JPS5846377B2 - Binder composition for foundry sand - Google Patents

Binder composition for foundry sand

Info

Publication number
JPS5846377B2
JPS5846377B2 JP9242381A JP9242381A JPS5846377B2 JP S5846377 B2 JPS5846377 B2 JP S5846377B2 JP 9242381 A JP9242381 A JP 9242381A JP 9242381 A JP9242381 A JP 9242381A JP S5846377 B2 JPS5846377 B2 JP S5846377B2
Authority
JP
Japan
Prior art keywords
sand
foundry sand
mold
polyol
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9242381A
Other languages
Japanese (ja)
Other versions
JPS5764439A (en
Inventor
毅 飛永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP9242381A priority Critical patent/JPS5846377B2/en
Priority to US06/308,236 priority patent/US4352914A/en
Priority to GB8129764A priority patent/GB2088886B/en
Priority to DE19813139484 priority patent/DE3139484A1/en
Priority to CA000387393A priority patent/CA1176785A/en
Priority to FR8118796A priority patent/FR2491363B1/en
Publication of JPS5764439A publication Critical patent/JPS5764439A/en
Publication of JPS5846377B2 publication Critical patent/JPS5846377B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、常温自硬性或いはアミン含有ガスと接触させ
ることによる速硬性の鋳物砂用バインダー組成物に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a binder composition for foundry sand that is self-hardening at room temperature or quickly hardens by contacting with an amine-containing gas.

鋳物工業に釦いて、砂型を製造する為の鋳物砂用バイン
ダー組成物は非常に有用である。
Binder compositions for foundry sand for manufacturing sand molds are very useful in the foundry industry.

従来、鋳物用砂型の製造に使用されているバインダー(
結合材)には、無機系釦よび有機系のものがあるが、い
ずれも一長一短があり、充分に満足しうるものは見出さ
れていない。
The binder (
There are inorganic and organic binders, but each has advantages and disadvantages, and no one has been found that is fully satisfactory.

無機系バインダーを用いる鋳物用砂型の製造法としては
、水ガラスを表面に付着させた砂で砂型をつくり、これ
に炭酸ガスを吹き込み硬化させる方法が代表的である。
A typical method for producing foundry sand molds using an inorganic binder is to make a sand mold with water glass adhered to the surface, and then harden it by blowing carbon dioxide gas into it.

この方法は、砂型へ鉄湯やアルミニウム湯を流入し、鋳
物を造型した後、それを取出す場合、砂型の崩壊性が悪
く、著しく作業性が低下する問題がある。
This method has a problem in that when iron or aluminum hot water is poured into a sand mold to form a casting and then taken out, the sand mold has poor collapsibility and workability is significantly reduced.

渣た、鋳物砂の再利用ができず、アルカリ公害が問題と
なるので、その投棄場所がないこと、鋳込時にガス欠陥
を生じ、美麗な鋳物表面を得にくいことなどの問題点も
有する。
The remaining foundry sand cannot be reused and alkali pollution becomes a problem, so there are also problems such as there is no place to dump it, gas defects occur during casting, and it is difficult to obtain a beautiful casting surface.

有機系バインダーを用いる鋳物用砂型の製造法としては
、フラン樹脂やフェノール樹脂などを用いる方法がある
Examples of methods for manufacturing foundry sand molds using organic binders include methods using furan resins, phenolic resins, and the like.

しかしながら、フラン樹脂やレゾール型のフェノール樹
脂をパラトルエンスルホン酸やリン酸等の強酸で硬化さ
せて砂型をつくった場合には、残存する酸により鋳物表
面が腐食したり、硬化速度が気温で大きく変動したりす
る問題がある。
However, if a sand mold is made by curing furan resin or resol-type phenolic resin with strong acids such as para-toluenesulfonic acid or phosphoric acid, the remaining acid may corrode the surface of the casting or the curing rate may increase due to temperature changes. There is a problem with fluctuations.

また、フェノール樹脂と有機イソシアネート化合物を反
応させて硬化させる方法も知られている(例えば、特公
昭45−32820号、同48−25431記載公報な
ど)が、この場合にも、造型後の鋳物を取出す際、砂型
の崩壊性が悪いという問題点がある。
There is also a known method of curing the phenolic resin by reacting it with an organic isocyanate compound (for example, Japanese Patent Publication No. 45-32820, Japanese Patent Publication No. 48-25431, etc.), but in this case as well, the casting after molding is There is a problem that the sand mold disintegrates poorly when taken out.

本発明は、上記問題点を解決する新規なバインダー組成
物を提供するものである。
The present invention provides a novel binder composition that solves the above problems.

