JPS6114042A - Production of casting mold - Google Patents

Production of casting mold

Info

Publication number
JPS6114042A
JPS6114042A JP59133919A JP13391984A JPS6114042A JP S6114042 A JPS6114042 A JP S6114042A JP 59133919 A JP59133919 A JP 59133919A JP 13391984 A JP13391984 A JP 13391984A JP S6114042 A JPS6114042 A JP S6114042A
Authority
JP
Japan
Prior art keywords
sand
mold
resin
coated
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59133919A
Other languages
Japanese (ja)
Inventor
Takeshi Sumi
武志 澄
Masae Kuroda
黒田 正栄
Etsuji Kubo
久保 悦司
Takashi Wakui
涌井 昂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP59133919A priority Critical patent/JPS6114042A/en
Publication of JPS6114042A publication Critical patent/JPS6114042A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2273Polyurethanes; Polyisocyanates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

PURPOSE:To improve remarkably the collapsing property of a casting mold after casting by heating and curing resin-coated sand for casting coated with a compsn. contg. a specific ammonia resol resin. CONSTITUTION:The compsn. contg. the ammonia resol resin obtd. by bringing 1.5-4.0mol formaldehyde and 0.01-0.5mol ammonia or hexamethylene tetramine into reaction with a block isocyanate compd. and 1mol bisphenol A is coated on sand for casting. The coated sand is cured by heating, by which a casting mold is produced. The collapsing property after casting is thus improved and the operation equal to the operation of the present shell mold method is made possible. The strength of the casting mold is particularly remarkably improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鋳型の製造方法に関するものであり特にアルミ
ニウム鋳物、合金鋳物など比較的駒込温度の低い鋳物に
用いられる鋳込み後の鋳型の崩壊性を著しく改良した鋳
型の製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a mold, and in particular to a method for manufacturing molds, particularly for reducing the collapsibility of molds after casting, which are used for castings with relatively low Komagome temperatures, such as aluminum castings and alloy castings. This invention relates to a significantly improved method for manufacturing molds.

〔従来の技術〕[Conventional technology]

従来から鋳型の製造方法には種々のプロセスがあるが中
でもフェノール樹脂を用いたシェルモールド法は鋳型の
寸法安定性に優れ、鋳型の肌もよく硬化速度も速いため
自動車産業を中心に広(使用されている。しかしアルミ
鋳物のような鋳込み温度の低い鋳型に用いた場合には、
鋳型の崩壊性が悪く500℃位の高温で6〜12蒔間も
加熱処理を必要としており鋳込み後の砂落し作業に非常
に大きな費用と労力が必要となっている。そこで鋳型の
崩壊性を改良するために鋳物用砂にポリイソシアネート
とポリオールを′配合しアミンガスで硬化させる方法が
開発されたがアミンガスの毒性や臭気対策に問題がある
。又鋳物用砂にポリイソシアネートとアミン系ポリオー
ルを配合し、自硬化性の鋳型製造方法が開発されたが硬
化するまで長時間かかる問題がある。
Traditionally, there are various processes for manufacturing molds, but among them, the shell molding method using phenolic resin has been widely used mainly in the automobile industry because it has excellent mold dimensional stability, has good mold skin, and has a fast curing speed. However, when used in molds with low casting temperatures such as aluminum castings,
The mold has poor disintegration properties and requires heat treatment at a high temperature of about 500° C. for 6 to 12 hours, making it extremely costly and labor intensive to remove sand after casting. In order to improve the disintegration properties of the mold, a method was developed in which polyisocyanate and polyol were mixed with foundry sand and cured with amine gas, but this method had problems with the toxicity and odor of amine gas. A self-hardening mold manufacturing method has also been developed in which foundry sand is blended with polyisocyanate and amine polyol, but there is a problem in that it takes a long time to harden.

そこで鋳物業界からシェルモールド法と同様な作業がで
きかつ鋳型の崩壊性が優れている鋳型の製造方法の開発
が強(要望されている。
Therefore, there is a strong demand in the foundry industry for the development of a mold manufacturing method that can perform operations similar to the shell molding method and has excellent mold disintegration properties.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は鋳込み後加熱処理を低減し容易に崩壊し、かつ
現行のシールモールド法と同等の作業のできる鋳型の製
造方法を提供する。
The present invention provides a method for manufacturing a mold that reduces post-casting heat treatment, easily disintegrates, and allows operations equivalent to the current sealed mold method.

