JPS6364348A - Cooling system for integrated circuit element - Google Patents

Cooling system for integrated circuit element

Info

Publication number
JPS6364348A
JPS6364348A JP20872786A JP20872786A JPS6364348A JP S6364348 A JPS6364348 A JP S6364348A JP 20872786 A JP20872786 A JP 20872786A JP 20872786 A JP20872786 A JP 20872786A JP S6364348 A JPS6364348 A JP S6364348A
Authority
JP
Japan
Prior art keywords
integrated circuit
heat exchanger
refrigerant
heat transfer
exchanger plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20872786A
Other languages
Japanese (ja)
Other versions
JPH0616538B2 (en
Inventor
Masahiro Suzuki
正博 鈴木
Haruhiko Yamamoto
治彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61208727A priority Critical patent/JPH0616538B2/en
Publication of JPS6364348A publication Critical patent/JPS6364348A/en
Publication of JPH0616538B2 publication Critical patent/JPH0616538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4332Bellows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To increase the heating area and a heat transfer rate between a heating surface and a refrigerant, and to improve cooling capacity by extending a heat exchanger plate in the direction of a flexible elastic structure, forming a recessed section and shaping a predetermined space between the bottom end of the flexible elastic structure and the base of the heat exchanger plate. CONSTITUTION:When a refrigerant such as water is flowed through a refrigerant path 2, the refrigerant is injected against a heat exchanger plate 5 mounted at the bottom end of a flexible elastic structure 4 by a nozzle 3 projected from the refrigerant path 2. The heat exchanger plate 5 and an integrated circuit element 6 are pushed directly or indirectly, heat generated from the integrated circuit element 6 mounted onto a substrate 7 is spread in the direction of the flexible elastic structure 4 and transmitted over the base section and both side surface sections of the heat exchanger plate 5 shaping a recessed section, and the refrigerant robs the base section and both side surface sections of the heat exchanger plate 5 of heat, thus cooling the integrated circuit element 6. A guide 21 improves positional precision in the horizontal direction of the heat exchanger plate 5, and prevents vibrations, movement, etc. in the horizontal direction.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔概要〕 長 ε−万−六−゛さ ″″子歴−1更に可4+’性弾
性)コ造体の底端と伝熱■の底面の間シこ所定9間をV
けることにより伝熱板と冷温間の有効な伝熱面fl及び
話伝ギでが増大し、冷却能力を向上ばせるものである。 〔ε業上の和ト(1分野〕 大発明は集積回路素子のめ却t〉TV’T b”jする
もので特に大型r丁子計二0:根Cτ装備さhる婁積回
μ紫子の冷却↓う1ζパに関するものである。 〔従来の技術〕 ζ4図は従来の呉f〆回路素子の冷却装CIの(11成
を示す図である。 旭4図において、41け冷却体、42け冷寂通路、43
けノズル、44は可弘・仕舞性’r’i5 i%体、寥
51″lt集jM回路素子、46は円に形の伝熱板、4
7は基板をそれぞれ示している。 従来の集積回路素子冷Z、゛1ン、・ば、^FJ be
冷奴4路42から突出し7と前記ノズル43−1ら冷奴
f々:jえば水などを前記可や論性シ゛ユ性病遺体44
の底=1目で取り付けられた前記伝熱W461C対して
直接噴射し、ばらに該伝熱板46とi)η記集f声回路
グζ子45がjl:1圧することにより、熱伝導作用が
行なわノ1、肘集積回路累子45の冷却全行なうもので
あった。 〔発明が解決しようとする問題点〕 しかしながら、従来の集積回路素子冷却装置においては
、円盤形状の伝熱板を用いていた為に、伝熱板と町?性
匈性構造体の接合形態が限定きれており、その結果伝熱
面と冷媒開きの伝熱面積が可撓性弾性構造体の大きさに
よって限られてbた為に集積回路素子の高密度実装化て
より集積回路素子の発熱量が更VC増大した場合では、
充分な冷却能力が得られず5p、積
[Summary] Length ε - 10,000 - 6 - ゛ `` ``Childhood - 1 more possible 4 + ' elasticity) Between the bottom end of the structure and the bottom of the heat transfer ■
By doing so, the effective heat transfer surface fl and heat transfer area between the heat transfer plate and the cold temperature are increased, and the cooling capacity is improved. [εIndustrial sum (1 field)] The great invention is the creation of integrated circuit elements.TV'T b"j is particularly large in size. [Prior art] Diagram ζ4 is a diagram showing the (11 configuration) of the cooling system CI of the conventional Kure f〆 circuit element. , 42 Keijakujiri, 43
The nozzle, 44 is a 51" circuit element, 46 is a circular heat exchanger plate, 4
7 each indicate a substrate. Conventional integrated circuit elements
The cold tofu 4 protruding from the passage 42 and the nozzle 43-1 are used to cool the cold tofu.
It injects directly to the heat transfer W461C attached at the bottom = 1, and separately the heat transfer plate 46 and the i) First, all of the cooling of the elbow integrated circuit resistor 45 was performed. [Problems to be Solved by the Invention] However, in the conventional integrated circuit device cooling device, since a disk-shaped heat exchanger plate was used, there was a problem that the heat exchanger plate and the town were not the same. The bonding form of the flexible elastic structure is limited, and as a result, the heat transfer area between the heat transfer surface and the refrigerant opening is limited by the size of the flexible elastic structure. If the amount of heat generated by integrated circuit elements increases further by VC after implementation,
Sufficient cooling capacity was not obtained, resulting in 5 p.