即ち、本発明は、下記a成分及びb成分を含有する鋳物
砂用バインダー組成物である。
That is, the present invention is a binder composition for foundry sand containing the following components a and b.

(a) 有機ポリイソシアネート化合物。(a) Organic polyisocyanate compound.

(b) ビスフェノール類とカルボニル基に隣接する
炭素原子が少なくとも2個の水素原子を有する環状ケト
ンとの混合物とホルムアルデヒドとを反応させて得られ
るポリオール化合物。
(b) A polyol compound obtained by reacting a mixture of bisphenols and a cyclic ketone in which the carbon atom adjacent to the carbonyl group has at least two hydrogen atoms with formaldehyde.

本発明のバインダー組成物は、速硬化性、造型時の強度
、鋳込時の耐熱性及び鋳込後の砂型の崩壊性のバランス
に優れたものであり、鋳鉄用にも使えるが、特にアルミ
ニウムなどの軽合金鋳物用のバインダー組成物として適
している。
The binder composition of the present invention has an excellent balance of fast curing properties, strength during molding, heat resistance during casting, and disintegrability of sand molds after casting, and can be used for cast iron, but is particularly suitable for aluminum. It is suitable as a binder composition for light alloy castings such as.

本発明に用いるa成分の有機ポリイソシアネート化合物
は、ポリウレタン用原料として=般に広く用いられてい
る有機ポリイソシアネート化合物より適宜選択して用い
ることができ、ジ或いはトリイソシアネートが好ましい
The organic polyisocyanate compound as component a used in the present invention can be appropriately selected from organic polyisocyanate compounds that are generally widely used as raw materials for polyurethane, and di- or triisocyanates are preferred.

適当な有機ポリイソシアネート化合物としては、ヘキサ
メチレンジイソシアネートのような脂肪族インシアネー
ト;4,4−ン/クロヘキシルメタンジイソシアネート
、インホロンジイソシアネート等の脂環式インシアネー
ト;2,4i−よび2゜6トリレンジイソシアネート、
ジフェニルメタンジイソシアネート、トリフェニルメタ
ントリイソシアネート、■、5ナフタリンジイソシアネ
ート、ポリメチレンポリフェニレンイソシアネート、ク
ロロフェニレン−2,4−ジイソシアネート等ノ芳香族
ポリイソシアネート:キシリレンジイソシアネート釦よ
びそのメチル誘導体などがあげられる。
Suitable organic polyisocyanate compounds include aliphatic incyanates such as hexamethylene diisocyanate; cycloaliphatic incyanates such as 4,4-one/chlorohexylmethane diisocyanate, inphorone diisocyanate; 2,4i- and 2.6 tolylene diisocyanate,
Aromatic polyisocyanates such as diphenylmethane diisocyanate, triphenylmethane triisocyanate, (1), 5-naphthalene diisocyanate, polymethylene polyphenylene isocyanate, and chlorophenylene-2,4-diisocyanate: xylylene diisocyanate button and its methyl derivatives.

これらの中でも、芳香族ポリイソシアネートが好筐しく
、特に、ジフェニルメタンジイソシアネート、トリフェ
ニルメタントリイソシアネートおらびこれらの混合物を
用いることが好昔しい。
Among these, aromatic polyisocyanates are preferred, and diphenylmethane diisocyanate, triphenylmethane triisocyanate, and mixtures thereof are particularly preferred.

これらの有機ポリイソシアネート化合物は、トルエン、
キシレン、エチルベンゼン、ジエチルベンゼン、キュメ
ン、ジイソプロピルベンゼン、エチルベンゼン製造時の
副生重質油、キュメン製造時の副生重質油などの芳香族
炭化水素に溶解して用いてもよい。
These organic polyisocyanate compounds include toluene,
It may be used by dissolving it in an aromatic hydrocarbon such as xylene, ethylbenzene, diethylbenzene, cumene, diisopropylbenzene, heavy oil produced as a by-product during the production of ethylbenzene, or heavy oil produced as a by-product during the production of cumene.

b成分は、有機ポリイソシアネート化合物と反応させる
ことによりポリウレタンを生成せしめ、鋳物砂を硬化せ
しめるために用いられる。
Component b is used to generate polyurethane by reacting with an organic polyisocyanate compound and to harden foundry sand.

b成分のポリオール化合物は、ビスフェノール類とカル
ボニル基に隣接する炭素原子が少なくとも2個の水素原
子を有する環状ケトンとの混合物とホルムアルデヒドと
を反応させることによって得られる。
The polyol compound of component b is obtained by reacting a mixture of bisphenols and a cyclic ketone in which the carbon atom adjacent to the carbonyl group has at least two hydrogen atoms with formaldehyde.

