2 (en) Duplex stainless steel
JP3004784B2 (en) High toughness ferritic stainless steel for high temperatures
JP3587885B2 (en) Manufacturing method of hot-dip galvanized steel sheet for corrosion-resistant refractory structure
JP3464288B2 (en) Manufacturing method of hot-dip aluminized steel sheet for fire-resistant structure with excellent corrosion resistance
JPH07157852A (en) Ferritic stainless steel excellent in high temp erature salt damage property
US2523838A (en) Metal alloy
JP7475205B2 (en) Ferritic stainless steel sheet, method for producing the same, and automobile exhaust system part
JPH03158436A (en) Steel for structural use having weatherability on beach
JP2012107314A (en) Ferritic stainless steel excellent in thermal fatigue characteristics and high temperature fatigue characteristics
JP7022633B2 (en) Ferritic stainless steel sheets with excellent high-temperature salt damage resistance and automobile exhaust system parts
JPH08269642A (en) Austenitic heat resistant steel for internal combustion engine exhaust gas cleaning system
JP2021195573A (en) Ferritic stainless steel sheet, method for producing ferritic stainless steel sheet, and automobile exhaust system parts

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term