JPS6364023A - Display device - Google Patents

Display device

Info

Publication number
JPS6364023A
JPS6364023A JP61209065A JP20906586A JPS6364023A JP S6364023 A JPS6364023 A JP S6364023A JP 61209065 A JP61209065 A JP 61209065A JP 20906586 A JP20906586 A JP 20906586A JP S6364023 A JPS6364023 A JP S6364023A
Authority
JP
Japan
Prior art keywords
substrate
light
electrodes
display device
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61209065A
Other languages
Japanese (ja)
Other versions
JP2721153B2 (en
Inventor
Nobuki Ibaraki
伸樹 茨木
Kyozo Ide
井出 恭三
Masayuki Oba
正幸 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61209065A priority Critical patent/JP2721153B2/en
Publication of JPS6364023A publication Critical patent/JPS6364023A/en
Application granted granted Critical
Publication of JP2721153B2 publication Critical patent/JP2721153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To contrive to improve a contrast ratio by covering areas other than picture element electrodes, which are formed on the first substrate, with an insulating light shielding film. CONSTITUTION:Polarizing plates 3 are provided on outside faces of transparent substrates 1 and 2 which hold a liquid crystal 8 between themselves and consist of a glass or the like. Scanning lines connected to gate electrodes of thin film transistors TRs, signal lines 5 connected to drain or source electrodes, picture element electrodes 4 connected to drain or source electrodes, etc., are formed on the inside face of the substrate 1. An insulating light shielding film 11 is provided on parts other than areas of electrodes 4 of this substrate 1 for the purpose of intercepting the transmitted light which passes areas of a matrix wiring, thin film TRs, etc., and a liquid crystal orientation control film consisting of a polyimide or the like is formed on the film 11 and is brought into contact with the liquid crystal. Meanwhile, R, G, and B color filters 6 are formed in positions corresponding to electrodes 4 on the inside face of the substrate 2, and a transparent conductive film and a counter electrode 7 are formed on filters 6 in order and are brought into contact with the liquid crystal.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は表示装置に係り、特に薄膜トランジスタに代
表される非線形素子をマトリックス配線の各交点に設け
たいわゆるアクティブ・マトリックス型電極構造を有し
、液晶等の電気・光変調物質を動作させてなる表示装置
に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a display device, and in particular to a so-called active matrix type electrode in which a nonlinear element represented by a thin film transistor is provided at each intersection of matrix wiring. The present invention relates to a display device having a structure and operating an electrical/light modulating substance such as a liquid crystal.

(従来の技術) 従来より、ポリシリコン、非晶質シリコン、テルル等の
msトランジスタ(以下、TPTと略称する)、もしく
は酸化アルミニウム等を金属薄膜にてサンドインチ構造
とした金属/絶縁瑛/金属ダイオード等の非線形素子を
用いたアクティブ・マトリックス型液晶表示装置は、例
えば特開昭56−25714号公報、特開昭56−25
777号公報などに開示され広く知られている。
(Prior Art) Conventionally, ms transistors (hereinafter abbreviated as TPT) made of polysilicon, amorphous silicon, tellurium, etc., or metal/insulator/metal with a sandwich structure made of metal thin films such as aluminum oxide have been used. Active matrix liquid crystal display devices using nonlinear elements such as diodes are disclosed in, for example, Japanese Patent Laid-Open No. 56-25714 and Japanese Patent Laid-Open No. 56-25.
It is widely known as disclosed in Japanese Patent No. 777 and the like.

この種の表示装置につき、例えばTPTを用いた場合に
ついて、従来技術を説明する。
Regarding this type of display device, a conventional technique will be described with respect to a case where TPT is used, for example.

即ち、第4図(a)はTPTを用いたアクティブ・マト
リックス型液晶表示装置の配線を説明するために、通常
よく使用されるものであるが、信号線群と走査線群から
なるマトリックス配線の各交点にTPTが設けられ、そ
のソース電極もしくはドレイン電極の一方が画素電極に
接続されている。
That is, FIG. 4(a) is commonly used to explain the wiring of an active matrix type liquid crystal display device using TPT, but it is a diagram of matrix wiring consisting of a group of signal lines and a group of scanning lines. A TPT is provided at each intersection, and one of its source electrode or drain electrode is connected to the pixel electrode.

又、第4図(b)は第4図(a>のB−B’に沿って切
断した断面を対向基板をも考慮して示すもので、基板1
と対向基板2との間に電気・光変調物質として液晶8を
用い、そのどちらかの基板側から光照射を行なって、い
わゆる透過型として使用した場合を表わしている。この
時、この表示装置をカラー表示するため、対向基板2側
に赤(R)、緑(G)、青(B)のカラーフィルタ6を
設けである。尚、図中の3は偏光板、5は信号線電極、
7は対向電極を示す。そして、透過型として動作させる
場合、画素電極4は透明導電膜を用い、厳密に言えば液
晶動作は、この画素電極4と対向電極7の領域のみに限
られる。
Further, FIG. 4(b) shows a cross section taken along line BB' in FIG. 4(a), taking into account the opposing substrate.
A case is shown in which a liquid crystal 8 is used as an electrical/light modulating material between the substrate 2 and the counter substrate 2, and light is irradiated from either side of the substrate, so that the device is used as a so-called transmission type. At this time, in order to display color in this display device, red (R), green (G), and blue (B) color filters 6 are provided on the opposing substrate 2 side. In addition, 3 in the figure is a polarizing plate, 5 is a signal line electrode,
7 indicates a counter electrode. When operating as a transmissive type, a transparent conductive film is used for the pixel electrode 4, and strictly speaking, liquid crystal operation is limited only to the region between the pixel electrode 4 and the counter electrode 7.