本発明に使用されるビスフェノール類としては、ビスフ
ェノールA1 ビスフェノールF、 ビスフェノール
C1ビスフェノールHなどをあげるこトカできる。
Examples of bisphenols used in the present invention include bisphenol A1, bisphenol F, bisphenol C, and bisphenol H.

本発明に使用される環状ケトンとしては、シクロペンタ
ノン、メチルシクロペンタノン、シクロヘキサノン、メ
チルシクロヘキサノン、イソホロン、樟脳などがあり、
殊にシクロヘキサノンが重重しい。
Cyclic ketones used in the present invention include cyclopentanone, methylcyclopentanone, cyclohexanone, methylcyclohexanone, isophorone, camphor, etc.
Cyclohexanone is especially heavy.

ホルムアルデヒド源としては、ホルマリン水溶液、パラ
ホルムアルデヒド、トリオキサンなどが使用できる。
As the formaldehyde source, formalin aqueous solution, paraformaldehyde, trioxane, etc. can be used.

ビスフェノール類と環状ケトンとの混合物とホルムアル
デヒドとの反応は、通常、ナフテン酸亜鉛、ナンテン酸
鉛などのナフテン酸金属塩触媒、或いは、水酸化ナトリ
ウム、酢酸カリウム、酢酸ナトリウムなどのアルカリ触
媒の存在下、常温〜150℃、好昔しくは50〜130
℃で、1〜7時間行なう。
The reaction between a mixture of bisphenols and cyclic ketones and formaldehyde is usually carried out in the presence of a metal naphthenate catalyst such as zinc naphthenate or lead naanthenate, or an alkali catalyst such as sodium hydroxide, potassium acetate, or sodium acetate. , normal temperature to 150℃, preferably 50 to 130℃
℃ for 1 to 7 hours.

その後、反応系中の水分及び未反応環状ケトンを減圧除
去する。
Thereafter, water and unreacted cyclic ketone in the reaction system are removed under reduced pressure.

ナフテン酸金属塩触媒及びパラホルムアルデヒドを用い
、非水溶液中で反応を行わせる場合には、反応温度は、
70〜140℃、好1しくは、80〜130℃である。
When the reaction is carried out in a non-aqueous solution using a naphthenic acid metal salt catalyst and paraformaldehyde, the reaction temperature is
The temperature is 70 to 140°C, preferably 80 to 130°C.

ホルマリン水溶液及びアルカリ触媒を使用して反応を行
わせる場合には、反応温度は、40〜95℃、好1しく
ば、50〜80℃である。
When the reaction is carried out using an aqueous formalin solution and an alkali catalyst, the reaction temperature is 40 to 95°C, preferably 50 to 80°C.

上記反応ではどちらの場合も、反応温度が低過ぎると、
未反応ホルマリンが残り易く、反対に、反応温度が高過
ぎると生成するメチロール化環状ケトンとメチロール化
ビスフェノール類がさらに反応し、これらの生成物間の
脱水縮合が起り、この結果生成する多核体が主体となる
ため好1しくない。
In both of the above reactions, if the reaction temperature is too low,
Unreacted formalin tends to remain, and on the other hand, if the reaction temperature is too high, the methylolated cyclic ketone and methylolated bisphenols will react further, and dehydration condensation between these products will occur, resulting in a polynuclear product. This is not good or bad because it becomes the main subject.

上記反応に釦けるビスフェノール類と環状ケトンの混合
物のモル比は、10/1〜115、好普しくは、5/1
〜1/3である。
The molar ratio of the mixture of bisphenols and cyclic ketone in the above reaction is 10/1 to 115, preferably 5/1.
~1/3.

寸た、反応させるホルムアルデヒドの量は、ビスフェノ
ール類に対しモル比で0.3以上、好1しくは、1.0
〜4.0であり、ビスフェノール類と環状ケトンとの混
合物の合計量に対するモル比は、0.2以上、殊に、0
.3〜2.0が好すしい。
The amount of formaldehyde to be reacted is 0.3 or more, preferably 1.0 in molar ratio to bisphenols.
~4.0, and the molar ratio to the total amount of the mixture of bisphenols and cyclic ketone is 0.2 or more, especially 0.
.. 3 to 2.0 is preferable.

上記反応で得られるポリオール化合物は、ビスフェノー
ル類及び環状ケトンにそれぞれメチロール基が付加した
化合物及び、これら自身及び/又は両者が部分的に脱水
縮合した多核体からなる。
The polyol compound obtained by the above reaction consists of a compound in which a methylol group is added to a bisphenol and a cyclic ketone, respectively, and a polynuclear body obtained by partially dehydrating condensation of these themselves and/or both.