【1路姦子の信頼性
を低下させる恐れがあった。また伝か、折が平面状であ
る為、可撓性弾性構造体との接i部形態が冷媒全スムー
ズ′に流動させる形状となりイりず冷媒がよどめ、流れ
の悪くなる部分が生じ、冷却効率を低下ζせていえ。 本発明は集積回路素子の妃間計が増大した場合でも充分
な冷却’MF71を実現することができるような集積回
路素子冷却装置17を提伊することj−目的とするもの
である。 〔問題点を解決するための手段〕 第1図は本発明の実1に回路素子冷却装置′Jの原理図
である。 四回におりで、21i冷媒が流れる冷媒通路、3はノズ
ルであって冷媒辿路2から突出してbる、4け集積回路
素子6に対して安定した接触を提供する可撓性弾性構造
体、5は伝熱板であ−て、該可撓性弾性構造体4にメッ
キ加工したもの、又は熱伝導のμsれた別部材を五ア可
トL性弾性構造体4と接1.ソしてもよ1ハ、6は集積
回路素子、7は該集積回路素子6を実装した基板である
。 前記伝熱板5は剪記可院件弾性構造体4方回に延長され
、凹型g己を形成し、また膣可棒性陣t1肘、・、」、
遺体4のB+−5F、と該伝熱機5の底面の間に所足夕
間を設ける(、(成となっている。 〔作用〕 本発明は以上の如く構成されるものであり、f7、熱桁
5が可撓性5’!i件構阜体4方向に延長はJL、凹型
部を形成しているため、可を性ツII注構造体4σ)大
微ざに制限ざ台ることなく、より大きな伝熱板を設ける
ことが可能となる。濾らに伝熱板5内の熱伝導作用によ
って伝熱ty5の両側面からも冷媒に熱をfr:達する
ことが可能と々す、両者の効果によって有効熱伝達面積
が著しく増大することになる。ここで伝熱機5と冷媒間
の熱抵抗をR(deg/W) どすれば、熱抵抗Rは次
式のように表わすことができる。 上式に於−てAは前記の有効ν伝達面積(r+/)であ
り、hけ有効熱伝】卓面における平均熱伝達率(W/y
&・dCg)である。 ところで本発明においてはOil述の力[;〈有効熱伝
達面積で人が著しく工曽大することになる為、熱抵抗1
(け(11式ンで従って低下する。また6ち芸可拵τ’
15td性構造体4の底端と伝熱曹5の底面との間に設
けられた所定空間の底角部が晶形を描りている為、上記
所定空間を随時流動している冷媒の流れがスムーズとな
り平均熱伝達率りもまた同時に1回上させることになる
。かかる効果もまた熱抵抗Rを低下させること1で犬キ
〈寄与している。 以上述べたように、本発明では伝熱板が可撓性弾性構造
体方向に延長され凹型部を形成し、可撓性弾性構造体の
底端と伝熱機の底面のjISで所定空間を設けることに
より、伝熱面と冷媒開との伝熱面fJA及び熱伝達率り
が増大し伝熱面と冷媒間の#A砥抗Rが低減する。 〔実施例〕 以下本発明の1実施例を第2図hYかしつつ詳細に説明
する。 第2図は本発明の1実施例全乃ミす図である。 尚、第2図におりで、第1図と隔1−符号は同一対象物
2示す。 第2図におりて、2は冷媒通路、3はノズル、4は可撓
性弾性構造体、5は伝熱、坂、6け集積回路素子、7は
基板、21はガイドをそれぞ几示す。 冷媒通路2に冷媒例えば水などが流動すると、冷媒通路
2から突出してbるノズル3により冷媒伺えば水などが
可撓性4性構造体4の底ρに取シ付けられた伝熱板5に
対して噴射される。伝熱板5と集積回路素子6は直接或
すは間接的に押圧しており、基板7上に実装された集積
回路素子6から発生した熱は、可撓性弾性構造体4方向
に延長され、凹型部を形成した伝熱板5の底面部分及び
両側面部分に伝達され、でらに冷媒がその熱を奪うこと
により集積回路素子6が冷却される。この時ガイド21
を冷却体lに接合すれば、伝熱板5の集積回路素子6に
対する水平方向の位置精度を向上することができ同時に
伝熱板5の水平方向の振動や移動などを防止することが
可能となる・上2ガイドの取シ付は構造は、ガイド21
を冷却体1に取シ付けることによって、伝熱板5の水平
移動防止及び圧技位titのイ、?度量上の功−7が途
6Zされれば第3図に示す如く、如何なるイ1゛5造で
もよい。 第3区(a)、 fbl、 (cl、 (d)汀ガイド
の取り付け+さ造例を示す平面図でらシ、 同図fat、lblはガイド数が3本の場合である。 同図(dけガイド数が4木の相合である。 ↓ 同図/dlは複数の伝熱もソヨに対しての共通ガイドの
場合であり冷却体1と冷却体1を連結する部分を除く冷
却体1の外側全てをガイド21としたものである。 なお、第2図に示す如く、小型の電子部品22に銅系な
どの熱伝導率の良い材質のガイド21を押圧することに
よ−て集積回路素子6と同時に該小型のm−7一部品2
2をも冷却することが可かととなる。この時、ガイド2
1と小型のV子部品22の間に熱伝導性の良いコンパウ
ンドなどを扶んで冷却してもよい。 〔発明の効果〕 本発明は以上説明したように集積回路素子の熱を冷媒に
伝達する伝熱板が可撓性弾性4I′d造体の方向に延長
され凹型部が形成きれてシシ、可撓性4性構造体の底端
と伝熱板底面の間に所定空間を投げられている。 このため集積回路素子の高密度実装化により集積回路素
子の発熱蒙が増大した場合でも伝熱面と冷媒間の伝熱面
積及び熱伝達率が増大するために、伝熱面と冷媒間の熱
抵抗が減少し冷却能力が大幅に向上する0
[There was a risk that the credibility of 1st route Kanko would be lowered. In addition, since the folds are flat, the shape of the contact part with the flexible elastic structure allows the refrigerant to flow completely smoothly, and the refrigerant stagnates, causing parts where the flow is poor. No need to reduce cooling efficiency. SUMMARY OF THE INVENTION An object of the present invention is to provide an integrated circuit device cooling device 17 that can achieve sufficient cooling MF71 even when the size of the integrated circuit device increases. [Means for Solving the Problems] FIG. 1 is a diagram showing the principle of a circuit element cooling device 'J' according to the first embodiment of the present invention. a refrigerant passageway through which the 21i refrigerant flows; 3 is a nozzle protruding from the refrigerant path 2; a flexible elastic structure providing stable contact with the 4-pack integrated circuit element 6; , 5 is a heat transfer plate, which is plated on the flexible elastic structure 4, or a separate member with heat conduction μs is connected to the flexible elastic structure 4. 1C, 6 is an integrated circuit element, and 7 is a substrate on which the integrated circuit element 6 is mounted. The heat exchanger plate 5 is an elastic structure that can be cut and extended in four directions to form a concave shape, and has an elastic structure that can be inserted into the vagina.
A sufficient gap is provided between B+-5F of the corpse 4 and the bottom surface of the heat transfer device 5. [Function] The present invention is constructed as described above. Since the heat girder 5 extends in the flexible structure body 4 direction and forms a concave part, the flexibility is limited to a large degree. This makes it possible to provide a larger heat transfer plate.It is also possible to reach the refrigerant from both sides of the heat transfer ty5 due to the heat conduction action within the heat transfer plate 5. The effective heat transfer area increases significantly due to both effects.Here, the thermal resistance between the heat transfer machine 5 and the refrigerant is expressed as R (deg/W), and the thermal resistance R can be expressed as the following equation. In the above equation, A is the effective ν transfer area (r+/), and the average heat transfer coefficient at the table surface (W/y