ビスフェノールA1モルに対しホルムアルデヒド1.5
〜4.0モル、アンモニアまたはヘキサメチレンテトラ
ミン0.01〜0.5モルを反応させて得られるアンモ
ニアレゾール樹脂を含有する組成物を被咎した被俊砂を
加熱により硬化させて鋳型を製造することにより鋳込み
後の崩壊性が著しく改善され、かつ現行のシェルモール
ド法と同等の作業(砂の流動性、硬化速度)ができ、特
に糾型強宜を大巾に向上できることを見い出した。
Formaldehyde 1.5 per mole of bisphenol A
A mold is produced by hardening the sand coated with a composition containing an ammonia resol resin obtained by reacting ~4.0 mol and 0.01 to 0.5 mol of ammonia or hexamethylenetetramine by heating. It has been found that this method significantly improves the disintegration properties after casting, enables operations equivalent to the current shell molding method (sand fluidity, hardening speed), and in particular greatly improves mold strength.

すなわち本発明によれば上記からなる鋳物用樹脂@覆砂
な150℃〜650℃に加熱された金型に充填させると
、ブロックイソシアネート化合物のブロック剤が解離し
、発生するイソシアネート化合物とアンモニアレゾール
樹脂のメチロール基及びアミノ基、イミノ基、水酸基等
が反応しウレタン結合により鋳型が強固になり抜型可能
な回吸に達する。又鋳型の崩壊性が著しく向上する。こ
れは鋳型の形成にウレタン結合を用いているためと思わ
れる。
That is, according to the present invention, when the above-mentioned foundry resin @ sand-covered mold is filled into a mold heated to 150°C to 650°C, the blocking agent of the blocked isocyanate compound dissociates, and the isocyanate compound and ammonia resol resin are generated. The methylol groups, amino groups, imino groups, hydroxyl groups, etc. of the template react, and the urethane bonds make the template strong and reach a level where it can be removed from the mold. Furthermore, the disintegration properties of the mold are significantly improved. This seems to be due to the use of urethane bonding in forming the template.

本発明に用いる組成物のプロッ、クイソシアネート化合
物としてはポリイソシアネート化合物とイソシアネート
ブロック剤との付加反応生成物が用いられる。ポリイソ
シアネート化合物としては従来公知のイソシアネート基
を2個以上有するイソシアネート化合物のいずれも使用
することかでき、又、これらのポリインシアネート化合
物とエチレングリコール、プロピレングリコール、トリ
メチロールプロパン、グリセリ        ルン、
ポリエーテルポリオール類などの活性水素化合物などを
反応させた末端インシアネート基含有化合物なども用い
られる。
As the polyisocyanate compound of the composition used in the present invention, an addition reaction product of a polyisocyanate compound and an isocyanate blocking agent is used. As the polyisocyanate compound, any of the conventionally known isocyanate compounds having two or more isocyanate groups can be used, and these polyisocyanate compounds can be combined with ethylene glycol, propylene glycol, trimethylolpropane, glycerin,
A terminal inocyanate group-containing compound obtained by reacting an active hydrogen compound such as polyether polyols may also be used.

インシアネートブロック剤と]〜ては、従来より用いら
れているものはいずれも使用することができ、フェノー
ル、クレゾール、キシレノール、ノニルフェノール等の
フェノ−ルミ4.t−ブチルアルコール等の第3級アル
コール類、アセチルアセトン、マ四ン酸ジエステルナト
の活性メチレン化合物、メチルアニリン、ジフェニルア
ミンなどの芳香族アミン類、フタル酸イミドなとのイミ
ド類、ε−カプロラクタムなどのラクタム類、エチレン
イミンなとのイミン類、尿素類、オキシム類、重亜硫酸
塩類、ホウ酸類などがある。本発明に用いるブロックイ
ソシアネート化合物は、上記インシアネート化合物とイ
ソシアネートブロック化剤とを従来公知の方法により反
応させて得られる。
As the incyanate blocking agent, any conventionally used incyanate blocking agent can be used, including phenol-based incyanates such as phenol, cresol, xylenol, and nonylphenol. Tertiary alcohols such as t-butyl alcohol, active methylene compounds such as acetylacetone and diesterate matetra, aromatic amines such as methylaniline and diphenylamine, imides such as phthalic acid imide, and ε-caprolactam. These include lactams, imines such as ethyleneimine, ureas, oximes, bisulfites, and boric acids. The blocked isocyanate compound used in the present invention is obtained by reacting the above-mentioned incyanate compound and an isocyanate blocking agent by a conventionally known method.