即ち、この基板上で画素1g!領域を除いた部分の液晶
8は、全く動作していないことになる。マトリックス配
線を設けた基板1上には、画素電極領域以外に信号線の
配線電極、走査線の配線電極、TPTが設けられており
、これらは多層構造配線もしくは配線の配置により相互
に電気的に絶縁されている。そのため、例えば電極材料
に金属、1g!等の不透明材料を用いたとしても、配線
間スペース等が存在する場合が多く、この領域は液晶8
が動作しない、いわゆる非変調光が透過することになる
。この非変調光は、表示装置にとっては常に漏れ光が存
在することを意味し、バック・グラウンドの増加、即ち
、コントラストを著しく低下させる。
In other words, 1g of pixels on this board! The liquid crystal 8 in the area other than the area does not operate at all. On the substrate 1 provided with matrix wiring, wiring electrodes for signal lines, wiring electrodes for scanning lines, and TPT are provided in addition to the pixel electrode area, and these are electrically interconnected by multilayer structure wiring or wiring arrangement. Insulated. Therefore, for example, 1g of metal is used as the electrode material! Even if an opaque material such as
So-called non-modulated light, which does not work, is transmitted. This unmodulated light means that there is always leakage light for the display device, which increases the background and thus significantly reduces the contrast.

この非変調光を減少させる方法として、例えば配向制@
膜のラビング方向を直角とし基板を挟む2枚の偏光板配
置を平行にし、液晶8に電圧が印加されない場合に光を
透過させない使い方がある。
As a method to reduce this non-modulated light, for example, orientation control@
One method is to make the rubbing direction of the film perpendicular and the two polarizing plates sandwiching the substrate parallel, so that no light is transmitted when no voltage is applied to the liquid crystal 8.

この場合は、信号電圧によって画素電極領域のみ光変調
されるため、原理的には非変調光は有り得ないことにな
る。しかし、表示装置の製造工程を考慮した場合、2枚
の偏光板3の偏光方向を正確に平行に合せる必要があり
、漏れ光によるバック・グラウンドはこの合せ精度によ
ってのみ決められることになる。実用的な合せ精度とし
て、そのズレ角を1°以内としても、これを量産時に管
理することは非常に困難である。
In this case, since only the pixel electrode region is optically modulated by the signal voltage, unmodulated light is theoretically impossible. However, when considering the manufacturing process of the display device, it is necessary to precisely align the polarization directions of the two polarizing plates 3 in parallel, and the background caused by leaked light is determined only by this alignment accuracy. Even if the deviation angle is within 1 degree as a practical alignment accuracy, it is extremely difficult to manage this during mass production.

これに対し、偏光板配置を直角にした場合は、その角度
ズレは単に透過率の若干の低下を招くだけで、コントラ
ストに与える影響は少なく、―産性に富むと言える。こ
の時、信号電圧が印加された画素M8i領域に対応する
液晶のみが光変調効果を与え、前述の非変調光がコント
ラストを決定する。この解決策として従来行われてきた
方法は、対向基板側に金属薄膜で遮光スクリーンを設け
ることである。
On the other hand, when the polarizing plates are arranged at right angles, the angular deviation merely causes a slight decrease in transmittance and has little effect on contrast, which can be said to be highly productive. At this time, only the liquid crystal corresponding to the pixel M8i region to which the signal voltage is applied gives a light modulation effect, and the above-mentioned non-modulated light determines the contrast. A conventional method to solve this problem is to provide a light-shielding screen made of a metal thin film on the opposing substrate side.

即ち、第4K(C)に示すように、対向基板2上の画素
電極4に対応する領域のみに、例えばRlG、Bのカラ
ーフィルタ6を配し、残りの全ての11!1を金属sg
iからなる遮光スクリーン9にて覆う方法である。これ
は、確かに初期の目的は達成するが、この方法にも次に
述べる短所がある。
That is, as shown in 4K(C), for example, RlG, B color filters 6 are arranged only in the area corresponding to the pixel electrode 4 on the counter substrate 2, and all the remaining 11!1 are made of metal sg.
This is a method of covering with a light-shielding screen 9 consisting of i. Although this certainly achieves the initial objective, this method also has disadvantages as described below.

第1に、マトリックス配線基板1と遮光スクリーン9を
設けた対向基板2の両者を、正確な位置関係をもって固
定しなければならない点である。
First, both the matrix wiring board 1 and the counter board 2 provided with the light-shielding screen 9 must be fixed in an accurate positional relationship.

このような液晶表示装置では、画素ピッチが数百ミクロ
ンで設計される場合が多く、例えば200ミクロンピッ
チとしたとき、所定の開口率を得るためには合せ精度は
数ミクロン程度となる。
Such liquid crystal display devices are often designed with a pixel pitch of several hundred microns. For example, when the pitch is 200 microns, the alignment accuracy is on the order of several microns in order to obtain a predetermined aperture ratio.

又、光源からの光は完全な平行光線とは古い難く、基板
に対し斜方入射する光の非変調光成分をも考慮すると、
更に開口率は小さくなる。例えば上述の200ミクロン
ピッチの場合、信号走査線電極中を10ミクロン、更に
TFT部の面積をも考慮した場合、有効な画素電極サイ
ズを開口率に表わすと、約50〜60%となる。これに
合せ精度、斜方入射光のマージンを組入れると、開口率
は約40〜50%に低下する。この開口率の低下は、直
接に表示装置の画質の低下を招く。
In addition, the light from the light source is not completely parallel, and if we also take into account the non-modulated light component of the light obliquely incident on the substrate,
Furthermore, the aperture ratio becomes smaller. For example, in the case of the above-mentioned pitch of 200 microns, if the width of the signal scanning line electrode is 10 microns and the area of the TFT section is also taken into account, the effective pixel electrode size expressed as an aperture ratio is about 50 to 60%. If accuracy and margin for obliquely incident light are incorporated into this, the aperture ratio decreases to about 40 to 50%. This decrease in aperture ratio directly causes a decrease in the image quality of the display device.

