JPS6364260B2 - - Google Patents

Info

Publication number
JPS6364260B2
JPS6364260B2 JP56062890A JP6289081A JPS6364260B2 JP S6364260 B2 JPS6364260 B2 JP S6364260B2 JP 56062890 A JP56062890 A JP 56062890A JP 6289081 A JP6289081 A JP 6289081A JP S6364260 B2 JPS6364260 B2 JP S6364260B2
Authority
JP
Japan
Prior art keywords
resin
sand grains
coated sand
weight
solid resol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56062890A
Other languages
Japanese (ja)
Other versions
JPS57177847A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6289081A priority Critical patent/JPS57177847A/en
Publication of JPS57177847A publication Critical patent/JPS57177847A/en
Publication of JPS6364260B2 publication Critical patent/JPS6364260B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2246Condensation polymers of aldehydes and ketones
    • B22C1/2253Condensation polymers of aldehydes and ketones with phenols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、鋳物の鋳造時に使用する低膨脹鋳
型製造の為のシエルモールド用樹脂被覆砂粒(以
下単に樹脂被覆砂粒という)の製造方法に関す
る。 近年、特に車輌用鋳物製品は軽量化の為に薄肉
化され、且つ排気ガス対策等を計る為に複雑な形
状に移行しつつある。 これら鋳物製品の変遷に伴い当然の要求として
鋳型の寸法精度の向上、特に注湯時に熱膨脹の小
さい、即ち低熱膨脹の鋳型の開発が必要となつて
くる。鋳型の熱膨脹の要因は主として砂粒の種類
とその結合剤であるフエノール系の樹脂にあり、
当業界では低熱膨脹タイプのフエノール系樹脂の
開発に力をそそいでいる。 この種のフエノール系樹脂として知られている
ものに、変性ノボラツク形フエノール樹脂(ノボ
ラツク樹脂)と変性固形アンモニアレゾール形フ
エノール樹脂特にSR酸を主成分とする固形レゾ
ール形フエノール樹脂(固形レゾール樹脂)があ
る。このうち上記ノボラツク樹脂は、寸法精度は
優れているが、鋳込後の砂落ち性(中子の崩壊
性)が著るしく悪く、鋳鉄のウオータージヤケツ
ト中子の如き砂残りが重大な欠陥、即ち砂ずまり
を生起させる様な個所には使用できない。一方、
上記固形レゾール樹脂は寸法精度並びに崩壊性は
優れているが鋳型強度が上記ノボラツク樹脂に比
べて劣る為に砂粒に対する樹脂添加量が増え、そ
の結果樹脂被覆砂粒のコスト高を招来する。 そこでこの発明の目的は前記欠点を解消し、寸
法精度、崩壊性、鋳型強度がともに優れ、且つ安
価な樹脂被覆砂粒の製造方法を提供することであ
る。 本発明の目的は、砂粒と固形レゾール樹脂を混
練し、樹脂被覆砂粒を製造する際、ヘキサメチレ
ンテトラミン(以下ヘキサミンともいう)、を固
形レゾール樹脂100重量部に対して2〜20重量部
添加する事によつて達成される。 このヘキサミンの配合割合は、固形レゾール樹
脂100重量部に対して2〜20重量部であるが、好
ましくは3〜10重量部である。 また添加する際は水に溶解させ水溶液として添
加する方が好ましく、その水溶液の濃度は10〜50
%位に調整すると良い。 またこの発明の固形レゾール樹脂SR酸を主成
分とする樹脂であにり、このSR酸単体又はフエ
ノール類との混合物とホルムアルデヒドと、アン
モニアの触媒とで付加縮合させ、濃縮脱水後冷却
固化して得られた固形レゾール樹脂である。ここ
でSR酸とはビスフエノールA残渣であり未反応
の石炭酸、ビスフエノールA及びその各種異性体
並びに誘導からなつている。この種の固形レゾー
ル樹脂は鋳型の熱膨脹を抑制する効果がある。次
にヘキサミンを添加する意図を埋論的に説明す
る。 従来、熱可塑性樹脂であるノボラツク樹脂の硬
化剤としてヘキサミンを使用する事は公知であ
る。しかし、熱硬化性樹脂であるレゾール樹脂に
は硬化剤は必要ではない。加熱砂粒に固形レゾー
ル樹脂を添加し、被覆させる際、固形レゾール樹
脂は一端溶融して被覆に供するが、ヘキサミンを
添加するとその効果で上記固形レゾール樹脂の溶
融時の粘度が下がり被覆が完全なものとなり、ひ
いてはこの樹脂被覆砂粒を使用して鋳型にした際
鋳型強度を向上させる効果がある。さらに鋳型造
型時においても、ヘキサミンの添加により砂粒に
被覆された樹脂の溶融粘度が低下するため、鋳型
強度は向上する。また被覆された固形レゾール樹
脂は砂粒の結合剤として作用するが、その際架橋
が不十分であると強度が不足する。 ヘキサミンは上記溶融粘度を下げるだけにとど
まらず、レゾール樹脂が硬化する際、積極的に分
子間の反応に参加し、架橋剤として働き、分子間
に窒素固定される。こうして得られた硬化物は架
橋が十分であり、ひいては鋳型強度を向上させ
る。 以上のように、ヘキサミンの添加による鋳型強
度の向上は、固形レゾール樹脂の添加量を減少さ
せることが可能となり、崩壊性を良好にさせる。 参考例 1 1のセパラブルフラスコに、SR酸500gと37
%ホルマリン360gを仕込み、40℃に加熱してか
ら20%可性ソーダ水溶液20gを添加し、85―90℃
で40分間メチロール化反応を行わせた。ついで内
容物を50℃まで冷却してから25%アンモニア水51
gを添加し、再び70〜75℃に加熱して80分間反応
させた。得られた生成物にビスフエノールS20
g、アミノシラン3gを添加し、−60〜−65cmHg
の減圧下で濃縮脱水を行い、液温が95℃に達した
とき直ちに内容物を排出して冷却固化させ、重量
平均分子量1480の固形レゾール樹脂を得た。この
固化した樹脂を6〜20メツシユに破砕し、ワツク
ス3phrを混合、打粉した。 参考例 2 1の三ツ口フラスコに、SR酸500gおよび37
%ホルマリン161gを仕込み、70℃に加熱してか
らシユウ酸2.1gを添加したのち、還流温度で110
分間反応させ、ついでモノエタノールアミンを添
加して内容物のPHを3.0〜4.0に調整した。つぎに
−60〜−65cmHgの減圧下で濃縮脱水を行い内容
物の温度が180℃に達した時に減圧、加熱を中止
し、ワツクス16g、アミノシラン1.5gを添加、
溶解させた後排出して冷却固化させて、融点58℃
のノボラツク樹脂を得た。 参考例 3 1の三ツ口フラスコに、フエノール600g、
37%ホルマリン414gを仕込み、70℃に加熱して
からシユウ酸2.1gを添加してから、還流温度で
150分間反応させた。つぎに−60〜−65cmHgの減
圧下で濃縮脱水を行い、内容物の温度が160℃に
