JPS6364029B2 - - Google Patents

Info

Publication number
JPS6364029B2
JPS6364029B2 JP54124506A JP12450679A JPS6364029B2 JP S6364029 B2 JPS6364029 B2 JP S6364029B2 JP 54124506 A JP54124506 A JP 54124506A JP 12450679 A JP12450679 A JP 12450679A JP S6364029 B2 JPS6364029 B2 JP S6364029B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting surface
horizontal
angle
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54124506A
Other languages
Japanese (ja)
Other versions
JPS5648062A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12450679A priority Critical patent/JPS5648062A/en
Publication of JPS5648062A publication Critical patent/JPS5648062A/en
Publication of JPS6364029B2 publication Critical patent/JPS6364029B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

【発明の詳細な説明】 本発明は反射膜の形状を改良することにより輝
度ムラを改善した蛍光ランプに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluorescent lamp in which brightness unevenness is improved by improving the shape of a reflective film.

従来の蛍光ランプは、例えば平板形蛍光ランプ
においては第1図で示すように、内面に蛍光体1
を一様に塗布した成形ガラス容器2,3の周縁を
接着し、このガラス容器2,3の両端にフイラメ
ント支持線4、タングステンフイラメント5、ガ
ラス球6からなる電極7を溶着し、上記フイラメ
ント支持線4の他端を口金ピン8に接続する一
方、成形ガラス容器2,3内の放電空間9に所定
量の水銀と不活性ガスを封入しており、その電気
回路は第3図で示すように電極10に負荷11を
介在して接続し、電極7間にスタータ12を接続
している。
Conventional fluorescent lamps, for example in flat fluorescent lamps, have a phosphor layer on the inner surface, as shown in Figure 1.
The peripheries of the molded glass containers 2 and 3 coated with a uniform coating are adhered, and electrodes 7 consisting of a filament support wire 4, a tungsten filament 5, and a glass bulb 6 are welded to both ends of the glass containers 2 and 3. While the other end of the wire 4 is connected to the base pin 8, a predetermined amount of mercury and inert gas is sealed in the discharge space 9 in the molded glass containers 2 and 3, and the electrical circuit is as shown in FIG. The electrodes 10 are connected to each other through a load 11, and the starter 12 is connected between the electrodes 7.

そして、蛍光ランプ13を点灯すると両電極
7,7間に所謂ホツトスポツトを生じ、両極の最
短距離において放電が開始され維持されるが、電
子ビームは発光面の平坦形状に起因して成形ガラ
ス容器2,3全体に拡散されず中央部に集中する
ため、中央部分のみ輝度が高くなり所謂輝度ムラ
を生ずる問題があつた。また、配光を制御するた
めに第2図で示すように、一方の成形ガラス容器
2の内面と蛍光体1の間に二酸化チタン等の反射
膜14を形成したものもあるが、容器内の輝度ム
ラを完全に解消するには至つていなかつた。
When the fluorescent lamp 13 is turned on, a so-called hot spot is generated between the two electrodes 7, and a discharge is started and maintained at the shortest distance between the two electrodes. , 3 is not diffused over the entire area but is concentrated in the center, which causes the problem that the brightness becomes high only in the center, resulting in so-called uneven brightness. In addition, as shown in FIG. 2, in order to control light distribution, there are some cases in which a reflective film 14 made of titanium dioxide or the like is formed between the inner surface of one molded glass container 2 and the phosphor 1; It has not yet been possible to completely eliminate uneven brightness.

本発明はこのような従来の欠点を除去し、反射
膜の形状を改良することにより励起された可視光
の配光を制御し、ランプ内面を一様に発光させて
輝度ムラを防止し得た新規な蛍光ランプを提供す
ることを目的とするものである。
The present invention eliminates these conventional drawbacks, controls the distribution of excited visible light by improving the shape of the reflective film, makes the inner surface of the lamp emit light uniformly, and prevents uneven brightness. The purpose is to provide a new fluorescent lamp.