これらから容易に類推出来ることは、遮光スクリーン9
をマトリックス配線基板1側に設ける試みである。この
方法は、原理的にも有効で且つ実現可能であり、次の2
通りが考えられる。即ち、TPTをも含めたマトリック
ス配線と基板との間に絶縁膜を介して設ける方法と、こ
のマトリックス配線上部に絶縁!110を介して設ける
方法(第4図(d))とがある。しかし、装置製造上か
ら見た場合、いずれの方法にもマトリックス配線の交点
部分は、層間絶縁膜を介して信号電極、走査電極、そし
て遮光スクリーン9の5層構造となり、例えば走査電極
数を240本、信号電極数を480本としたとき、その
交点の数は115゜200箇所に及び、そのいずれか1
箇所でも層間ショートが発生してはならないという厳し
い条件が付くことになる。しかも、表示装置が大面積と
なるに従い、層間絶縁膜のピンホール、ごみ、はこり等
による層間ショートの発生確率は高くなり、量産時の歩
留りを低下させる原因となる。
What can be easily inferred from these is that the light-shielding screen 9
This is an attempt to provide this on the matrix wiring board 1 side. This method is effective and realizable in principle, and has the following two
The street can be considered. In other words, there is a method in which an insulating film is provided between the matrix wiring including TPT and the substrate, and an insulating film is provided above the matrix wiring! 110 (FIG. 4(d)). However, from the viewpoint of device manufacturing, in either method, the intersection of matrix wiring has a five-layer structure of signal electrodes, scanning electrodes, and light shielding screen 9 via an interlayer insulating film, and for example, the number of scanning electrodes is 240. When the number of electrodes and signal electrodes is 480, the number of intersections is 115°200, and any one of them
There is a strict condition that interlayer short circuits must not occur at any point. Moreover, as the display device becomes larger in area, the probability of occurrence of interlayer short circuits due to pinholes, dust, clumps, etc. in the interlayer insulating film increases, which causes a decrease in yield during mass production.

〈発明が解決しようとする問題点) 上記の従来例で見られるように、液晶表示装置の画質低
下の一因である非変調光の問題は、偏光板3の偏光方向
による液晶動作状態、対向基板1上での遮光スクリーン
9、マトリックス基1f11上での遮光スクリーン9と
種々工夫が行われているが、夫々短所があり、又、その
短所は直接に量産時の歩留り低下を招くものである。
<Problems to be Solved by the Invention> As can be seen in the above-mentioned conventional example, the problem of unmodulated light, which is one of the causes of deterioration of image quality in liquid crystal display devices, is caused by the liquid crystal operating state depending on the polarization direction of the polarizing plate 3, Various efforts have been made, such as a light-shielding screen 9 on the substrate 1 and a light-shielding screen 9 on the matrix substrate 1f11, but each has its disadvantages, and these disadvantages directly lead to a decrease in yield during mass production. .

この発明は、非変調光をなくすと共に、製造工程上容易
にして高歩留りを与える表示装置を提供することを目的
とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a display device that eliminates non-modulated light, simplifies the manufacturing process, and provides a high yield.

[発明の構成コ (問題点を解決するための手段) この発明は、走査線である複数の行電極及び信号線とな
る複数の列電極から構成されるマトリックス配線の各交
点に非線形素子を介して接続された画素電極を有する第
1の基板(マトリックス基板)と、対向電極を形成した
第2の基板(対向基板)との間に電気・光変調物質の層
を挟持してなる表示装置において、上記第1の基板上に
形成された画素電極を除いた領域上を絶縁性遮光膜にて
被覆し、非変調光の透過をなくした表示装置である。
[Structure of the Invention (Means for Solving the Problems)] This invention provides a method of connecting a non-linear element to each intersection of a matrix wiring composed of a plurality of row electrodes which are scanning lines and a plurality of column electrodes which are signal lines. In a display device in which a layer of an electrical/light modulating substance is sandwiched between a first substrate (matrix substrate) having pixel electrodes connected to each other and a second substrate (counter substrate) having a counter electrode formed thereon. , is a display device in which an area other than a pixel electrode formed on the first substrate is covered with an insulating light-shielding film to eliminate transmission of non-modulated light.

そして、絶縁性遮光膜の材料としては、400℃以下の
温度にて硬化された有機樹脂があり、その成分の1つに
染料を含むものが適している。ここに硬化とは、ポリイ
ミド系樹脂ではその前駆体であるポリアミド酸を加熱処
理してポリイミドを生成することを意味し、その他の有
機樹脂の場合、有様樹脂溶液から遮光膜形成後、加熱処
理して残存溶剤を除去することを意味する。
Suitable materials for the insulating light-shielding film include organic resins that are cured at a temperature of 400° C. or lower, and that contain dyes as one of their components. In the case of polyimide-based resins, curing means that polyamic acid, which is a precursor thereof, is heat-treated to produce polyimide; in the case of other organic resins, heat treatment is performed after forming a light-shielding film from a resin solution. means to remove residual solvent.

遮光効果としては、用いる光源のスペクトルにも依存す
るが、一般に光透過率スペクトルにおいて可視域の平均
光学濃度が1.0以上あることが望ましく、又、配線間
リーク電流等の見地から、その電気抵抗率はiQ  o
hm−cm以上が望ましい。特に有機樹脂としては、ポ
リイミド、ポリアミドイミド、ポリエステルイミド、ポ
リアミド、ポリエステルアミド、及びポリエーテルスル
ホンの少なくとも一種からなるポリマーが好ましい。
The light shielding effect depends on the spectrum of the light source used, but it is generally desirable that the average optical density in the visible range in the light transmittance spectrum is 1.0 or more. Resistivity is iQ o
hm-cm or more is desirable. In particular, as the organic resin, a polymer consisting of at least one of polyimide, polyamideimide, polyesterimide, polyamide, polyesteramide, and polyethersulfone is preferred.

〈作用) この発明によれば、絶縁性遮光膜がマトリックス配線を
有する基板上即ち画素電極部に直接設けられるため、従
来例で指摘したような偏光板の角度合せ精度の問題、開
口率の問題は除外出来、又、金属材料とは異なり高抵抗
材料であるために、電気的な短絡、層間ショート等の問
題も解決される。
<Function> According to the present invention, since the insulating light-shielding film is provided directly on the substrate having matrix wiring, that is, on the pixel electrode portion, the problems of angle alignment accuracy and aperture ratio of the polarizing plate as pointed out in the conventional example are avoided. Moreover, since it is a high-resistance material unlike metal materials, problems such as electrical short circuits and interlayer short circuits can be solved.