達したときに減圧、加熱を中止し、ワツクス
3phrを添加、溶解させた後、排出して冷却固化
させ、融点68℃、平均分子量2490の未変性ノボラ
ツク樹脂を得た。 参考例 4 1のセパラブルフラスコに、フエノール500
gと、85%パラホルムアルデヒド338gと、25%
アンモニア水75gを仕込み、60〜65℃の温度で、
120分間反応させた。ついで−60〜−65cmHgの減
圧下で濃縮脱水を行い、液温が100℃に達したと
きに直ちに内容物を排出して冷却固化させ、重量
平均分子量1730未変性固形レゾール樹脂を得た。
これを6〜20メツシユに破砕し、ワツクス3phr
を混合打合した。 実施例 1 スピードマーラーに120〜140℃に加熱した再生
砂350Kgを入れ、攪拌しながら参考例1で得られ
た固形レゾール樹脂を6.5Kg入れ、20秒間攪拌混
合後30%ヘキサ水を1.1と冷却水を3.2を入れ
た。その後60秒間攪拌混練し、ステアリン酸カル
シウムを0.175Kg添加し、さらに20秒間混練し、
排砂して樹脂被覆砂粒を得た。 実施例 2 30%ヘキサ水の量を2.2及び冷却水の量を2.4
とした以外は実施例1と同様にして樹脂被覆砂
粒を得た。 実施例 3 30%ヘキサ水の量を3.3、冷却水の量を1.6
とした以外は実施例1と同様にして樹脂被覆砂粒
を得た。 比較例 1 30%ヘキサ水を添加せず、冷却水の量を3.9
とした以外は実施例1と同様にして樹脂被覆砂粒
を得た。 比較例 2 参考例1で得られた固形レゾール樹脂の代りに
参考例2で得られたノボラツク樹脂を使用し、且
つ冷却水の量を2.7とした以外は実施例3と同
様にして樹脂被覆砂粒を得た。 比較例 3 参考例3で得られた未変性ノボラツク樹脂を使
用した以外は比較例3と同様にして樹脂被覆砂粒
を得た。 比較例 4 参考例4で得られた未変性固形レゾール樹脂を
使用した以外は比較例1と同様にして樹脂被覆砂
粒を得た。 以上、上記実施例1―3及び比較例1―4で得
られた樹脂被覆砂粒を使用してJlS K6901に準じ
て試験を行つた。その結果を下表1に掲げる。
The present invention relates to a method for manufacturing resin-coated sand grains for shell molds (hereinafter simply referred to as resin-coated sand grains) for manufacturing low-expansion molds used in casting castings. In recent years, casting products for vehicles in particular have become thinner in order to reduce weight, and are also becoming more complex in shape to take measures against exhaust gas. As a result of these changes in cast products, it has naturally become necessary to improve the dimensional accuracy of molds, and in particular to develop molds with low thermal expansion during pouring. The thermal expansion of the mold is mainly caused by the type of sand grains and the phenolic resin that binds them.
The industry is focusing on the development of low thermal expansion type phenolic resins. Known types of phenolic resins include modified novolac type phenolic resins (novolac resins) and modified solid ammonia resol type phenolic resins, especially solid resol type phenolic resins containing SR acid as the main component (solid resol resins). be. Among these, the above-mentioned novolak resin has excellent dimensional accuracy, but has extremely poor sand removal properties (core disintegration properties) after casting, and sand residue, such as in cast iron water jacket cores, can cause serious defects. In other words, it cannot be used in areas where sand deposits may occur. on the other hand,
Although the solid resol resin has excellent dimensional accuracy and disintegrability, its mold strength is inferior to that of the novolak resin, so the amount of resin added to the sand grains increases, resulting in an increase in the cost of the resin-coated sand grains. SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks, provide a method for producing resin-coated sand grains that is excellent in dimensional accuracy, collapsibility, and mold strength, and is inexpensive. The purpose of the present invention is to knead sand grains and solid resol resin to produce resin-coated sand grains, and to add 2 to 20 parts by weight of hexamethylenetetramine (hereinafter also referred to as hexamine) to 100 parts by weight of solid resol resin. achieved by things. The blending ratio of hexamine is 2 to 20 parts by weight, preferably 3 to 10 parts by weight, based on 100 parts by weight of the solid resol resin. Also, when adding, it is preferable to dissolve it in water and add it as an aqueous solution, and the concentration of the aqueous solution is 10 to 50.