昔た、環状ケトンのカルボニル基が一部還元又は酸化さ
れた生成物が含寸れてもよい。
In the past, products obtained by partially reducing or oxidizing the carbonyl group of a cyclic ketone may also be included.

上記ポリオール化合物は、その1筐、或いはシクロヘキ
サノン、エチルセロソルブアセテート、エチレングリコ
ールジアセテート、トリエチレングリコールジアセテー
ト、イソホロン、3−メトキシ酢酸ブチル、ブチルセロ
ソルブアセテート等の極性溶媒及び/又は前述した有機
ポリイソシアネート化合物を溶解する為に用いられるも
のと同様な芳香族炭化水素溶媒に溶解して用いられる。
The above polyol compound may be one of the above, or a polar solvent such as cyclohexanone, ethyl cellosolve acetate, ethylene glycol diacetate, triethylene glycol diacetate, isophorone, butyl 3-methoxyacetate, butyl cellosolve acetate, and/or the above-mentioned organic polyisocyanate compound. It is used by dissolving it in an aromatic hydrocarbon solvent similar to that used for dissolving.

b成分以外の他のポリオール化合物、例えば、ポリエー
テルポリオール、アルキルレゾルシンなどを併用するこ
とももちろん可能である。
Of course, it is also possible to use other polyol compounds other than component b, such as polyether polyols and alkylresorcinols.

b成分以外の他のポリオール化合物を併用しない場合に
は、a成分のb成分に対する配合量は、b成分のヒドロ
キシル基1当量に対し、a成分のインシアネート基が0
.3〜3当量、好1しくば、0.6〜1.5当量となる
ように配合するのが適当である。
When other polyol compounds other than component b are not used in combination, the amount of component a to component b is such that the amount of incyanate group in component a is 0 per equivalent of hydroxyl group in component b.
.. It is appropriate to mix it in an amount of 3 to 3 equivalents, preferably 0.6 to 1.5 equivalents.

なお、b成分と他のポリオール化合物とを併用する場合
には、b成分と他のポリオール化合物の合計のヒドロキ
シル基量1に対して、a成分のイソシアネート基が0.
3〜3、好1しくは0.6〜1.5となるように配合す
るのが適当である。
Note that when component b and another polyol compound are used together, the amount of isocyanate groups in component a is 0.
It is appropriate to mix it so that it becomes 3-3, preferably 0.6-1.5.

a成分とb成分及び必要に応じて用いられる他のポリオ
ール化合物は、鋳物砂100重量部に対し、0.5〜5
重量部の割合で配合される。
Component a, component b, and other polyol compounds used as necessary are 0.5 to 5 parts by weight per 100 parts by weight of foundry sand.
It is blended in the proportion of parts by weight.

鋳物砂は、鋳物用に用いられる砂類或いは無機粉体類で
あれば何でもよく、その粒度、種類等については適宜選
択して用いられる。
The foundry sand may be any sand or inorganic powder used for foundries, and its particle size, type, etc. may be selected as appropriate.

本発明の組成物は鋳物砂と混合して用いられる。The composition of the present invention is used in combination with foundry sand.

バインダー組成物と混合した鋳物砂により、常温で、砂
型を造型する場合、砂型の強度発現を速める為に、触媒
を添加して迅速硬化を行うことができる。
When molding a sand mold at room temperature using foundry sand mixed with a binder composition, a catalyst can be added to perform rapid curing in order to accelerate the strength development of the sand mold.

この触媒としては、ナフテン酸コバルト、オクチル酸錫
、ジブチル錫ジラウレート等の金属塩及びN−エチルモ
リフォリン、4−フェニルプロピルピリジン、モリフォ
リンプロピオン酸エチル、テトラメチルジアミノプロパ
ン、トリエチレンジアミン等の第3級アミンなどが使用
できる。
Examples of the catalyst include metal salts such as cobalt naphthenate, tin octylate, dibutyltin dilaurate, and tertiary salts such as N-ethylmorpholine, 4-phenylpropylpyridine, ethyl morpholinpropionate, tetramethyldiaminopropane, and triethylenediamine. Grade amines etc. can be used.

その使用量は、a成分とb成分を含むポリオール化合物
との和100重量部に対し、5重量部以下が適当である
The amount used is suitably 5 parts by weight or less per 100 parts by weight of the total of the polyol compound containing component a and component b.

また、鋳物砂とバインダー組成物とを均一に混合し、型
に充填後、室温で、アミンを含むガスと接触させて、急
速硬化させることにより、砂型を造型する場合には、触
媒となるアミンとしては、第3級アミンが好1しく、特
に、トリメチルアミン、トリエチルアミン、ジメチルア
□ン、ジメチルエタノールアミン、N−エチルモルフォ
リン等が重重しい。
In addition, when molding a sand mold by uniformly mixing foundry sand and a binder composition, filling a mold, and then bringing the mixture into contact with an amine-containing gas at room temperature for rapid curing, amines as catalysts can be used. As such, tertiary amines are preferred, and trimethylamine, triethylamine, dimethylamine, dimethylethanolamine, N-ethylmorpholine, etc. are particularly heavy.