更に、遮光効果に関しては、金属材料の場合は容易に光
学濃度4以上が得られるが、ポリマー材料の場合、その
透過スペクトルは、全ての波長域に亙って一定値とはな
り得ないが、少なくとも可視域で平均光学濃度1.0以
上あれば、非変調光の遮光目的は充分に達せられる。
Furthermore, regarding the light shielding effect, an optical density of 4 or more can be easily obtained with metal materials, but with polymer materials, the transmission spectrum cannot be a constant value over the entire wavelength range. If the average optical density is 1.0 or more in at least the visible range, the purpose of blocking unmodulated light can be sufficiently achieved.

又、製造工程の観点からは、既に完成したマトリックス
配線基板上に、既存のフォトリゾグラフイー彼術を用い
て容易に遮光膜が形成出来、その合せ精度は用いるフォ
トリゾグラフィーの精度にて単純に決定し、量産時にお
いてさえ、その精度を例えば3μm以内に納めることも
容易である。
In addition, from the viewpoint of the manufacturing process, a light-shielding film can be easily formed on an already completed matrix wiring board using existing photolithography techniques, and the alignment accuracy is simple due to the accuracy of the photolithography used. Even during mass production, it is easy to maintain the accuracy within 3 μm, for example.

(実施例) 以下、図面を参照して、この発明の一実施例を詳細に説
明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図(a>、(b)は、この発明による表示装置の一
実施例を示したもので、従来例と同一箇所は同一符号を
付すことにすると、非線形素子としてTPTを用いたマ
トリックス配線を形成した第1の基板と、カラーフィル
タ及び対向電極を形成した第2の基板、との間に、電気
・光度y4物質である液晶を挟持してなる透過型TNモ
ードで使用されるカラー液晶表示装置に適用した例であ
る。
FIGS. 1(a) and 1(b) show an embodiment of a display device according to the present invention, and the same parts as in the conventional example are denoted by the same reference numerals.Matrix wiring using TPT as a nonlinear element A color liquid crystal used in a transmission type TN mode, in which a liquid crystal, which is an electric/luminous substance, is sandwiched between a first substrate formed with a color filter and a second substrate formed with a color filter and a counter electrode. This is an example applied to a display device.

即ち、第1図(b)中の1及び2は、液晶8を挟持する
ガラス等からなる透明な基板であり、各基板1.2の夫
々外側の表面には偏光板3が設けられている。
That is, 1 and 2 in FIG. 1(b) are transparent substrates made of glass or the like that sandwich the liquid crystal 8, and a polarizing plate 3 is provided on the outer surface of each substrate 1.2. .

更に、基板1はマトリックス基板とも言われるもので、
この透明基板1の内面には、TPTのゲート電極に接続
された走査線及びドレイン電極もしくはソース電極に接
続された信号線5及びドレイン電極もしくはソース電極
に接続された画素電極4等が形成されている。
Furthermore, the substrate 1 is also called a matrix substrate,
On the inner surface of this transparent substrate 1, a scanning line connected to the gate electrode of the TPT, a signal line 5 connected to the drain electrode or source electrode, a pixel electrode 4 connected to the drain electrode or source electrode, etc. are formed. There is.

このような基板1上の画素電極4領域を除いた他の部分
、即ち、マトリックス配線やTPT等の領域を通過する
透過光を阻止するために、この発明では絶縁性遮光膜1
1が設けられ、この遮光膜11上に例えばポリイミド、
ポリアミド、ポリビニルアルコール等からなる液晶配向
制御膜(図示せず)がラビング処理により形成され、液
晶8に接している。
In order to block the transmitted light from passing through areas other than the pixel electrode 4 area on the substrate 1, that is, areas such as matrix wiring and TPT, the present invention uses an insulating light shielding film 1.
1 is provided, and on this light shielding film 11, for example, polyimide,
A liquid crystal alignment control film (not shown) made of polyamide, polyvinyl alcohol, or the like is formed by a rubbing process and is in contact with the liquid crystal 8 .

一方、基板2の内面には、各画素電極4に対応した位置
にR,G、Bのカラーフィルタ6が形成され、このカラ
ーフィルタ6上には例えばインジウム・スズ酸化膜等か
らなる透明導電膜、更にその上にラビング処理された液
晶配向υ制御1(図示せず)からなる対向電極7が形成
され、液晶8に接している。
On the other hand, R, G, and B color filters 6 are formed on the inner surface of the substrate 2 at positions corresponding to each pixel electrode 4, and a transparent conductive film made of, for example, an indium tin oxide film is formed on the color filter 6. Further, a counter electrode 7 made of a liquid crystal alignment υ control 1 (not shown) which has been subjected to a rubbing process is formed thereon and is in contact with the liquid crystal 8 .

さて次に、特に具体的な実施例として、絶縁性遮光11
1の材料に黒色染料を含有したポリマーを用いた場合に
つき説明する。
Now, as a particularly specific example, the insulating light shielding 11
A case where a polymer containing a black dye is used as material 1 will be explained.

この母材となるポリマーとしては、電気絶縁性及び耐熱
性に優れ、且つ染料との相溶性が良好であることが要求
され、具体例としてはポリイミド、ポリアミドイミド、
ポリエステルイミド、ポリアミド、ポリエステルアミド
、ポリスルホン、ポリエーテルスルホン、ボリアリレー
ト、ポリエーテルエーテルケトン、ポリアセタール、ポ
リカーボネート、ナイロン、ポリブチレンテレフタレー
ト、(変性)ポリフェニレンオキサイド、ポリフェニレ
ンスルフィド、エポキシ樹脂、不飽和ポリエステル樹脂
、ビスマレイミド樹脂等を挙げることが出来、これらポ
リマーは1種もしくは2種以上の混合系で使用される。
The polymer used as the base material is required to have excellent electrical insulation and heat resistance, and good compatibility with dyes. Specific examples include polyimide, polyamideimide,
Polyesterimide, polyamide, polyesteramide, polysulfone, polyethersulfone, polyarylate, polyetheretherketone, polyacetal, polycarbonate, nylon, polybutylene terephthalate, (modified) polyphenylene oxide, polyphenylene sulfide, epoxy resin, unsaturated polyester resin, bis Examples include maleimide resins, and these polymers may be used alone or in a mixed system of two or more.