It is best to adjust it to %. In addition, the solid resol resin of the present invention is annealed with a resin containing SR acid as a main component, which is subjected to addition condensation with this SR acid alone or a mixture with phenols, formaldehyde, and an ammonia catalyst, concentrated and dehydrated, and then cooled and solidified. This is the obtained solid resol resin. Here, SR acid is bisphenol A residue, which is composed of unreacted carbolic acid, bisphenol A, its various isomers, and derivatives. This type of solid resol resin has the effect of suppressing thermal expansion of the mold. Next, the intention of adding hexamine will be explained in detail. It has been known to use hexamine as a curing agent for novolak resin, which is a thermoplastic resin. However, resol resin, which is a thermosetting resin, does not require a curing agent. When solid resol resin is added to heated sand grains and coated, the solid resol resin is temporarily melted and used for coating, but when hexamine is added, the viscosity of the solid resol resin when melted decreases and the coating is complete. This has the effect of improving the strength of the mold when the resin-coated sand grains are used to make a mold. Furthermore, during mold making, the addition of hexamine reduces the melt viscosity of the resin coated on the sand grains, thereby improving mold strength. Further, the coated solid resol resin acts as a binder for the sand grains, but if crosslinking is insufficient in this case, the strength will be insufficient. Hexamine not only lowers the melt viscosity, but also actively participates in intermolecular reactions when the resol resin is cured, acts as a crosslinking agent, and fixes nitrogen between molecules. The cured product thus obtained has sufficient crosslinking, which in turn improves mold strength. As described above, the improvement in mold strength due to the addition of hexamine makes it possible to reduce the amount of solid resol resin added, and improves the disintegrability. Reference example 1 In the separable flask from 1, 500g of SR acid and 37
Prepare 360g of % formalin, heat to 40℃, add 20g of 20% soluble soda aqueous solution, and heat to 85-90℃.
The methylolation reaction was carried out for 40 minutes. Then, after cooling the contents to 50℃, add 25% ammonia water 51
g was added thereto, heated again to 70-75°C, and reacted for 80 minutes. Bisphenol S20 to the resulting product
g, add 3 g of aminosilane, -60 to -65 cmHg
Concentration and dehydration was carried out under reduced pressure, and as soon as the liquid temperature reached 95°C, the contents were discharged, cooled and solidified to obtain a solid resol resin with a weight average molecular weight of 1480. This solidified resin was crushed into 6 to 20 meshes, mixed with 3 phr of wax, and powdered. Reference example 2 Into the three-neck flask from 1, add 500 g of SR acid and 37
% formalin, heated to 70°C, added 2.1g of oxalic acid, and heated to 110% at reflux temperature.