以下、本発明の一実施例を図面にしたがい説明
すると、第4図は平板形蛍光ランプの管軸方向に
垂直な断面を示したもので、内面に蛍光体1を塗
布した断面がほぼU字形の成形ガラス容器3の水
平屈曲部3aに、内面に蛍光体1と二酸化チタン
等からなる反射膜14を塗布した成形ガラス容器
2の水平屈曲部2aを低融点ガラス質接着剤等で
接着している。
Hereinafter, one embodiment of the present invention will be explained according to the drawings. Fig. 4 shows a cross section perpendicular to the tube axis direction of a flat fluorescent lamp, and the cross section with the inner surface coated with the phosphor 1 is approximately U-shaped. The horizontal bent part 2a of the molded glass container 2, whose inner surface is coated with a reflective film 14 made of phosphor 1 and titanium dioxide, etc., is adhered to the horizontal bent part 3a of the molded glass container 3 using a low melting point vitreous adhesive or the like. There is.

成形ガラス容器2は、水平屈曲部2aの基部を
水平面に対し内側へθ1角度をなして屈曲した傾斜
発光面2bを形成し、この傾斜発光面2bの上端
部を水平面に対し内側へθ4角度をなして屈曲した
傾斜発光面2cを形成し、かつ図において放電空
間9に位置する放電中心(光源中心)Oを通る垂
直線に対し左右対称断面に構成している。
The molded glass container 2 forms an inclined light emitting surface 2b in which the base of the horizontal bent portion 2a is bent inward at an angle of θ 1 with respect to the horizontal plane, and the upper end of this inclined light emitting surface 2b is bent inward with respect to the horizontal plane at an angle of θ 4 An inclined light emitting surface 2c is formed which is bent at an angle, and the cross section is symmetrical with respect to a vertical line passing through the discharge center (light source center) O located in the discharge space 9 in the figure.

そしてθ1、θ4の関係は発明者の実験によれば、
第4図において成形ガラス容器3の彎曲発光面3
b両端の水平距離を2L(mm)、成形ガラス容器3
における上記彎曲発光面3bの端部と水平屈曲部
3aの屈曲部の水平距離d(mm)とすると、 の関係が成立するθ1に設定することが望ましく、
また、θ4=5゜〜10゜に設定することが最適であるこ
とが確認された。
According to the inventor's experiments, the relationship between θ 1 and θ 4 is as follows:
In FIG. 4, the curved light emitting surface 3 of the molded glass container 3
b Horizontal distance between both ends is 2L (mm), molded glass container 3
Assuming that the horizontal distance d (mm) between the end of the curved light emitting surface 3b and the bent part of the horizontal bent part 3a is, It is desirable to set θ 1 so that the relationship holds true,
Furthermore, it was confirmed that it is optimal to set θ 4 =5° to 10°.

また、図においてθ2は成形ガラス容器2の傾斜
発光面2bがその上端部Rと成形ガラス容器3の
彎曲発光面3bの中央部Qとでなす角度を示し、
θ3は上記傾斜発光面2bの延長線が該傾斜発光面
2bの上端部Rと放電中心Oとでなす角度を示
し、かつこれらθ2、θ3の間には発明者の実験によ
れば、θ2=θ3の関係が成立するθ2、θ3に設定する
ことが最適であることを確認した。
In addition, in the figure, θ 2 indicates the angle formed by the upper end R of the inclined light emitting surface 2b of the molded glass container 2 and the center portion Q of the curved light emitting surface 3b of the molded glass container 3,
θ 3 indicates the angle that the extension line of the inclined light emitting surface 2b makes between the upper end R of the inclined light emitting surface 2b and the discharge center O, and according to the inventor's experiment, there is a difference between θ 2 and θ 3 . It was confirmed that it is optimal to set θ 2 and θ 3 such that the relationship θ 23 holds true.