これらの第3級アミンは、窒素或いは空気などの不活性
ガスをキャリヤーガスとして用い、通常約5容量饅以下
の濃度で、型内に導入される。
These tertiary amines are introduced into the mold using an inert gas such as nitrogen or air as a carrier gas, usually at a concentration of about 5 volumes or less.

又、本発明には、必要に応じ、γ−アミノプロピルトリ
エトキシシラン、N−β(アミノエチルγ−アミノプロ
ピルトリメトキシシラン等のシラン処理剤を、バインダ
ーの耐湿性を向上する目的でa及びb成分の合計量10
0重量部に対し、0.02〜0.5重量部添加すること
もできる。
In addition, in the present invention, if necessary, a silane treatment agent such as γ-aminopropyltriethoxysilane, N-β(aminoethyl γ-aminopropyltrimethoxysilane) is added to a and Total amount of b component 10
It can also be added in an amount of 0.02 to 0.5 parts by weight relative to 0 parts by weight.

次に、実施例により、本発明を更に具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

なお、実施例及び参考例中の「部」及び「嶺」は、重量
基準である。
In addition, "part" and "mine" in Examples and Reference Examples are based on weight.

参考例 1 ポリオール化合物の製造例 シクロヘキサノン98.2.9(1モル)、ビスフェノ
ールA228.、l(1モル)、パラホルムアルデヒド
75.0&、ナフテン酸亜鉛2.1を攪拌機つき4つロ
フラスコに入れ、120℃で4時間反応させた。
Reference Example 1 Production Example of Polyol Compound Cyclohexanone 98.2.9 (1 mol), Bisphenol A228. , l (1 mol), paraformaldehyde 75.0 & zinc naphthenate 2.1 were placed in four flasks equipped with a stirrer, and reacted at 120°C for 4 hours.

次に、フラスコ内温度を100’Cに下げ、20mm
Hgの減圧で、未反応シクロヘキサノン及び水分を除去
した。
Next, lower the temperature inside the flask to 100'C, and
Unreacted cyclohexanone and water were removed under reduced pressure of Hg.

これに、エチレングリコールジアセテート350gを添
加し均一に溶解して、ポリオール化合物(以下、ポリオ
ールAという。
To this, 350 g of ethylene glycol diacetate was added and uniformly dissolved to form a polyol compound (hereinafter referred to as polyol A).

)の溶液を得た。) was obtained.

生成物をGPC、IR及びNMRで分析し、ポリオール
Aは、メチロール化されたビスフェノールA及びシクロ
ヘキサノンと、これら自身及び両者の縮合物からなるこ
とを確認した。
The product was analyzed by GPC, IR, and NMR, and it was confirmed that polyol A consisted of methylolated bisphenol A and cyclohexanone, themselves, and a condensate of both.

参考例 2 ポリオール化合物の製造例 シクロヘキサノン228g(2,33モル)、ビスフェ
ノールA228.3g(1モル)、パラホルムアルデヒ
ド65g1ナフテン酸亜鉛3.0gを攪拌機つき4つロ
フラスコに入れ、100℃で4時間反応させた。
Reference Example 2 Production Example of Polyol Compound 228 g (2.33 mol) of cyclohexanone, 228.3 g (1 mol) of bisphenol A, 65 g of paraformaldehyde, 1 3.0 g of zinc naphthenate were placed in four flasks equipped with a stirrer, and reacted at 100°C for 4 hours. I let it happen.

次いで、同じ温度で水分及び未反応シクロへキサノン1
20.!li’を減圧除去した。
Then, at the same temperature, water and unreacted cyclohexanone 1
20. ! li' was removed under reduced pressure.

これに3−メトキシ酢酸ブチル120g及びイソプロピ
ルベンゼン90gを添加し、均一に溶解して常温筐で冷
却して、ポリオール化合物(以下、ポリオールBという
120 g of butyl 3-methoxyacetate and 90 g of isopropylbenzene were added to this, dissolved uniformly, and cooled in a room temperature cabinet to form a polyol compound (hereinafter referred to as polyol B).

)の溶液を得た。生成物のポリオールBは、参考例1と
同様に分析して、本発明のb成分であることを確認した
) was obtained. The product polyol B was analyzed in the same manner as in Reference Example 1, and was confirmed to be component b of the present invention.