又本発明に用いるアンモニアレゾール6J脂は砂の乾態
性保持のため常温で固形のものが好ましく崩壊性を向上
させるためにビスフェノールAのアンモニアレゾール樹
脂が用いられる。
The ammonia aresol 6J resin used in the present invention is preferably solid at room temperature in order to maintain the dryness of the sand, and an ammonia aresol resin of bisphenol A is used to improve the disintegrability.

ビスフェノールAのアンモニアレゾール樹脂はビスフェ
ノールA1モルに対してホルムアルデヒド1.5〜4.
0モル、アンモニアまたはヘキサメチレンテトラミン0
.01〜0.5モルを反応して得られる伜1月旨が用い
られる。ホルムアルデヒドが1.5モル未満であるとメ
チロ−ル基が少なくなり硬化速度が遍くなるため好まし
くない。
Ammonia resol resin of bisphenol A contains 1.5 to 4.0% formaldehyde per mole of bisphenol A.
0 mole, ammonia or hexamethylenetetramine 0
.. The amount obtained by reacting 0.01 to 0.5 mol is used. If the amount of formaldehyde is less than 1.5 moles, the number of methylol groups will decrease and the curing rate will become uneven, which is not preferable.

又ホルムアルデヒドが4.0モルを越えると砂型の加熱
硬化時にホルムアルデヒド臭が強くナリ好ましく外い。
Further, if the formaldehyde content exceeds 4.0 moles, the formaldehyde odor will be strong and the sand mold will not come out easily when heated and cured.

アンモニアまたはヘキサメチレンテトラミンはaQ1モ
ル以下では鋳型強度の向上効果が小さく又、0.5モル
を越えると柄脂が高分子になりすぎるため逆に鋳型強度
が低下し好ましくない。アンモニアレゾール樹脂の合成
方法については特に限定されない。
If ammonia or hexamethylenetetramine is less than 1 mole of aQ, the effect of improving mold strength will be small, and if it exceeds 0.5 mole, the pattern fat will become too polymeric and the strength of the mold will decrease, which is undesirable. There are no particular limitations on the method of synthesizing the ammonia aresol resin.

本発明の鋳物用樹脂被覆砂は90〜iso’cに加熱さ
れり鋳物用砂に固形あるいは溶液のブロックイソシアネ
ート化合物と固形あるいは溶液のアンモニアレゾ−/I
/樹脂を攪拌混線せしめ、この混練工程中に必要に応じ
溶媒を蒸発せしめることにより得られる。鋳物砂の温度
が180℃を越えるとブロックイソシアネート化合物の
解離が始まり鋳物用樹脂被枦砂のライフが短かくなるば
かりでなく砂型の強度も低下し好ましくない。又温度が
90℃未満の場合、樹脂の抜枠が不十分となったり溶媒
の蒸発が不十分となり、鋳物用樹脂被檜砂の融着点が低
(なりブロッキングを起こすので好ましくない。
The resin-coated sand for foundries of the present invention is heated to 90 to iso'c, and the foundry sand is coated with a solid or solution blocked isocyanate compound and a solid or solution ammonia reso-/I.
/resin is stirred and kneaded, and the solvent is evaporated as required during this kneading step. If the temperature of the foundry sand exceeds 180° C., the blocked isocyanate compound begins to dissociate, which not only shortens the life of the foundry resin-covered sand but also reduces the strength of the sand mold, which is undesirable. If the temperature is less than 90° C., the resin will not be sufficiently removed or the solvent will not evaporate sufficiently, and the melting point of the foundry resin sand will be low (and blocking will occur), which is not preferable.

又、用いるブロックイソシアネート化合物とアンモニア
レゾール樹脂の配合割合(重量比)は95:5から5:
95の範囲で用いられ好ましくは85:15から50ニ
ア0の範囲で用いられる。
In addition, the blending ratio (weight ratio) of the block isocyanate compound and ammonia resol resin used is 95:5 to 5:
The ratio is preferably 85:15 to 50:0.

ブロックイソシアネートが多すぎると硬化が遅(なり又
、アンモニアレゾール位・1脂が多すぎると砂型の崩壊
性が悪くなる。
If there is too much blocked isocyanate, curing will be slow (and if there is too much ammonia resol position/1 fat), the collapsibility of the sand mold will deteriorate.