After reacting for a minute, monoethanolamine was added to adjust the pH of the contents to 3.0-4.0. Next, concentrate and dehydrate under reduced pressure of -60 to -65 cmHg, and when the temperature of the contents reaches 180°C, reduce the pressure and stop heating, and add 16 g of wax and 1.5 g of aminosilane.
After melting, discharge and cool to solidify, melting point 58℃
A novolak resin was obtained. Reference example 3 600g of phenol in the three-necked flask from 1.
Prepare 414g of 37% formalin, heat to 70℃, add 2.1g of oxalic acid, and then heat at reflux temperature.
The reaction was allowed to proceed for 150 minutes. Next, concentrate and dehydrate under reduced pressure of -60 to -65 cmHg, and when the temperature of the contents reaches 160°C, stop reducing the pressure and heating, and remove the wax.
After adding and dissolving 3 phr, the mixture was discharged, cooled and solidified to obtain an unmodified novolak resin with a melting point of 68°C and an average molecular weight of 2490. Reference example 4 Phenol 500 in 1 separable flask
g, 85% paraformaldehyde 338g, 25%
Prepare 75g of ammonia water and heat at a temperature of 60 to 65℃.
The reaction was allowed to proceed for 120 minutes. Then, concentration and dehydration were carried out under reduced pressure of -60 to -65 cmHg, and when the liquid temperature reached 100°C, the contents were immediately discharged and cooled to solidify to obtain an unmodified solid resol resin with a weight average molecular weight of 1730.
Crush this into 6 to 20 pieces and wax 3phr.
We had a mixed discussion. Example 1 Put 350 kg of recycled sand heated to 120-140°C into a speed maller, add 6.5 kg of solid resol resin obtained in Reference Example 1 while stirring, stir and mix for 20 seconds, and then cool with 30% hexa water to 1.1 kg. I added 3.2 of water. After that, stir and knead for 60 seconds, add 0.175Kg of calcium stearate, and knead for another 20 seconds.
The sand was removed to obtain resin-coated sand grains. Example 2 The amount of 30% hexa water is 2.2 and the amount of cooling water is 2.4.
Resin-coated sand grains were obtained in the same manner as in Example 1 except for the following. Example 3 The amount of 30% hexa water is 3.3, the amount of cooling water is 1.6
Resin-coated sand grains were obtained in the same manner as in Example 1 except for the following. Comparative example 1 Without adding 30% hexa water, the amount of cooling water was 3.9
Resin-coated sand grains were obtained in the same manner as in Example 1 except for the following. Comparative Example 2 Resin-coated sand grains were prepared in the same manner as in Example 3, except that the novolak resin obtained in Reference Example 2 was used instead of the solid resol resin obtained in Reference Example 1, and the amount of cooling water was changed to 2.7. I got it. Comparative Example 3 Resin-coated sand grains were obtained in the same manner as in Comparative Example 3, except that the unmodified novolak resin obtained in Reference Example 3 was used. Comparative Example 4 Resin-coated sand grains were obtained in the same manner as in Comparative Example 1, except that the unmodified solid resol resin obtained in Reference Example 4 was used. As described above, a test was conducted according to JlS K6901 using the resin-coated sand grains obtained in Example 1-3 and Comparative Example 1-4. The results are listed in Table 1 below.