参考例 3 ) ポリオール化合物の製造例 シクロヘキサノン98.:l(1モル)、反応時間を5
時間とした他は参考例2と同様に反応を行った。
Reference Example 3) Production Example of Polyol Compound Cyclohexanone 98. :l (1 mol), reaction time 5
The reaction was carried out in the same manner as in Reference Example 2 except for changing the time.

次いで、同じ温度で水分及び未反応シクロヘキサノン4
5gを減圧除去した。
Then, at the same temperature, water and unreacted cyclohexanone 4
5g was removed under reduced pressure.

これに、3−メトキシ酢酸ブチル133g及び芳香族プ
ラントで製出する09以上の芳香族留分71を添加し、
均一に溶解して常温1で冷却してポリオール化合物(以
下、ポリオールCという。
To this, 133 g of butyl 3-methoxyacetate and 71 aromatic fractions of 09 or higher produced at an aromatic plant were added,
The polyol compound (hereinafter referred to as polyol C) is uniformly dissolved and cooled to room temperature 1.

)の溶液を得た。生成物のポリオールCは、参考例1と
同様に分析して、本発明のb成分であることを確認した
) was obtained. The product polyol C was analyzed in the same manner as in Reference Example 1, and was confirmed to be component b of the present invention.

実施例 1 あやらぎ珪砂6号1000部に参考例1で得られたポリ
オールAの溶液9°5部を添加し、均一に混合した。
Example 1 9°5 parts of the solution of polyol A obtained in Reference Example 1 was added to 1000 parts of Ayaragi Silica Sand No. 6 and mixed uniformly.

更に市販のポリメチレンポリイソシアネート70部、ジ
イソプロピルベンゼン30部からなる溶液10.5部を
添加して均一に混合した。
Furthermore, 10.5 parts of a solution consisting of 70 parts of commercially available polymethylene polyisocyanate and 30 parts of diisopropylbenzene were added and mixed uniformly.

このようにして調製された鋳物砂組成物を直径5crI
L、高さ13cIrLの円筒状金型へ入れ、標準つき固
め試験機で5crIL高さとなるようつき固めた後、ト
リエチルアミンを含有する窒素ガスを15秒接触させた
The foundry sand composition thus prepared was mixed with a diameter of 5 crI.
The mixture was placed in a cylindrical mold having a height of 13 cIrL and compacted using a standard compaction tester to a height of 5 crIL, and then brought into contact with nitrogen gas containing triethylamine for 15 seconds.

鋳物砂テストピースを金型よりとりだした直後の、その
圧縮強度は43.6 kg/cI?LG 、 1時間後
の圧縮強度は47、、2 kg /i aであった。
Immediately after taking the molding sand test piece out of the mold, its compressive strength is 43.6 kg/cI? LG, the compressive strength after 1 hour was 47,2 kg/ia.

また、同一の鋳物砂組成物で、カークーラー用の鋳型を
作成し、トリエチルアミンを含有する窒素を30秒通過
させ、硬化させた。
Furthermore, a mold for a car cooler was made using the same foundry sand composition, and nitrogen containing triethylamine was passed through the mold for 30 seconds to harden it.

この鋳型に760℃の溶解したアルミニウム合金を鋳込
んだ。
A molten aluminum alloy at 760° C. was cast into this mold.

冷却後の鋳物製品とりだし時の砂型の崩壊性は良好であ
り、鋳物表面の美麗な製品かえられた。
The disintegration of the sand mold was good when the cast product was taken out after cooling, and the cast product had a beautiful surface.

実施例 2 参考例2で得られたポリオールBを10.0部、本発明
のa成分として、化成アップジョン(株)製PAPI〜
135(ジフェニルメタンジイソシアネートとトリフェ
ニルメタントリイソシアネートとの混合物) 75 %
、ジイソプロピルベンゼン22.5%、3−メトキシ酢
酸ブチル2.5係からなる混合溶液10.0部を用いた
他は実施例1と同様にして鋳物砂組成物を調製し、次い
で鋳物砂テストピースを成形した。
Example 2 10.0 parts of polyol B obtained in Reference Example 2 was used as component a of the present invention, and PAPI~ manufactured by Kasei Upjohn Co., Ltd.
135 (mixture of diphenylmethane diisocyanate and triphenylmethane triisocyanate) 75%
A foundry sand composition was prepared in the same manner as in Example 1 except that 10.0 parts of a mixed solution consisting of 22.5% diisopropylbenzene and 2.5 parts of butyl 3-methoxyacetate was used, and then a foundry sand test piece was prepared. was molded.