又鋳型を製造する時の加熱温度は150〜350℃が好
ましい。150℃木満では鋳型の硬化が遅くなり350
℃を越えると鋳型の強度が低下したり鋳型の肌が悪(な
る。
Further, the heating temperature when manufacturing the mold is preferably 150 to 350°C. At 150℃, the hardening of the mold slows down to 350℃.
If the temperature exceeds ℃, the strength of the mold will decrease or the surface of the mold will deteriorate.

砂と混゛練し被覆する組成物中のブロックイソシアネー
ト化合物とレゾール型フェノール樹脂の合計量は鋳物用
砂に対して4.0〜0.5重量%であり好ましくは50
〜1.0厘爺%である。添加する樹脂合計量が4%を越
えると鋳物製造時のガス欠陥の原因となるだけでなく価
格も高(なりよくない。又0.5%未満であると砂型の
強度が低くなり実用に耐えない。
The total amount of the blocked isocyanate compound and the resol type phenol resin in the composition to be kneaded with the sand and coated is 4.0 to 0.5% by weight based on the foundry sand, preferably 50% by weight.
~1.0%. If the total amount of resin added exceeds 4%, it will not only cause gas defects during casting manufacturing but also increase the price (which is not good).If it is less than 0.5%, the strength of the sand mold will be low and it will not be suitable for practical use. do not have.

又、本発明で得られた鋳物用樹脂被覆砂に従来公知のブ
ロックイソシアネート化合物の解離触媒のいずれも使用
できジブチルチンジラウレート、塩化第2スズ、ナフテ
ン酸コバルト、オクチル酸カルシウム、オクチル酸コバ
ルト等を添加してもよく触媒の添加量は樹脂固形分に対
しα01〜20重黛%である。
In addition, any of the conventionally known dissociation catalysts for blocked isocyanate compounds can be used for the foundry resin-coated sand obtained in the present invention, such as dibutyltin dilaurate, stannic chloride, cobalt naphthenate, calcium octylate, cobalt octylate, etc. The amount of the catalyst that may be added is α01 to 20% by weight based on the solid content of the resin.

又鋳物用樹脂被覆砂に流動性を良好にするためにシェル
モールド法で用いられているステア         
へ、。
Stairs are also used in the shell molding method to improve the fluidity of resin-coated sand for foundries.
fart,.

リン酸ガルシウムのような滑剤を添加してもよく、滑剤
の添加量は鋳物用砂に対して105〜0.2重量%であ
る。
A lubricant such as galsium phosphate may be added, and the amount of the lubricant added is 105 to 0.2% by weight based on the foundry sand.

又、鋳物用樹脂被嵯砂を製造する際に、ブロックイソシ
アネート化、金物とレゾール型フェノール樹脂の混合方
法は特に限定するものでな(砂と攪拌混合する前に両成
分を予め混合していても又混合時に別々に投入してもよ
い。
In addition, when manufacturing resin-covered sand for foundries, there are no particular restrictions on the method of block isocyanate formation or mixing of the metal and resol type phenolic resin (both components may be mixed in advance before stirring and mixing with the sand). They may also be added separately during mixing.

又本発明で用いる鋳物用砂としては通常鋳物用罠使用し
ているものはいずれでもよくジルコン砂、オリピン砂も
使用できる。
The foundry sand used in the present invention may be any of those commonly used in foundry traps, and zircon sand and oripin sand can also be used.

〔実施例〕〔Example〕

以下本発明の実施例を示す。。 Examples of the present invention will be shown below. .

実施例1 (アンモニアレゾール樹脂の合成) 還流冷却器を偏えつけた4つロフラスコにビスフェノー
ルA2280g37%ホルマリン1620gを投入し2
5%アンモニア水浴液166gを添加し80℃で2時間
反応させた後脱水濃縮を行ない固状樹脂が得られた。
Example 1 (Synthesis of ammonia resol resin) 2280 g of bisphenol A and 1620 g of 37% formalin were charged into a four-bottle flask equipped with a reflux condenser.
After adding 166 g of 5% ammonia water bath solution and reacting at 80° C. for 2 hours, dehydration and concentration were performed to obtain a solid resin.