【表】 尚上表1で崩壊性の試験方法はまず第1図示の
形状に250℃に加熱した金型で60秒間さらに350℃
の炉内で60秒間焼成してテストピースを作成し
た。その後鋳鉄溶湯を温度1300〜1330℃に容解
し、中子/鋳物を125g/1370gの条件で注湯し、
10分後鋳型をばらし、1日放置後崩壊性をテスト
した。テストは第2図示の装置を用い、ランマー
にて衝撃を与え、中子がすべて落下するまでのラ
ンマー回数を崩壊性指数とした。但し、1000回を
越えるものについては中子重量に対する砂残り率
×1000+1000で崩壊性指数とした。 以上、表1から明らかな如く、本発明は、常温
曲げ強さ、温間曲げ強さ、急熱膨脹率及び崩壊性
ともにバランスのとれた各要求値を満足せしめ、
且つ安価な樹脂被覆砂粒の製造方法を提供してい
る。
[Table] In Table 1 above, the disintegration test method is to first heat the mold to 250°C in the shape shown in the first figure and then heat it to 350°C for 60 seconds.
A test piece was created by firing it in a furnace for 60 seconds. After that, the molten cast iron was melted to a temperature of 1300 to 1330℃, and the core/casting was poured under the conditions of 125g/1370g.
After 10 minutes, the mold was taken apart and left to stand for one day, and then its disintegration properties were tested. The test was carried out using the apparatus shown in Figure 2, where impact was applied with a rammer, and the number of times the rammer was used until all the cores fell was taken as the collapsibility index. However, for those that have been used more than 1000 times, the disintegration index was calculated as the sand remaining ratio to core weight x 1000 + 1000. As is clear from Table 1, the present invention satisfies the required values of room temperature bending strength, warm bending strength, rapid thermal expansion coefficient, and disintegration properties in a well-balanced manner.
Moreover, an inexpensive method for producing resin-coated sand grains is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はともに崩壊性テストを説図
する為の図であり、第1図示は崩壊性テストを行
うためのテストピースの断面図を含む平面図であ
り、第2図示は崩壊性テスト用装置の断面図であ
る。 1:湯口、2:堰、3:中子、4:ランマー、
5:駆動部、6:固定ボルト、7:砂受け缶。
Both Figures 1 and 2 are diagrams for illustrating the collapsibility test. FIG. 2 is a cross-sectional view of the sex testing device. 1: sprue, 2: weir, 3: core, 4: rammer,
5: Drive unit, 6: Fixing bolt, 7: Sand receiving can.