又、黒色染料としては、可視域即ち、少なくとも400
〜800nmの波長域において、光を吸収するものであ
れば、いかなるものでも良く、具体例としては、住友化
学(株)製の商品名アミルブラックF−88L、スミラ
イトブラックGOOnC,ダイレクトディープブラック
XA。
In addition, as a black dye, in the visible range, that is, at least 400
Any material may be used as long as it absorbs light in the wavelength range of ~800 nm. Specific examples include Amil Black F-88L, Sumilite Black GOOnC, and Direct Deep Black XA manufactured by Sumitomo Chemical Co., Ltd. .

スミフィックスブラックB1アミルブラックF−GL1
スミカロンブラック5−BF、スピリットブラックNo
920、ジャパノールファーストブラックoconc、
スミカラーブラックPR−3F−365、スミカラーブ
ラックPR−8T−364、スミカラーブランクPR−
8T−363、オイルブラックN01、三井東圧化学(
株)製の商品名ミツイPSブラックB1ミツイPSブラ
ックEX−58、ミツイPSブラックEX−174、出
目化学(株)製の商品名オレオゾールファーストブラッ
クBLN等を挙げることが出来る。
Sumifix Black B1 Amyl Black F-GL1
Sumikaron Black 5-BF, Spirit Black No.
920, Japanol Fast Black oconc,
Sumicolor Black PR-3F-365, Sumicolor Black PR-8T-364, Sumicolor Blank PR-
8T-363, Oil Black N01, Mitsui Toatsu Chemical (
Examples include Mitsui PS Black B1, Mitsui PS Black EX-58, Mitsui PS Black EX-174, produced by Deme Kagaku Co., Ltd., and Oleosol Fast Black BLN, produced by Deme Kagaku Co., Ltd.

又、赤色染料、青色染料、緑色染料、黄色染料等の着色
染料を2種以上配合し、黒色化して使用する方法も包含
するものである。
It also includes a method in which two or more types of coloring dyes such as red dye, blue dye, green dye, yellow dye, etc. are blended to form a black color.

この発明における黒色染料の使用量は、ポリマーioo
重量部に対し1〜200重量部、好ましくは5〜150
重量部の範囲である。黒色染料の使用量が1重1部未満
の場合には、光の吸収効果が劣り、一方、200重量部
を超える場合には、塗膜の形成が困難となる。
The amount of black dye used in this invention is the polymer ioo
1 to 200 parts by weight, preferably 5 to 150 parts by weight
Parts by weight range. If the amount of black dye used is less than 1 part by weight, the light absorption effect will be poor, while if it exceeds 200 parts by weight, it will be difficult to form a coating film.

又、この発明においては、光吸収能の効果を向上させる
目的で、赤外線吸収剤を使用することも可能である。こ
のとき用いる赤外線吸収剤は、700〜1500nmの
波長域において光を吸収するものであれば、特に限定さ
れず、具体例としては三井東圧化学(株)製の商品名P
A100I、PA10o5、PA1006等のPAシ!
、I−X、保止ケ谷化学工業(株)製の商品名HR10
2、HR105−R等のHRシリーズを挙げることが出
来る。これら赤外線吸収剤の使用量は、上記ポリマー1
00重口部に対し0.1〜50重量部、好ましくは0.
5〜40重量部の範囲である。
Further, in this invention, it is also possible to use an infrared absorber for the purpose of improving the effect of light absorption ability. The infrared absorber used at this time is not particularly limited as long as it absorbs light in the wavelength range of 700 to 1500 nm, and a specific example is the product name P manufactured by Mitsui Toatsu Chemical Co., Ltd.
PA series such as A100I, PA10o5, PA1006!
, I-X, trade name HR10 manufactured by Hodogaya Chemical Industry Co., Ltd.
2. HR series such as HR105-R can be mentioned. The amount of these infrared absorbers used is as follows:
0.1 to 50 parts by weight, preferably 0.00 parts by weight.
It is in the range of 5 to 40 parts by weight.

次に、具体例を挙げ、更に詳しく説明する。Next, a specific example will be given and a more detailed explanation will be given.

具体例1・・・黒色ポリマーの調整及び性能攪拌棒、温
度計及び滴下ロートを鴎えた反応フラスコ(内容積50
0m1>にピロメリット酸二無水物13.086G、3
.3′、4.4′−ベンゾフェノンテトラカルボン酸二
無水物19.34C1、及びN、N−ジメチルアセトア
ミド150gを投入し、充分に撹拌して0℃に保持した
まま、ここに1.4−ビス(4−アミノフエキシ)ベン
ゼン17.5380をN、N−ジメチルアセトアミド1
30gに溶解した溶液を滴下ロートで徐々に滴下した。
Specific example 1: Preparation and performance of black polymer A reaction flask equipped with a stirring bar, a thermometer, and a dropping funnel (inner volume: 50
Pyromellitic dianhydride 13.086G, 3
.. 19.34C1 of 3',4,4'-benzophenonetetracarboxylic dianhydride and 150g of N,N-dimethylacetamide were added, and while stirring thoroughly and maintaining the temperature at 0°C, 1,4-bis (4-aminophexy)benzene 17.5380 to N,N-dimethylacetamide 1
A solution of 30 g was gradually added dropwise using a dropping funnel.