&・dCg). By the way, in the present invention, the oil-based force [;<because the effective heat transfer area will be significantly larger than the actual heat transfer area, the thermal resistance 1
(Therefore, it decreases with 11 expressions.
Since the bottom corner of the predetermined space provided between the bottom end of the 15td structure 4 and the bottom surface of the heat transfer carbon 5 has a crystal shape, the flow of the refrigerant that is constantly flowing in the predetermined space is It becomes smoother and the average heat transfer rate also increases by one degree at the same time. This effect also contributes to reducing heat resistance by reducing the thermal resistance R. As described above, in the present invention, the heat transfer plate is extended in the direction of the flexible elastic structure to form a concave portion, and a predetermined space is provided between the bottom end of the flexible elastic structure and the jIS of the bottom surface of the heat transfer device. As a result, the heat transfer surface fJA and the heat transfer coefficient between the heat transfer surface and the refrigerant are increased, and the #A grinding resistance R between the heat transfer surface and the refrigerant is reduced. [Embodiment] Hereinafter, one embodiment of the present invention will be described in detail with reference to FIG. 2hY. FIG. 2 is a complete diagram of one embodiment of the present invention. It should be noted that in FIG. 2, the same reference numeral 1 as in FIG. 1 indicates the same object 2. In Fig. 2, 2 is a refrigerant passage, 3 is a nozzle, 4 is a flexible elastic structure, 5 is a heat transfer, a slope, 6 integrated circuit elements, 7 is a substrate, and 21 is a guide. . When a refrigerant, such as water, flows into the refrigerant passage 2, a nozzle 3 protruding from the refrigerant passage 2 sends the refrigerant through a heat transfer plate 5 attached to the bottom ρ of the flexible four-dimensional structure 4. is injected against. The heat exchanger plate 5 and the integrated circuit element 6 are pressed directly or indirectly, and the heat generated from the integrated circuit element 6 mounted on the substrate 7 is extended in the direction of the flexible elastic structure 4. The heat is transmitted to the bottom and both side surfaces of the heat transfer plate 5, which has a concave portion, and the coolant further removes the heat, thereby cooling the integrated circuit element 6. At this time guide 21
By joining the heat exchanger plate 5 to the cooling body l, it is possible to improve the horizontal positional accuracy of the heat exchanger plate 5 with respect to the integrated circuit element 6, and at the same time, it is possible to prevent vibration or movement of the heat exchanger plate 5 in the horizontal direction. The structure of the upper 2 guides is guide 21.
By attaching it to the cooling body 1, horizontal movement of the heat exchanger plate 5 can be prevented and the pressure position can be adjusted. As long as the measure-7 is completed 6Z, as shown in Figure 3, any number 1 or 5 may be used. Section 3 (a), fbl, (cl, (d) A plan view showing an example of installation of shore guides + construction. Figure fat and lbl are for the case where the number of guides is three. Figure (d) The number of guides d is a combination of 4 trees. ↓ The same figure / dl is a case where multiple heat transfers are common guides for SOYO, and the cooling body 1 except the part connecting the cooling bodies 1 As shown in FIG. 2, the guide 21 made of a material with good thermal conductivity such as copper is pressed against a small electronic component 22 to form an integrated circuit. At the same time as element 6, the small m-7 part 2
It would be possible to cool down 2 as well. At this time, guide 2
1 and the small V-child part 22 may be cooled by placing a compound or the like with good thermal conductivity between them. [Effects of the Invention] As explained above, the present invention has a structure in which the heat transfer plate that transfers the heat of the integrated circuit element to the refrigerant is extended in the direction of the flexible elastic 4I'd structure, and the concave portion is completely formed. A predetermined space is provided between the bottom end of the flexible four-dimensional structure and the bottom surface of the heat exchanger plate. For this reason, even if the heat generation area of integrated circuit elements increases due to high-density packaging of integrated circuit elements, the heat transfer area and heat transfer coefficient between the heat transfer surface and the refrigerant increase, so the heat transfer between the heat transfer surface and the refrigerant increases. Reduces resistance and greatly improves cooling capacity 0