このテストピースを金型よりとりだした直後、1時間後
及び1日後の圧縮強度は、それぞれ、43.11t、g
/ant、、58.3kg/ffl、61、3 kg
/fflであった。
The compressive strength of this test piece immediately after taking it out from the mold, 1 hour later, and 1 day later was 43.11 t and g.
/ant,,58.3kg/ffl,61,3 kg
/ffl.

オた、1日後のテストピースを700’Cに加熱した電
気炉に2分間入れ、とりだした直後の圧縮強度を測定し
たところ3.8kg/iを示し、耐熱性は低かった。
Furthermore, the test piece after 1 day was placed in an electric furnace heated to 700'C for 2 minutes, and the compressive strength immediately after being taken out was measured to be 3.8 kg/i, indicating low heat resistance.

また、同一の鋳物砂組成物を自動車のインテークマニホ
ールド用中子木型に充填し、窒素を吹き込み気化させた
トリエチルアミンを30秒通過させて硬化させた。
Further, the same foundry sand composition was filled into a core wooden mold for an automobile intake manifold, and triethylamine, which had been vaporized by blowing nitrogen, was passed through it for 30 seconds to harden it.

この中子を、インテークマニホールド用金型にセットし
、760℃の熔解したアルミニウムを鋳込んだ。
This core was set in a mold for an intake manifold, and molten aluminum at 760° C. was cast into it.

冷却後の鋳物製品からの中子の砂落ちは、軽く樹脂・・
ンマーでたたくことにより可能であった。
After cooling, the sand from the core of the cast product is slightly removed by resin...
This was possible by hitting it with a hammer.

また、あらされ、砂かみ等の鋳造欠陥も認められなかっ
た。
Furthermore, no casting defects such as roughness or sand spots were observed.

実施例 3 あやらぎ珪砂6号1000部に参考例3で得られたポリ
オールCの溶液10.0部、N−エチルモルフォリンの
30%セロソルブアセテート溶液1.0部を添加し均一
に混合した。
Example 3 10.0 parts of the solution of polyol C obtained in Reference Example 3 and 1.0 part of a 30% cellosolve acetate solution of N-ethylmorpholine were added to 1000 parts of Ayaragi Silica Sand No. 6 and mixed uniformly. .

次に、これにポリメリックポリイソシアネート(ジフェ
ニルメタンジイソシアネートとトリフェニルメタントリ
インシアネートの混合物)70%、ジイソプロピルベン
ゼン26%、3−メトキシ酢酸ブチル4係からなる溶液
10.0部を添加し均一に混合し調製した。
Next, 10.0 parts of a solution consisting of 70% polymeric polyisocyanate (a mixture of diphenylmethane diisocyanate and triphenylmethane triincyanate), 26% diisopropylbenzene, and 4 parts butyl 3-methoxyacetate was added to this and mixed uniformly. Prepared.

この鋳物砂組成物を直径5CrI′L、高さ5に771
の空間を有する6個取りの木型へすばやく充填した後、
一定時間後に鋳物砂テストピースをとりだし、テストピ
ースの圧縮強度を測定した。
This foundry sand composition was 771 mm in diameter 5 CrI'L and height 5.
After quickly filling a 6-cavity wooden mold with a space of
After a certain period of time, the molding sand test piece was taken out and the compressive strength of the test piece was measured.

結果を次表に示す。The results are shown in the table below.

また1日後のテストピースを7000Cに加熱した電気
炉に2分間入れ、とりだした直後の圧縮強度を測定した
ところ15.4kg〆蒲と高い耐熱性を示した。
Moreover, the test piece after 1 day was placed in an electric furnace heated to 7000C for 2 minutes, and the compressive strength immediately after taking it out was measured, and it was found to have a high heat resistance of 15.4 kg.

オた、上記と同一の鋳物砂組成物をトラック用のインテ
ークマニホールド中子木型へ充填し、15分後に抜型し
た。
Additionally, the same foundry sand composition as above was filled into a wooden mold for an intake manifold core for a truck, and the mold was removed after 15 minutes.

この中子を山砂で造型した外型ヘセットして、2時間後
に760℃の溶解したアルミニウムを鋳込んだ。
This core was set into an outer mold made of mountain sand, and molten aluminum at 760° C. was cast two hours later.

30分後に型はらしをしたが、製品とりだし時の中子砂
の外型の生砂への混入は認められなかった。
The mold was removed after 30 minutes, but no core sand was found to be mixed with the green sand of the outer mold when the product was taken out.

製品からの中子砂落しは、樹脂ハンマーで3〜5回たた
くことにより、砂落しをすることができた。
Sand from the core could be removed from the product by hitting it 3 to 5 times with a resin hammer.