Claims (1)

【特許請求の範囲】[Claims] 1 加熱した砂粒とSR酸を主成分とする固形ア
ンモニアレゾール形フエノール樹脂を混練してシ
エルモールド用樹脂被覆砂粒を製造する方法にお
いて、混練時に該固形アンモニアレゾール形フエ
ノール樹脂100重量部に対してヘキサメチレンテ
トラミンを2〜20重量部添加することを特徴とす
るシエルモールド用樹脂被覆砂粒の製造方法。
1. In a method for producing resin-coated sand grains for shell molds by kneading heated sand grains and solid ammonia resol type phenolic resin mainly composed of SR acid, hexane is added to 100 parts by weight of the solid ammonia resol type phenolic resin during kneading. A method for producing resin-coated sand grains for shell molding, which comprises adding 2 to 20 parts by weight of methylenetetramine.
JP6289081A 1981-04-24 1981-04-24 Production of resin coated sand grain for shell mold Granted JPS57177847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6289081A JPS57177847A (en) 1981-04-24 1981-04-24 Production of resin coated sand grain for shell mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6289081A JPS57177847A (en) 1981-04-24 1981-04-24 Production of resin coated sand grain for shell mold

Publications (2)

Publication Number Publication Date
JPS57177847A JPS57177847A (en) 1982-11-01
JPS6364260B2 true JPS6364260B2 (en) 1988-12-12

Family

ID=13213288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6289081A Granted JPS57177847A (en) 1981-04-24 1981-04-24 Production of resin coated sand grain for shell mold

Country Status (1)

Country Link
JP (1) JPS57177847A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312958A (en) * 1976-07-22 1978-02-06 Shin Etsu Chem Co Ltd Mercapto group-containing silicone rubber composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312958A (en) * 1976-07-22 1978-02-06 Shin Etsu Chem Co Ltd Mercapto group-containing silicone rubber composition

Also Published As

Publication number Publication date
JPS57177847A (en) 1982-11-01

Similar Documents

Publication Publication Date Title
US4134442A (en) Furan-phenolic resins for collapsible foundry molds
US3247556A (en) Sand mold process using resinous binder from alkaline condensation of urea, formaldehyde, and furfuryl alcohol
US3838095A (en) Foundry sand coated with a binder containing novolac resin and urea compound
US4197385A (en) Furan-phenolic resins for collapsible foundry molds
US20050090578A1 (en) Heat-cured furan binder system
US4766949A (en) Hot box process for preparing foundry shapes
US4113916A (en) Shell sand with improved thermal shock resistance
JPS6364260B2 (en)
EP0163093A1 (en) Foundry sand binder
JPS5942582B2 (en) Foundry sand grains coated with resin
JPS6056729B2 (en) Manufacturing method of modified phenolic resin for shell mold
JPS58224038A (en) Composition of coated sand and its production
JPS6393443A (en) Resin coated sand for shell mold
JPS6015648B2 (en) Manufacturing method of resin for shell mold
JPS58205641A (en) Composition of coated sand and its production
JPH0249327B2 (en)
JP4452965B2 (en) Resin composition for shell mold
JPH0146219B2 (en)
JPS6119330B2 (en)
JPH09201648A (en) Resin coated sand composition for shell mold
JP2521869B2 (en) Method for producing water-soluble phenol resin
JPS5835039A (en) Binder for shell mold
JPS5874241A (en) Production of resin coated sand grain for shell mold
JPS6114042A (en) Production of casting mold
JPS6114043A (en) Resin-coated sand curable by heating for casting and its production