次に、本発明に係る反射膜の形状は、発明者の
次のような理論および実験により確認されたもの
である。即ち、第5図aのABCDは平板形蛍光
ランプのガラス容器を管軸方向に垂直な切断面に
おける断面を示し、このガラス容器の発光面、例
えばBC面を均一に発光させる場合はBC面の垂直
二等分線上に放電中心(光源)Oを設定すると、
ABおよびCDの延長線上に虚像光源0′、0″を結像
させることが最適であることが実験により確認さ
れた。そして、この虚像光源0′、0″を得るため
に、虚像光源0゜と放電中心Oを結ぶ直線0′Oの垂
直二等分線においてPO=P0′を成立させるPと、
前記Aとを直線で結びAを始点とする半直線
APXを求めればよく、同様にしてD点を始点と
する反射鏡面DXを求める。この反射鏡面DXに
おいて、放電中心Oの虚像光源0′を得るための反
射鏡面の角度∠OAX(θ1)は反射の法則では45゜
である。しかし、実際の反射形平板ランプでは、
第4図に示すように、彎曲発光面3b両端の水平
距離を2L(mm)、彎曲発光面3bの端部と水平屈
曲部3aの屈曲部の水平距離をd(mm)とすると、
前述のように、放電中心0の虚像光源0′を得るに
はθ1=45゜=tan-1L/L(第5図aにおいて、OXの 距離L(mm))、従つて、水平距離がL+dとなつ
た場合、θ1=tan-1L/L+dとするとB点近傍の輝 度が高くなるため、前記両者の中間において最も
適した角度∠OAX(θ1)を実験的に求めた結果、
水平距離d(mm)の補正として としたθ1の値を選ぶことにより好ましい輝度が得
られた。
Next, the shape of the reflective film according to the present invention was confirmed by the inventor's theory and experiments as described below. That is, ABCD in Fig. 5a shows a cross section of the glass container of a flat fluorescent lamp taken at a cut plane perpendicular to the tube axis direction. When the discharge center (light source) O is set on the perpendicular bisector,
Experiments have confirmed that it is optimal to form virtual image light sources 0′, 0″ on the extension line of AB and CD.In order to obtain virtual image light sources 0′, 0″, virtual image light sources 0° P that satisfies PO=P0' at the perpendicular bisector of the straight line 0'O connecting the discharge center O,
A half-line connecting the above A with a straight line and starting from A
All you need to do is find APX, and in the same way, find the reflective mirror surface DX starting from point D. In this reflective mirror surface DX, the angle ∠OAX (θ 1 ) of the reflective mirror surface for obtaining the virtual image light source 0' at the discharge center O is 45° according to the law of reflection. However, in actual reflective flat lamps,
As shown in FIG. 4, if the horizontal distance between both ends of the curved light emitting surface 3b is 2L (mm), and the horizontal distance between the end of the curved light emitting surface 3b and the bent part of the horizontal bent part 3a is d (mm),
As mentioned above, to obtain the virtual image light source 0' with the discharge center 0, θ 1 = 45° = tan -1 L/L (distance L (mm) of OX in Fig. 5a), therefore, the horizontal distance When becomes L + d, if θ 1 = tan -1 L/L + d, the brightness near point B will increase, so the most suitable angle ∠OAX (θ 1 ) between the above two is experimentally determined. ,
As a correction for horizontal distance d (mm) A preferable brightness was obtained by selecting the value of θ 1 as follows.

次に放電中心Oより発せられ電子ビームがBC
の中央Qへ集光するのを回避するため、反射鏡面
APXに入射される角度∠OPXと、反射鏡面APX
り反射した電子ビームがBCの中心Qを通り形成
する角度∠QRAとの間に∠ORX=∠QRAが成
立する点Rを求め、このRを境に反射鏡面APX
を切断または屈曲する。反射鏡面DXにおいても
R′を同様に求め切断または屈曲する。この点R
は虚像光源0′の光が中央Qより図示上左側の輝度
を増すように、特にB付近の輝度を増すために選
定したものである。従つて、傾斜発光面2cの左
半分で彎曲発光面3aの左半分、同様に傾斜発光
面2cの右半分で彎曲発光面3aの右半分の輝度
を増すために選定したものである。
Next, the electron beam emitted from the discharge center O is BC
In order to avoid focusing on the center Q of
Angle of incidence on APX ∠OPX and reflective mirror surface APX
Find the point R where ∠ORX = ∠QRA is established between the angle ∠QRA formed by the reflected electron beam passing through the center Q of BC, and the reflecting mirror surface APX
cutting or bending. Even in reflective mirror DX
Similarly find R' and cut or bend. This point R
is selected so that the light from the virtual image light source 0' increases the brightness on the left side in the drawing from the center Q, especially in order to increase the brightness near B. Therefore, the left half of the inclined light emitting surface 2c was selected to increase the brightness of the left half of the curved light emitting surface 3a, and similarly the right half of the inclined light emitting surface 2c was selected to increase the brightness of the right half of the curved light emitting surface 3a.