滴下終了後、0〜10℃で4時間攪拌を行ない、ポリア
ミド酸溶液を得た。このようにして得られたポリアミド
酸溶液に黒色染料(住友化学(株)製の商品名スピリッ
トブラックN0920)4.2g及び赤外線吸収剤(三
井東圧化学(株)製の商品名PA1006)1、OQを
N5N−ジメチルアセトアミド35゜に溶解した溶液を
加え、充分に混合して黒色ポリアミド酸溶液を得た。こ
の溶液を石英のガラスウェハーに回転数200Orpm
にてスピンナー塗布した。次いで100℃で20分間、
150℃で20分間、250℃で1時間乾燥及び硬化し
て、膜厚1.8μmの黒色ポリイミド膜を形成した。
After the dropwise addition was completed, stirring was performed at 0 to 10°C for 4 hours to obtain a polyamic acid solution. To the polyamic acid solution thus obtained, 4.2 g of black dye (trade name Spirit Black N0920, manufactured by Sumitomo Chemical Co., Ltd.) and 1 infrared absorber (trade name PA1006, manufactured by Mitsui Toatsu Chemical Co., Ltd.), A solution of OQ dissolved in N5N-dimethylacetamide at 35° was added and thoroughly mixed to obtain a black polyamic acid solution. This solution was applied to a quartz glass wafer at a rotation speed of 200 rpm.
It was applied with a spinner. Then at 100°C for 20 minutes,
It was dried and cured at 150° C. for 20 minutes and at 250° C. for 1 hour to form a black polyimide film with a thickness of 1.8 μm.

このようにして得られた黒色ポリイミド膜の光透過率を
測定した結果、第2図に示すように満足すべきものであ
った。
The light transmittance of the black polyimide film thus obtained was measured and was found to be satisfactory as shown in FIG.

具体例2・・・表示装置の製造方法及び性能常法により
走査線電極、信号線電極、水素化非結晶シリコンを半導
体材料として用いたTPT。
Specific example 2: Display device manufacturing method and performance TPT using scanning line electrodes, signal line electrodes, and hydrogenated amorphous silicon as a semiconductor material by a conventional method.

画素電極などを形成したガラス製透明基板上に黒色ポリ
アミド酸溶液を200Orpmにてスピンナー塗布し、
次いで100℃で30分、150℃で1時間乾燥及び硬
化して膜厚2.0μmの黒色ポリイミド膜を形成した。
A black polyamic acid solution was applied with a spinner at 200 rpm onto a transparent glass substrate on which pixel electrodes etc. were formed.
Next, it was dried and cured at 100° C. for 30 minutes and at 150° C. for 1 hour to form a black polyimide film with a thickness of 2.0 μm.

次いで、周知のフォトリゾグラフィー技術を用いて、画
素電極部分の開口を含めた所望パターンを得た。ここで
、黒色ポリイミドのエツチングには、ヒドラジン/エト
レンジアミン(重量比5:5)溶液を用いた。
Next, a desired pattern including an opening in the pixel electrode portion was obtained using a well-known photolithography technique. Here, a hydrazine/ethylendiamine (weight ratio 5:5) solution was used for etching the black polyimide.

引き続き窒素ガスによる乾燥を行なった後、200℃で
1.5時間の加熱処理をすることにより、ポリアミド酸
の完全硬化を行なった。このようにして作製した基板の
表面に常法に従って配向制御膜を設け、ラビング処理し
、予めカラーフィルタ及び透明対向電極及び配向制御j
Ilm等を設けた対向電極基板とを対にして液晶表示装
置を作製した。このようにして得られた表示装置の信号
電圧に対する透過率特性の測定結果を第3図に示す。
After drying with nitrogen gas, the polyamic acid was completely cured by heat treatment at 200° C. for 1.5 hours. An alignment control film is provided on the surface of the substrate prepared in this manner according to a conventional method, and a rubbing treatment is performed to prepare a color filter, a transparent counter electrode, and an alignment control film.
A liquid crystal display device was manufactured by pairing the substrate with a counter electrode substrate provided with Ilm and the like. FIG. 3 shows the measurement results of the transmittance characteristics with respect to the signal voltage of the display device thus obtained.

この第3図から明らかなように、従来法によった場合は
コントラスト比が10程度であったが、この発明におけ
る遮光WA11の効果により、コントラスト比が50と
大幅な改善が見られた。
As is clear from FIG. 3, the contrast ratio was about 10 when using the conventional method, but due to the effect of the light shielding WA11 in the present invention, the contrast ratio was significantly improved to 50.

[発明の効果] 以上に詳述した通り、この発明の表示装置は画素電極を
除いた他の領域からのいわゆる非変調光を充分に阻止し
得る機能があり、表示性能の一つであるコントラスト比
の向上に大きく寄与する。
[Effects of the Invention] As detailed above, the display device of the present invention has a function of sufficiently blocking so-called non-modulated light from other areas except the pixel electrode, and contrast, which is one of display performance, is improved. This greatly contributes to improving the ratio.

又、絶縁性遮光膜材料を用いたことにより、構造的に電
気的短絡、リーク等を考慮しなくて済み、既存のアクテ
ィブ・マトリックス配線を用いた全ての表示装置に容易
に適用出来る。
Further, by using an insulating light-shielding film material, there is no need to consider electrical short circuits, leakage, etc. structurally, and it can be easily applied to all display devices using existing active matrix wiring.