(鋳物用樹脂被覆砂の製造法) −混線機に160℃に加熱したフラタリー珪砂5kg及
びコロネー)APステーブル(日本ポリウレタン社製、
フェノールでマスクされたインシアネート化合物、快化
点約100’C,)120gと上記で得られたアンモニ
アレゾール樹脂40gを加えて砂が崩壊するまで乎号拌
混線する。
(Method for producing resin-coated sand for foundries) - 5 kg of flattery silica sand heated to 160°C in a mixer and coronet) AP stable (manufactured by Nippon Polyurethane Co., Ltd.,
Add 120 g of a phenol-masked incyanate compound (conversion point: about 100'C) and 40 g of the ammonia resol resin obtained above, and stir until the sand disintegrates.

その後ステアリン酸カルシウム8gを加え更に20秒間
混合し鋳物用樹脂被覆砂が得られた。
Thereafter, 8 g of calcium stearate was added and mixed for an additional 20 seconds to obtain resin-coated foundry sand.

この鋳物用樹脂@切砂を300T;に加熱した金型中に
吹込圧2kg/an’で吹込み2分間硬化後抜型し、重
5710.41kgのマニホールド用ジャケット中子を
造型した。中子、の損傷はなく鋳型の肌も良好であった
。又この鋳物用樹脂破缶砂の砂型特性を表−1に示す。
This foundry resin @ cut sand was blown into a mold heated to 300 T; at a blowing pressure of 2 kg/an', cured for 2 minutes, and then removed from the mold to form a manifold jacket core weighing 5710.41 kg. There was no damage to the core and the skin of the mold was also good. Table 1 shows the sand mold characteristics of this foundry resin can-breaking sand.

うkが6例2 混線機に110℃に加熱したフラタリー珪砂8kg及び
コロネー)APステーブル100gとアセトン60gか
らなる浴液と実施例1で得られたアンモニアレゾ−、!
L/m jt旨100gとアセトン60gからなる溶液
を加えて砂が崩壊するまで攪拌混練する。その後ステア
リン酸カルシウム8gを加え更に2D秒間混合し、鋳物
用樹脂被覆砂が得られた。
Example 2 8 kg of flattery silica sand heated to 110°C in a mixer and a bath solution consisting of 100 g of AP stable and 60 g of acetone and the ammonia reso obtained in Example 1,!
A solution consisting of 100 g of L/m jt and 60 g of acetone is added, and the mixture is stirred and kneaded until the sand disintegrates. Thereafter, 8 g of calcium stearate was added and mixed for an additional 2D seconds to obtain resin-coated foundry sand.

この鋳や用樹脂被伏砂を250°9に加熱した全型中に
吹込圧2kg/#で吹込み2分間硬化後抜型し重i0.
41kgのマニホールド用ジャケット中子を造型した。
This casting resin encrusting sand was blown into a mold heated to 250°9 at a blowing pressure of 2 kg/#, cured for 2 minutes, and then removed from the mold.
A 41 kg jacket core for a manifold was molded.

中子の損傷はなく鋳型の肌も良好であった。There was no damage to the core and the skin of the mold was good.

又、この鋳物用樹脂被覆砂の砂型特性を表−1に示す。Table 1 shows the sand mold properties of this resin-coated sand for foundries.

実施+A13 混線機に160℃に加熱したフラタリー珪砂8kg及び
フレランクロスリンキングエイジエン)U、T(住友バ
イエルウレタン社製、C−カブ0ラクタムでマスクされ
たインシアネート化合物、軟化黒駒100℃)100g
を加えて40秒攪拌混練した後実施例1で得られたアン
モニアレゾール樹脂60gとメタノール30gからなる
溶液を加えて砂が崩壊するまで攪拌混練する。その後ス
テアリン酸カルシウム8gを加え更に20秒間混合し鋳
物用樹脂被覆砂が得られた。この鋳物、用樹脂被咎砂を
340℃に加熱した金型中に吹込圧’2kg/atpで
吹込み1分50秒間硬化後抜型し重−9O,41kgの
マニホールド用ジャケット中子を造型した。中子の損傷
はな(鋳型の肌も良好であった。又この鋳物用樹脂被覆
砂の砂型%性を表−1に示す。
Implementation + A13 8 kg of flattery silica sand heated to 160°C in a mixer and 100 g of fulleran cross-linking agene) U, T (manufactured by Sumitomo Bayer Urethane, incyanate compound masked with C-kabu lactam, softened Kurokoma 100°C)
After stirring and kneading for 40 seconds, a solution consisting of 60 g of the ammonia aresol resin obtained in Example 1 and 30 g of methanol was added, and the mixture was stirred and kneaded until the sand disintegrated. Thereafter, 8 g of calcium stearate was added and mixed for an additional 20 seconds to obtain resin-coated foundry sand. This resin casting sand was blown into a mold heated to 340 DEG C. at a blowing pressure of 2 kg/atp, cured for 1 minute and 50 seconds, and then removed from the mold to form a jacket core for a manifold weighing -9O and weighing 41 kg. There was no damage to the core (the surface of the mold was also good). Table 1 shows the sand mold percentage of this resin-coated sand for foundries.