更に、放電中心Oより発せられた電子ビームが
BCの中央Qへ集光するのを回避するため、第5
図cで示すように反射鏡面APXおよびDXを前記
RおよびR′を境に内側に屈曲し、この屈曲角を
水平面に対し実験値である5゜〜10゜に設定する。
この角度θ4は放電中心Oの光をランプ端部へ反射
させるための角度であつて、ガラスの成形性を考
慮して実験的に求めたものである。
Furthermore, the electron beam emitted from the discharge center O
In order to avoid focusing on the center Q of BC,
As shown in Figure c, the reflective mirror surfaces APX and DX are bent inward with the boundaries R and R', and the bending angle is set at an experimental value of 5° to 10° with respect to the horizontal plane.
This angle θ 4 is an angle for reflecting the light from the discharge center O toward the end of the lamp, and was determined experimentally in consideration of the moldability of the glass.

以上の理論および実験値に基づき、上述した実
施例における反射膜14の形状が求められたもの
である。
Based on the above theory and experimental values, the shape of the reflective film 14 in the above-mentioned example was determined.

第6図は本発明の反射形平板ランプと従来の反
射形蛍光ランプの成形ガラス容器内における彎曲
発光面3bの表面輝度分布を測定した実験結果を
示し、縦軸矢印方向に光の強度を横軸にランプの
管内幅をそれぞれとつて、本発明の反射平板ラン
プの表面輝度分布を(イ)曲線で表し、従来の反
射形蛍光ランプの表面輝度分布を(ロ)曲線で表
したもので、この実験では共に第4図において
2L=100mm、d=5mm、成形ガラス容器3の彎曲
発光面3bの中央部Qと放電中心Oとの垂直距離
lをl=20mm、電極間距離260mmに設定して行つ
たものである。この実験結果から従来のランプが
放電中心Oの直下に集光し発光面の位置により光
度が著しく相違しているのに比べ本発明のランプ
では発光面全域においてほぼ光度が一様であるこ
とが確認される また、本実験では彎曲発光面の
曲率半径は400mmである。この曲率半径が小さく、
例えば100mm程度では周辺に比べ中心輝度が大き
く、曲率半径が400mm〜500mm程度では彎曲発光面
全体に輝度がほぼ一様であり、また、曲率半径が
1000mm程度になるとガラス容器の輝度上の問題を
生じる。
FIG. 6 shows the experimental results of measuring the surface brightness distribution of the curved light emitting surface 3b in the molded glass containers of the reflective flat plate lamp of the present invention and the conventional reflective fluorescent lamp. The surface brightness distribution of the reflective flat lamp of the present invention is represented by the (a) curve, and the surface brightness distribution of the conventional reflective fluorescent lamp is represented by the (b) curve, with the inner tube width of the lamp being taken as the axis. In this experiment, both
The experiment was carried out by setting 2L=100 mm, d=5 mm, the vertical distance l between the center Q of the curved light emitting surface 3b of the molded glass container 3 and the discharge center O to l=20 mm, and the distance between the electrodes to 260 mm. From this experimental result, it was found that in the lamp of the present invention, the luminous intensity is almost uniform over the entire area of the light emitting surface, whereas in the conventional lamp, the light is focused directly below the discharge center O, and the luminous intensity varies markedly depending on the position of the light emitting surface. Confirmed In this experiment, the radius of curvature of the curved light emitting surface was 400 mm. This radius of curvature is small,
For example, when the radius of curvature is around 100 mm, the brightness at the center is higher than the surrounding area, and when the radius of curvature is around 400 mm to 500 mm, the brightness is almost uniform over the entire curved light emitting surface.
If it becomes about 1000 mm, problems will arise regarding the brightness of the glass container.