特に、光の吸収が極めて大きい黒色ポリマーを採用した
場合、容易な工程にて製造出来、軽量、薄型化された安
価な表示装置を提供することが出来る。
In particular, when a black polymer with extremely high light absorption is used, it is possible to manufacture the display device through an easy process, and to provide a lightweight, thin, and inexpensive display device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)はこの発明の一実施例に係る表示
装置を示し、(a)は平面図、(b)は(a)のA−A
’ 線に沿って切断し矢印方向に見た断面図、第2図は
この発明の表示装置における黒色ポリマーの透過率スペ
クトルを示す特性曲線図、第3図はこの発明の表示装置
における透過率−信号電圧特性を従来例と比較して示す
特性曲線図、第4図(a)、(b)、(C)、(d)は
従来の表示装置を示し、(a)は平面図、(b)、(C
)、(d)は(a)のB−8’線に沿って切断し矢印方
向に見た断面図である。 1.2・・・基板、3・・・漏光板、4・・・画素電極
、5・・・信号線、6・・・カラーフィルタ、7・・・
対向電極、8・・・液晶、11・・・遮光膜。 出願人代理人 弁理士 鈴江武彦 遠長(nm) 第2図 イ占勇1区、圧、(■) 第3図
FIGS. 1(a) and 1(b) show a display device according to an embodiment of the present invention, in which FIG. 1(a) is a plan view and FIG. 1(b) is an A-A in FIG.
Figure 2 is a characteristic curve diagram showing the transmittance spectrum of the black polymer in the display device of the present invention, and Figure 3 is a cross-sectional view taken along the line and viewed in the direction of the arrow. Characteristic curve diagrams showing signal voltage characteristics in comparison with conventional examples; FIGS. 4(a), (b), (C), and (d) show conventional display devices; (a) is a plan view; ), (C
) and (d) are cross-sectional views taken along line B-8' in (a) and viewed in the direction of the arrow. 1.2...Substrate, 3...Light leaking plate, 4...Pixel electrode, 5...Signal line, 6...Color filter, 7...
Counter electrode, 8...liquid crystal, 11...light shielding film. Applicant's representative Patent attorney Tonaga Suzue Takehiko (nm) Figure 2 A, Senyu 1 Ward, Pressure, (■) Figure 3

Claims (5)

【特許請求の範囲】[Claims] (1)複数の行電極及び複数の列電極から構成されるマ
トリックス配線の各交点に非線形素子を介して接続され
た画素電極を有する第1の基板と、対向電極を形成した
第2の基板との間に電気・光変調物質の層を挟持してな
る表示装置において、上記画素電極を除いた領域上を絶
縁性遮光膜にて被覆したことを特徴とする表示装置。
(1) A first substrate having a pixel electrode connected via a nonlinear element to each intersection of a matrix wiring composed of a plurality of row electrodes and a plurality of column electrodes, and a second substrate having a counter electrode formed thereon. 1. A display device comprising a layer of an electrical/light modulating material sandwiched between layers, characterized in that a region other than the pixel electrode is covered with an insulating light-shielding film.
(2)上記絶縁性遮光膜は、400℃以下の温度にて硬
化された有機樹脂の薄い層であり、その成分の一部に染
料を含むことを特徴とする特許請求の範囲第1項記載の
表示装置。
(2) The insulating light-shielding film is a thin layer of organic resin cured at a temperature of 400° C. or less, and contains a dye as a part of its components. display device.
(3)上記絶縁性遮光膜は、光透過率スペクトルにおい
て、可視域の平均光学濃度が1.0以上であることを特
徴とする特許請求の範囲第1項記載の表示装置。
(3) The display device according to claim 1, wherein the insulating light-shielding film has an average optical density in the visible range of 1.0 or more in a light transmittance spectrum.
(4)上記絶縁性遮光膜の電気抵抗率は、10ohm・
cm以上であることを特徴とする特許請求の範囲第1項
記載の表示装置。
(4) The electrical resistivity of the above insulating light shielding film is 10ohm・
2. The display device according to claim 1, wherein the display device has a width of cm or more.
(5)上記絶縁性遮光膜は、ポリイミド、ポリアミドイ
ミド、ポリエステルイミド、ポリアミド、ポリエステル
アミド、及びポリエーテルスルホンの少なくとも一種か
らなるポリマーであることを特徴とする特許請求の範囲
第2項記載の表示装置。
(5) The display according to claim 2, wherein the insulating light-shielding film is a polymer made of at least one of polyimide, polyamideimide, polyesterimide, polyamide, polyesteramide, and polyethersulfone. Device.
JP61209065A 1986-09-05 1986-09-05 Display device Expired - Lifetime JP2721153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61209065A JP2721153B2 (en) 1986-09-05 1986-09-05 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61209065A JP2721153B2 (en) 1986-09-05 1986-09-05 Display device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP8085989A Division JPH0922027A (en) 1996-03-15 1996-03-15 Production of display device
JP8598896A Division JP2752348B2 (en) 1996-03-15 1996-03-15 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPS6364023A true JPS6364023A (en) 1988-03-22
JP2721153B2 JP2721153B2 (en) 1998-03-04

Family

ID=16566669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61209065A Expired - Lifetime JP2721153B2 (en) 1986-09-05 1986-09-05 Display device

Country Status (1)

Country Link
JP (1) JP2721153B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123217A (en) * 1987-11-09 1989-05-16 Sharp Corp Liquid crystal display device
JPH0254217A (en) * 1988-08-19 1990-02-23 Mitsubishi Electric Corp Matrix type display device
JPH02135424A (en) * 1988-11-17 1990-05-24 Matsushita Electric Ind Co Ltd Liquid crystal display device
JPH03144422A (en) * 1989-10-30 1991-06-19 Matsushita Electric Ind Co Ltd Panel for liquid crystal display
JPH03211527A (en) * 1990-01-17 1991-09-17 Matsushita Electric Ind Co Ltd Active matrix substrate and liquid crystal display device
US5117299A (en) * 1989-05-20 1992-05-26 Ricoh Company, Ltd. Liquid crystal display with a light blocking film of hard carbon
JPH07168206A (en) * 1994-11-11 1995-07-04 Matsushita Electric Ind Co Ltd Production of liquid crystal display device
JPH07271020A (en) * 1994-03-18 1995-10-20 Internatl Business Mach Corp <Ibm> Photosensitive composition for forming black matrix, color filter substrate and liquid crystal display device using substrate thereof
EP0736793A2 (en) 1995-04-03 1996-10-09 Kabushiki Kaisha Toshiba Light-shielding film, liquid crystal display device and material for forming light-shielding film
JPH09501509A (en) * 1993-07-29 1997-02-10 ハネウエル・インコーポレーテッド Silicon pixel electrode
WO1998009191A1 (en) * 1996-08-29 1998-03-05 Seiko Epson Corporation Liquid crystal display and method of manufacturing the same
US7072019B1 (en) * 1999-06-30 2006-07-04 Sharp Kabushiki Kaisha Liquid crystal display device and method for fabricating the same
US7136130B2 (en) 2001-01-29 2006-11-14 Hitachi, Ltd. Liquid crystal display device
CN102162866A (en) * 2010-02-12 2011-08-24 佳能株式会社 Light-shielding film for optical element and optical element having light-shielding film
US9857621B1 (en) 1996-07-15 2018-01-02 Lg Display Co., Ltd. Display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627114A (en) * 1979-08-10 1981-03-16 Canon Inc Liquid crystal display cell
JPS6041086A (en) * 1983-08-15 1985-03-04 セイコーエプソン株式会社 Liquid crystal color projection apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627114A (en) * 1979-08-10 1981-03-16 Canon Inc Liquid crystal display cell
JPS6041086A (en) * 1983-08-15 1985-03-04 セイコーエプソン株式会社 Liquid crystal color projection apparatus