Claims (1)

【特許請求の範囲】 1 下記a成分及びb成分を含有する鋳物砂用バインダ
ー組成物。 (a) 有機ポリイソシアネート化合物。 (b) ビスフェノール類とカルボニル基ニ隣接スル
炭素原子が少なくとも2個の水素原子を有する環状ケト
ンとの混合物とホルムアルデヒドとを反応させて得られ
るポリオール化合物。
[Scope of Claims] 1. A binder composition for foundry sand containing the following components a and b. (a) Organic polyisocyanate compound. (b) A polyol compound obtained by reacting a mixture of bisphenols and a cyclic ketone in which the carbon atom adjacent to the carbonyl group has at least two hydrogen atoms with formaldehyde.
JP9242381A 1980-10-06 1981-06-16 Binder composition for foundry sand Expired JPS5846377B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP9242381A JPS5846377B2 (en) 1981-06-16 1981-06-16 Binder composition for foundry sand
US06/308,236 US4352914A (en) 1980-10-06 1981-10-02 Binder composition for foundry sand molds and cores
GB8129764A GB2088886B (en) 1980-10-06 1981-10-02 Binder composition for foundry molds or cores
DE19813139484 DE3139484A1 (en) 1980-10-06 1981-10-03 BINDING COMPOSITION FOR FOUNDRY SAND AND CORE SAND
CA000387393A CA1176785A (en) 1980-10-06 1981-10-06 Binder composition for foundry sand molds and cores
FR8118796A FR2491363B1 (en) 1980-10-06 1981-10-06 BINDER COMPOSITION FOR MOLDS AND FOUNDRY CORES IN SAND

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9242381A JPS5846377B2 (en) 1981-06-16 1981-06-16 Binder composition for foundry sand

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13953180A Division JPS5764436A (en) 1980-10-06 1980-10-06 Binder composition for molding sand

Publications (2)

Publication Number Publication Date
JPS5764439A JPS5764439A (en) 1982-04-19
JPS5846377B2 true JPS5846377B2 (en) 1983-10-15

Family

ID=14054008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9242381A Expired JPS5846377B2 (en) 1980-10-06 1981-06-16 Binder composition for foundry sand

Country Status (1)

Country Link
JP (1) JPS5846377B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270570U (en) * 1985-10-21 1987-05-06
JPS6292870U (en) * 1985-12-03 1987-06-13
JPS6297684U (en) * 1985-12-09 1987-06-22
JPH0532150Y2 (en) * 1984-06-07 1993-08-18

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59113953A (en) * 1982-12-21 1984-06-30 Dainippon Ink & Chem Inc Molding sand for shell mold

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532150Y2 (en) * 1984-06-07 1993-08-18
JPS6270570U (en) * 1985-10-21 1987-05-06
JPS6292870U (en) * 1985-12-03 1987-06-13
JPS6297684U (en) * 1985-12-09 1987-06-22

Also Published As

Publication number Publication date
JPS5764439A (en) 1982-04-19

Similar Documents

Publication Publication Date Title
JPS61501900A (en) Phenol resin-polyisocyanate binder system containing phosphorus-based acids
US20060151575A1 (en) Method of producing shaped bodies, particularly cores, molds and feeders for use in foundry practice
US4352914A (en) Binder composition for foundry sand molds and cores
US4852629A (en) Cold-box process for forming foundry shapes which utilizes certain carboxylic acids as bench life extenders
US4760101A (en) Polyurethane-forming binder compositions containing certain carboxylic acids as bench life extenders
JP4718090B2 (en) Furan-Noveke casting binder and its use
JPS5846377B2 (en) Binder composition for foundry sand
US5902840A (en) Modified polymeric aromatic isocyanates having allophanate linkages
AU729059B2 (en) Foundry binder systems which contain alcohol modified polyisocyanates
US5880174A (en) Amine modified polyisocyanates and their use in foundry binder systems
JPS6116213B2 (en)
USRE34092E (en) Phenolic resin compositions and their use in foundry binders
US4814363A (en) Phenolic resin compositions and their use in foundry binders
KR910003008B1 (en) Cyclopentadien derivater containing compositions
US7119131B2 (en) Urethane binder compositions for foundry applications
US4852636A (en) Process for preparing foundry shapes and castings utilizing certain polyurethane binders
US4076683A (en) Molding compositions or masses suitable for manufacturing foundry molds and cores using the cold box method
JP2006289467A (en) Composition of binding agent for making casting mold, composition for making casting mold, and method for manufacturing casting mold
JPS6114042A (en) Production of casting mold
JPH0117780B2 (en)
JPH0377019B2 (en)
JPS6114043A (en) Resin-coated sand curable by heating for casting and its production
JPH04279241A (en) Manufacture of mold
JPS6261375B2 (en)
JPH01186236A (en) Binder composition of molding sand