なお、上述の実施例では主として反射膜の形状
について説明したが点灯方式および電気回路は従
来例と同様であるから、その動作説明は省略す
る。
In the above-described embodiment, the shape of the reflective film was mainly explained, but since the lighting method and electric circuit are the same as those of the conventional example, a description of their operation will be omitted.

本発明は以上のように成形ガラス等蛍光ランプ
の容器に特殊形状の反射膜を設け、発光面の輝度
をその全域に亘り均一化させたから、従来のよう
なこの種蛍光ランプの輝度ムラを解消することが
でき、品質の高い照明器具を提供し得た効果があ
り、また反射膜の形状は容器を単に屈曲させた構
成であるから、製作が容器となる利点がある。
As described above, the present invention provides a specially shaped reflective film on the fluorescent lamp container, such as a molded glass, to make the brightness of the light emitting surface uniform over the entire area, thereby eliminating the brightness unevenness of conventional fluorescent lamps of this type. This has the effect of providing a high-quality lighting fixture, and since the shape of the reflective film is simply a bent container, there is an advantage that the container can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の蛍光ランプを示す斜視図、第2
図は第1図のX−X′線付近における縦断側面図、
第3図は蛍光ランプの回路図、第4図は本発明の
一実施例を示す蛍光ランプの縦断側面図、第5図
は本発明に係る反射膜の形状を導く手順を示した
概念図、第6図は本発明に係る蛍光ランプの効果
を従来のランプと比較して示した実験図である。 1……蛍光体、2,3……容器、14……反射
膜。
Figure 1 is a perspective view of a conventional fluorescent lamp; Figure 2 is a perspective view of a conventional fluorescent lamp;
The figure is a longitudinal side view near the line X-X' in Figure 1.
FIG. 3 is a circuit diagram of a fluorescent lamp, FIG. 4 is a vertical side view of a fluorescent lamp showing an embodiment of the present invention, and FIG. 5 is a conceptual diagram showing a procedure for deriving the shape of a reflective film according to the present invention. FIG. 6 is an experimental diagram showing the effect of the fluorescent lamp according to the present invention in comparison with a conventional lamp. 1... Phosphor, 2, 3... Container, 14... Reflective film.

Claims (1)