実施例4 ジブチルチンジラウレー)1.6gを添加した以外は実
施例5と同様にて鋳物用樹脂被覆砂がイ匂られた。砂型
物性を表−1に示す。
Example 4 Resin-coated sand for foundry use was infused in the same manner as in Example 5, except that 1.6 g of dibutyl tin dilaure was added. Table 1 shows the physical properties of the sand mold.

この鋳物用笹1脂被積砂を340℃に加熱した金型中に
吹込圧2kg/aII+で吹込み1分間硬化後抜型し重
量0.41 kgのマニホールド用ジャケット中子を造
型した。中子の損傷はな(鋳型の肌も良好であった。
This foundry bamboo 1-fat sand was blown into a mold heated to 340° C. at a blowing pressure of 2 kg/aII+, cured for 1 minute, and then removed from the mold to form a jacket core for a manifold weighing 0.41 kg. There was no damage to the core (the skin of the mold was also good).

比較例1 (ノボラック型フェノール樹脂の製造)還流冷却器を備
えつけた4つロフラスコに7t・ エノール1880g、57%ホルマリン244 g、 
      ・80%バラホルムアルデヒド488gを
投入しシュウ酸4gを添加し還流温度で3時間反応させ
た後脱水濃縮を行ない固形樹脂を得た。
Comparative Example 1 (Manufacture of novolac type phenolic resin) In a four-bottle flask equipped with a reflux condenser, 7 tons of enol, 1880 g, 57% formalin, 244 g,
- 488 g of 80% rose formaldehyde was added, 4 g of oxalic acid was added, and the mixture was reacted at reflux temperature for 3 hours, followed by dehydration and concentration to obtain a solid resin.

(鋳物用樹脂被覆砂の製造) 混線機に160℃に加熱したフラタリー珪砂8kg及び
上記で得られたノボラック型フェノール樹脂160gを
加えて、40秒間攪拌混練した後ヘキサメチレンテトラ
ミン24gと水80gからなる溶液を加えて砂が崩壊す
るまで攪拌混練する。その後ステアリン酸カルシウム8
gを加え更に20秒間混合し薄物用樹脂被妨砂が得られ
た。砂型特性を表−1に示す。
(Manufacture of resin-coated sand for foundries) 8 kg of flattery silica sand heated to 160°C and 160 g of the novolak type phenol resin obtained above were added to a mixing machine, and after stirring and kneading for 40 seconds, a mixture of 24 g of hexamethylenetetramine and 80 g of water was added. Add the solution and stir and knead until the sand disintegrates. Then calcium stearate 8
g was added and further mixed for 20 seconds to obtain resin-blocked sand for thin products. Table 1 shows the characteristics of the sand mold.

この鋳物用樹脂被覆砂を250°Cに加熱した金型中に
吹込圧2kg/(1111で吹込み2分間硬化抜本 抜型し重量0.41 kgのマニホールド用ジャケット
中子を造型した。中子の損傷はな(鋳型の肌も良好であ
った。
This foundry resin-coated sand was blown into a mold heated to 250°C at a blowing pressure of 2 kg/(1111), cured for 2 minutes, and then cut out to form a manifold jacket core weighing 0.41 kg. There was no damage (the skin of the mold was also good).

比較例2 混練機に160℃に加熱したフラタリー珪砂8祿及びコ
ロネー)APステーブル100gと比較例1で得ら11
だノボラック型フェノール樹脂60gを加えて砂が崩壊
するまで攪拌混合す、る。その後ステアリン酸カルシウ
ム8gを加え更に20秒間混合し、鋳物用樹脂被覆砂が
得られた。砂型物性を表−1に示す。
Comparative Example 2 100 g of flattery silica sand heated to 160°C in a kneader and 100 g of AP stable (Coronet) and 11 g of flattery silica sand heated to 160°C
Add 60g of novolak type phenolic resin and stir until the sand collapses. Thereafter, 8 g of calcium stearate was added and mixed for an additional 20 seconds to obtain resin-coated foundry sand. Table 1 shows the physical properties of the sand mold.