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理を示す図であシ、給2図は本発明
の1実施例を示す図であシ、第3図はガイドの取り付は
構造を示す平面図であり、第4図は従来の集積回路素子
冷却装Wのス゛萱成を示す図である。 図において、 1・・・冷却体、2・・・冷媒通路、3・・・ノズル、
4・・・可撓性弾性構造体、5・・・伝熱板、6・・・
集積回路素子、7・・・基板、21・・ガイド、22・
・小型の電子部品。 ・′−1−・二r 1〜+ 、。1 、;−ノミレイ本 木を萌f7皇f’!−閉 第 1 図 7、・1 木金明内−実託9・1 32 図 力゛イF刀セ゛ルf寸/i、構造2示−r−!−面図第
 3 図
Fig. 1 is a diagram showing the principle of the present invention, Fig. 2 is a diagram showing an embodiment of the invention, Fig. 3 is a plan view showing the structure of the installation of the guide; FIG. 4 is a diagram showing the construction of a conventional integrated circuit device cooling device W. As shown in FIG. In the figure, 1...cooling body, 2...refrigerant passage, 3...nozzle,
4... Flexible elastic structure, 5... Heat exchanger plate, 6...
integrated circuit element, 7... substrate, 21... guide, 22...
・Small electronic parts.・'-1-・2r 1~+,. 1, ;- Nomi Rei Motoki f7 Emperor f'! - Closed No. 1 Fig. 7, ・1 Mogaki Akinai - Jitsukaku 9 ・1 32 Figure power - F sword sail f dimension / i, structure 2 - r -! -Surface view Figure 3