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123217A (en) * 1987-11-09 1989-05-16 Sharp Corp Liquid crystal display device
JPH0254217A (en) * 1988-08-19 1990-02-23 Mitsubishi Electric Corp Matrix type display device
JPH02135424A (en) * 1988-11-17 1990-05-24 Matsushita Electric Ind Co Ltd Liquid crystal display device
US5117299A (en) * 1989-05-20 1992-05-26 Ricoh Company, Ltd. Liquid crystal display with a light blocking film of hard carbon
JPH03144422A (en) * 1989-10-30 1991-06-19 Matsushita Electric Ind Co Ltd Panel for liquid crystal display
JPH03211527A (en) * 1990-01-17 1991-09-17 Matsushita Electric Ind Co Ltd Active matrix substrate and liquid crystal display device
JPH09501509A (en) * 1993-07-29 1997-02-10 ハネウエル・インコーポレーテッド Silicon pixel electrode
JPH07271020A (en) * 1994-03-18 1995-10-20 Internatl Business Mach Corp <Ibm> Photosensitive composition for forming black matrix, color filter substrate and liquid crystal display device using substrate thereof
JPH07168206A (en) * 1994-11-11 1995-07-04 Matsushita Electric Ind Co Ltd Production of liquid crystal display device
EP0736793A2 (en) 1995-04-03 1996-10-09 Kabushiki Kaisha Toshiba Light-shielding film, liquid crystal display device and material for forming light-shielding film
US9857621B1 (en) 1996-07-15 2018-01-02 Lg Display Co., Ltd. Display device
US11156866B2 (en) 1996-07-15 2021-10-26 Lg Display Co., Ltd. Display device
US10768472B2 (en) 1996-07-15 2020-09-08 Lg Display Co., Ltd. Display device
WO1998009191A1 (en) * 1996-08-29 1998-03-05 Seiko Epson Corporation Liquid crystal display and method of manufacturing the same
US6762803B1 (en) 1996-08-29 2004-07-13 Seiko Epson Corporation Liquid crystal display device and method of manufacturing the same
US7072019B1 (en) * 1999-06-30 2006-07-04 Sharp Kabushiki Kaisha Liquid crystal display device and method for fabricating the same
US7295268B2 (en) 2001-01-29 2007-11-13 Hitachi, Ltd. Liquid crystal display device
US7136130B2 (en) 2001-01-29 2006-11-14 Hitachi, Ltd. Liquid crystal display device
CN102162866A (en) * 2010-02-12 2011-08-24 佳能株式会社 Light-shielding film for optical element and optical element having light-shielding film
JP2011186437A (en) * 2010-02-12 2011-09-22 Canon Inc Light-shielding film for optical element, and optical element
US8958155B2 (en) 2010-02-12 2015-02-17 Canon Kabushiki Kaisha Light-shielding film for optical element and optical element having light-shielding film

Also Published As

Publication number Publication date
JP2721153B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
US8330930B2 (en) Liquid crystal display device having column spacer receiving members formed of the same material as a material of one of the pair of electrodes for applying an electric field to the liquid crystal material
KR100349285B1 (en) Liquid crystal display apparatus
US8493532B2 (en) Liquid crystal display device and manufacturing method thereof
JPS6364023A (en) Display device
KR19990064031A (en) Liquid crystal display element substrate and liquid crystal display device
JP4638280B2 (en) Liquid crystal display device
JPH10268300A (en) Reflection type guest-host liquid crystal display device
JPS6126646B2 (en)
JP3458620B2 (en) Liquid crystal display device substrate and liquid crystal display device
JP3724269B2 (en) Black coating composition, resin black matrix, color filter and liquid crystal display device
JP4506231B2 (en) Color filter substrate for IPS liquid crystal display device and IPS liquid crystal display device using the same
JP2003066458A (en) Alignment layer, method for forming alignment layer, liquid crystal device and projection type display device
JP4222344B2 (en) Method for producing black coating composition, method for producing resin black matrix, method for producing color filter, and method for producing liquid crystal display device
JP2752348B2 (en) Liquid crystal display
JP2003215556A (en) Liquid crystal display device
JP4411697B2 (en) Manufacturing method of resin black matrix, resin black matrix, color filter, and liquid crystal display device
JPH0922027A (en) Production of display device
JP2000066018A (en) Color filter consisting of high-resistance resin black matrix and liquid crystal display device using the same
JP2001235755A (en) Liquid crystal panel body
JP3250715B2 (en) Method for manufacturing active matrix type liquid crystal display device
JPH10104418A (en) Substrate for liquid crystal display device, and liquid crystal display device
JPH10239690A (en) Liquid crystal display element and its manufacture
US20210364851A1 (en) Curved display device
JP3594863B2 (en) Method for manufacturing active matrix display device
KR100242481B1 (en) Liquid crystal display device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term