この鋳物用樹脂被覆砂を300℃に加熱した金型中に吹
込圧2kg/an’で吹込み2分間硬化後抜型したが全
体がバラバラに壊れてしまった。
This resin-coated foundry sand was blown into a mold heated to 300° C. at a blowing pressure of 2 kg/an', cured for 2 minutes, and then removed from the mold, but the entire sand broke into pieces.

比較例6 (レゾール型フェノール便脂の合成) 還流冷却器を備えつけた4つロフラスコにビスフェノ、
〜・ルA2280g37%ホルマリン1620gを投入
し20%NaOH4Q gを添加し僅流温度で2時間反
応させた後脱水濃縮を行ない固形樹脂を得た。
Comparative Example 6 (Synthesis of resol-type phenolic stool fat) Bisphenol,
2280 g of Ru A and 1620 g of 37% formalin were added, 20% NaOH4Q g was added, and the mixture was reacted for 2 hours at a low flow temperature, followed by dehydration and concentration to obtain a solid resin.

(鋳物用樹脂被覆砂の製造法) 混線機に160℃に加熱したフラタリー珪砂8kg及び
コロネートAPステーブル120gと上記で得られたレ
ゾール型フェノール樹脂40gを加えて砂が崩壊するま
で攪拌混練する。その後ステアリン酸カルシウム8gを
加え更に20秒間混合し鋳物用樹脂被覆砂が得られた。
(Method for producing resin-coated sand for foundries) 8 kg of flattery silica sand heated to 160° C., 120 g of Coronate AP stable, and 40 g of the resol type phenolic resin obtained above are added to a mixer and stirred and kneaded until the sand disintegrates. Thereafter, 8 g of calcium stearate was added and mixed for an additional 20 seconds to obtain resin-coated foundry sand.

砂型特性を表−1に示す。Table 1 shows the characteristics of the sand mold.

この鋳物用樹脂被覆砂を300℃に加熱した金型中に吹
込圧2kg/―で吹込み2分間硬化後抜型したが曲げ強
度がやや低いため一部カー破損した。
This foundry resin-coated sand was blown into a mold heated to 300° C. at a blowing pressure of 2 kg/−, cured for 2 minutes, and then cut out of the mold, but the mold was partially damaged due to its somewhat low bending strength.

*1曲げ強度:JIS−に6910法にて測定*2融着
点 : JACT法にて測定 *3砂型崩壊率:250℃に加熱した30φ×50mm
!(の金型に鋳物用vIi脂被覆被覆砂れ400℃山気
炉中で3分間硬化水せテストピースを作成する。無酸素
状態に保った500℃に加熱した金型に封入し500℃
炉中で20分間焼成した後放冷する。このテストピース
を28メツシユのフルイにのせロータップフルイ娠とう
機を用いて1分+=1振とうしその減少址から次式によ
り崩磁率を求めた。
*1 Bending strength: Measured by JIS-6910 method *2 Fusion point: Measured by JACT method *3 Sand mold collapse rate: 30φ x 50mm heated to 250℃
! (Create a test piece with vIi oil coating for castings in a mold heated to 500°C and cured for 3 minutes in a mountain air oven at 400°C. Enclose in a mold heated to 500°C kept in an oxygen-free condition
After baking in a furnace for 20 minutes, it is allowed to cool. This test piece was placed on a 28-mesh sieve and shaken for 1 minute+=1 using a low-tap sieve shaker, and the magnetic disintegration rate was determined from the decrease rate using the following formula.

*4ベンド :測定温度にセットした平板金型70X1
40關上に厘ニー金型内寸50×120mm高さ5 +
nmを閣き鋳物用佇・■脂被檄砂を充填したものを炉温
650℃内に40秒放置しその後とり出し10秒後に支
点間距離100mmの持具上に置き500g#+’車を
かけたときのたわみ量を測定した。低温でたわみ量の少
ないものは硬化が速いことを意味する。
*4 bend: flat plate mold 70X1 set to measurement temperature
40cm above knee mold inner dimensions 50 x 120mm height 5 +
After setting the nm, the casting box filled with fat sand was left in a furnace temperature of 650℃ for 40 seconds, then taken out, and after 10 seconds, placed on a holder with a distance between fulcrums of 100mm and a 500g #+' car. The amount of deflection when applied was measured. A material with a small amount of deflection at a low temperature means that it hardens quickly.