【特許請求の範囲】 1 一対の容器を互いに対向して結合させた平板
状の蛍光ランプにおいて、内面に反射膜を備える
第1の容器の両端部に、外側に略水平に突出させ
た水平屈曲部2aをそれぞれ形成し、かつこの水
平屈曲部2aに対し内側へ第1の角度θ1をもつて
屈曲させた傾斜発光面2bを形成し、この傾斜発
光面2bの上端部において水平面に対し内側へ第
2の角度θ4でもつて屈曲し、かつ中央部において
結合する傾斜発光面2cをそれぞれ形成すると共
に、第2の容器は、前記第1の容器の水平屈曲部
2aに対応する水平屈曲部3a、前記傾斜発光面
2bおよびその両側の傾斜発光面2bと対向する
彎曲発光面3bと、この彎曲発光面3bと前記水
平屈曲部3a間を連結する屈曲部とを備え、かつ
第1の容器の傾斜発光面2bの上端部が第2の容
器の彎曲発光面3bの中央部とでなす角度をθ2
し、前記傾斜発光面2bの延長線が、前記傾斜発
光面2bの上端部において、放電中心とでなす角
度をθ3とする場合、θ2=θ3であり、前記第1の角
度θ1は、前記彎曲発光面3bの両端の水平距離を
2L(mm)、前記屈曲部の水平距離をd(mm)とする
と、 であり、かつ前記第2の角度θ4は5゜〜10゜に設定し
たことを特徴とする蛍光ランプ。
[Scope of Claims] 1. In a flat fluorescent lamp in which a pair of containers are coupled together facing each other, a first container having a reflective film on its inner surface has horizontal bends protruding outward approximately horizontally at both ends thereof. 2a, and an inclined light emitting surface 2b bent inward at a first angle θ 1 with respect to the horizontal bent portion 2a, and an inclined light emitting surface 2b bent inward with respect to the horizontal surface at an upper end portion of the inclined light emitting surface 2b. The second container has a horizontal bent portion corresponding to the horizontal bent portion 2a of the first container. 3a, a first container comprising the inclined light emitting surface 2b, a curved light emitting surface 3b facing the inclined light emitting surface 2b on both sides thereof, and a bent portion connecting the curved light emitting surface 3b and the horizontal bent portion 3a; The angle between the upper end of the inclined light emitting surface 2b and the center of the curved light emitting surface 3b of the second container is θ 2 , and the extension line of the inclined light emitting surface 2b is at the upper end of the inclined light emitting surface 2b, When the angle formed with the discharge center is θ 3 , θ 23 , and the first angle θ 1 is the horizontal distance between both ends of the curved light emitting surface 3b.
2L (mm), and the horizontal distance of the bent part is d (mm), A fluorescent lamp characterized in that the second angle θ 4 is set at 5° to 10°.
JP12450679A 1979-09-27 1979-09-27 Fluorescent lamp Granted JPS5648062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12450679A JPS5648062A (en) 1979-09-27 1979-09-27 Fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12450679A JPS5648062A (en) 1979-09-27 1979-09-27 Fluorescent lamp

Publications (2)

Publication Number Publication Date
JPS5648062A JPS5648062A (en) 1981-05-01
JPS6364029B2 true JPS6364029B2 (en) 1988-12-09

Family

ID=14887166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12450679A Granted JPS5648062A (en) 1979-09-27 1979-09-27 Fluorescent lamp

Country Status (1)

Country Link
JP (1) JPS5648062A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147059A (en) * 1984-08-10 1986-03-07 Sanyo Electric Co Ltd Flat surface type fluorescent lamp
GB201523160D0 (en) * 2015-12-31 2016-02-17 Pilkington Group Ltd High strength glass containers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490877A (en) * 1978-10-31 1979-07-18 Stanley Electric Co Ltd Flat fluorescent lamp and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490877A (en) * 1978-10-31 1979-07-18 Stanley Electric Co Ltd Flat fluorescent lamp and method of manufacturing the same

Also Published As

Publication number Publication date
JPS5648062A (en) 1981-05-01

Similar Documents

Publication Publication Date Title
US4987343A (en) Vehicle headlamp
JP4094054B2 (en) Reflective lamp
US4498124A (en) Dual halogen lamp assembly
US7314298B2 (en) Automotive headlight discharge bulb
JPS6364029B2 (en)
CN100358085C (en) Reflector lamp
JP4535384B2 (en) Automotive discharge bulbs and automotive headlamps
US1213974A (en) Projection apparatus.
US2858467A (en) Vehicle headlamp
US4171497A (en) Sealed beam lamp for automobile
JPS5866253A (en) High intensity discharge lamp
JPH10340704A (en) Discharge lamp for automobile
JP3605836B2 (en) Light source device
JP3235357B2 (en) Tube with reflector
JPS6118303B2 (en)
JPH0718081Y2 (en) Vehicle lamp with a discharge lamp
JP2001511913A (en) Lighting device for projector
JP4256964B2 (en) Vehicle lighting
GB2071410A (en) Sealed Beam Lamp and Method of Manufacture
JP3667374B2 (en) Lighting device
US6121728A (en) Fluorescent lamp having the cathode and anode with particular angular arrangement
JPS6084702A (en) Headlamp for vehicle
US2994799A (en) Projection lamp
JPH06342644A (en) Reflection type high pressure discharge lamp
US20080231194A1 (en) Discharge bulb for vehicle