Claims (1)

【特許請求の範囲】 上端が冷却体(1)に取り付けられた可撓性弾性構造体
(4)の底端に伝熱板(5)を設け該冷却体(1)内部
に設けられたノズル(3)より該伝熱板(5)に対して
、冷媒が噴射され、基板(7)上に実装された集積回路
素子(6)に対して該伝熱板(5)を直接或いは間接的
に押圧することによって該集積回路素子(7)を冷却す
る集積回路素子冷却装置において、 前記伝熱板(5)を前記集積回路素子(6)に押圧する
と共に該伝熱板(5)が前記可撓性弾性構造体(4)方
向に延長され、凹型部を形成し、該可撓性構造体(4)
の底端と該伝熱板(5)の底面の間に所定空間を設けた
ことを特徴とした集積回路素子冷却装置。
[Scope of Claims] A heat transfer plate (5) is provided at the bottom end of a flexible elastic structure (4) whose upper end is attached to the cooling body (1), and a nozzle provided inside the cooling body (1). (3) A refrigerant is injected onto the heat exchanger plate (5), and the heat exchanger plate (5) is directly or indirectly applied to the integrated circuit element (6) mounted on the substrate (7). In the integrated circuit device cooling device for cooling the integrated circuit device (7) by pressing the heat transfer plate (5) against the integrated circuit device (6), the heat transfer plate (5) cools the integrated circuit device (7) by pressing the heat transfer plate (5) against the integrated circuit device (6). extending in the direction of the flexible elastic structure (4) and forming a concave portion;
An integrated circuit device cooling device characterized in that a predetermined space is provided between the bottom end of the heat transfer plate (5) and the bottom surface of the heat transfer plate (5).
JP61208727A 1986-09-04 1986-09-04 Integrated circuit element cooling device Expired - Lifetime JPH0616538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61208727A JPH0616538B2 (en) 1986-09-04 1986-09-04 Integrated circuit element cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208727A JPH0616538B2 (en) 1986-09-04 1986-09-04 Integrated circuit element cooling device

Publications (2)

Publication Number Publication Date
JPS6364348A true JPS6364348A (en) 1988-03-22
JPH0616538B2 JPH0616538B2 (en) 1994-03-02

Family

ID=16561080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208727A Expired - Lifetime JPH0616538B2 (en) 1986-09-04 1986-09-04 Integrated circuit element cooling device

Country Status (1)

Country Link
JP (1) JPH0616538B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132449A (en) * 1984-07-12 1986-02-15 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Integrated circuit chip cooler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132449A (en) * 1984-07-12 1986-02-15 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Integrated circuit chip cooler

Also Published As

Publication number Publication date
JPH0616538B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
JPS6336695Y2 (en)
US7316265B2 (en) Method for passive phase change thermal management
JP6546521B2 (en) Liquid cooling system
JP2008501926A (en) Heat exchanger and cooling method
JPH079956B2 (en) Heat sink for integrated circuit board
JPS60160149A (en) Cooling system for integrated circuit device
JPH0621291A (en) Heat-resistant semiconductor chip package
KR20090122295A (en) Semiconductor device
JPH08316388A (en) Heat sink excellent in heat dissipation characteristics
US20020186538A1 (en) Cooling module and the system using the same
JPS6364348A (en) Cooling system for integrated circuit element
JP6623120B2 (en) Liquid cooling system
CN208368545U (en) heat sink device
JPH0783078B2 (en) Semiconductor cooling device
JP2013115202A (en) Semiconductor device
JPH046100B2 (en)
JPS61174749A (en) High density integrated circuit
WO2024042899A1 (en) Semiconductor device
JPS6118864B2 (en)
JP2005166789A (en) Heat dissipator
JPH0311894Y2 (en)
JPS59157488A (en) Cooling device for heatgenerating body
JP2006019628A (en) Cooler
JP2023144740A (en) Cooling device
JPS63208254A (en) Cooling structure for lsi