〔発明の効果〕〔Effect of the invention〕

本発明による鋳型の製造方法を用いることによりシェル
モールド法と同等の硬化速度、作業性を有し、かつ鋳型
の崩壊性に優れた鋳型が得られた。
By using the method for manufacturing a mold according to the present invention, a mold was obtained that had a hardening speed and workability equivalent to that of the shell mold method, and had excellent mold disintegration properties.

Claims (1)

【特許請求の範囲】 1、鋳物用砂にブロックイソシアネート化合物とビスフ
ェノールA1モルに対しホルムアルデヒド1.5〜4.
0モルアンモニアまたはヘキサメチレンテトラミン0.
01〜0.5モルを反応させて得られるアンモニアレゾ
ール樹脂を含有する組成物を被覆した鋳物用樹脂被覆砂
を加熱により硬化させることを特徴とする鋳型の製造方
法。 2、加熱の温度が150〜350℃であることを特徴と
する特許請求の範囲第1項記載の鋳型の製造方法。
[Claims] 1. Foundry sand contains 1.5 to 4% formaldehyde per mole of blocked isocyanate compound and bisphenol A.
0 mole ammonia or hexamethylenetetramine 0.
1. A method for producing a mold, comprising curing resin-coated foundry sand coated with a composition containing an ammonia aresol resin obtained by reacting 01 to 0.5 moles of resin by heating. 2. The mold manufacturing method according to claim 1, wherein the heating temperature is 150 to 350°C.
JP59133919A 1984-06-28 1984-06-28 Production of casting mold Pending JPS6114042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59133919A JPS6114042A (en) 1984-06-28 1984-06-28 Production of casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59133919A JPS6114042A (en) 1984-06-28 1984-06-28 Production of casting mold

Publications (1)

Publication Number Publication Date
JPS6114042A true JPS6114042A (en) 1986-01-22

Family

ID=15116150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59133919A Pending JPS6114042A (en) 1984-06-28 1984-06-28 Production of casting mold

Country Status (1)

Country Link
JP (1) JPS6114042A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114043A (en) * 1984-06-28 1986-01-22 Hitachi Chem Co Ltd Resin-coated sand curable by heating for casting and its production
JPS64553U (en) * 1987-06-22 1989-01-05

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114043A (en) * 1984-06-28 1986-01-22 Hitachi Chem Co Ltd Resin-coated sand curable by heating for casting and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114043A (en) * 1984-06-28 1986-01-22 Hitachi Chem Co Ltd Resin-coated sand curable by heating for casting and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114043A (en) * 1984-06-28 1986-01-22 Hitachi Chem Co Ltd Resin-coated sand curable by heating for casting and its production
JPS6235852B2 (en) * 1984-06-28 1987-08-04 Hitachi Chemical Co Ltd
JPS64553U (en) * 1987-06-22 1989-01-05

Similar Documents

Publication Publication Date Title
CN103379971B (en) For the low transmitting cold setting adhesive of foundary industry
US4134442A (en) Furan-phenolic resins for collapsible foundry molds
US4495316A (en) Acid-curable fluoride-containing no-bake foundry resins
EP0408574B1 (en) Foundry resins
US4352914A (en) Binder composition for foundry sand molds and cores
JP4718090B2 (en) Furan-Noveke casting binder and its use
US4197385A (en) Furan-phenolic resins for collapsible foundry molds
JP2509725B2 (en) Method for producing benzyl ether type resin
JPS6114042A (en) Production of casting mold
JPH02165840A (en) Molding material for sand mold for casting and production of sand mold for casting
US20050090578A1 (en) Heat-cured furan binder system
EP0398463B1 (en) Ester hardeners for phenolic resin binder systems
JPS6096345A (en) Production of casting mold
JPS5846377B2 (en) Binder composition for foundry sand
JPS6114043A (en) Resin-coated sand curable by heating for casting and its production
JPS58176047A (en) Composition for molding of casting mold
US3985699A (en) Method of manufacturing mould members of polyurethane-bonded granular material
JPS6261375B2 (en)
US6554051B1 (en) Phenolic resin and binding agent for producing moulds and cores according to the phenolic resin-polyurethane method
JPS6116213B2 (en)
JPS6258809B2 (en)
JP2983380B2 (en) Binder
JPS62151240A (en) Production of resin for casting curable by heating
JPS62107840A (en) Composition of molding sand
JPS6364261B2 (en)