JPS6363943A - Floating fine particle observing apparatus - Google Patents

Floating fine particle observing apparatus

Info

Publication number
JPS6363943A
JPS6363943A JP61206847A JP20684786A JPS6363943A JP S6363943 A JPS6363943 A JP S6363943A JP 61206847 A JP61206847 A JP 61206847A JP 20684786 A JP20684786 A JP 20684786A JP S6363943 A JPS6363943 A JP S6363943A
Authority
JP
Japan
Prior art keywords
laser beam
slit
scattered light
detector
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61206847A
Other languages
Japanese (ja)
Inventor
Shuji Fujii
修二 藤井
Kazuya Hayakawa
早川 一也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61206847A priority Critical patent/JPS6363943A/en
Publication of JPS6363943A publication Critical patent/JPS6363943A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the behavior and density of floating fine particles in a non-contact manner, by making a laser beam irradiate an observing part scanning in a fixed direction to detect the scattered light thereof from the floating fine particles at the observing part. CONSTITUTION:This apparatus is provided with a scanner 13 which irradiates an observing part with a laser beam 4a scanning in a fixed direction and a detector 14 which detects the scattered light 6 of the beam 4a from floating fine particles at the observing part. An incident optical path for the device 13 is provided with a beam slit 11 having an opening with the shape identical to that of the section of the beam 4a and additionally an optical path of the scattered light 6 is provided with a detection slit 16 having an opening with a fixed section. The detector 14 has a camera 17, a photoelectric multiplier tube 18 and an amplifier 19 arranged in an optical path after passage through a telescopic lens 15 and a slit 16 arranged on the incidence side of scattered light of the slit 16. A pulse generated from the detector 14 is counted with a pulse counter 21, thereby enabling non-contact measurement of the behavior and the density of floating fine particles.

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 未発11は、気中に浮遊する微粒子の観測装置に関し、
とくにクリーンルーム内の観測部位における浮遊微粒子
を非接触的に観測する浮遊微粒子観測装置に関する。 ええ立退l 高度の清浄度が要求されるクリーンルームにおいては、
空間浮′M粒子−の挙動、気流、空気フィルタ、ルーム
側壁の装置接続部からの漏れ等の性情を数ニー的に測定
し評価する必要がある。第2図に示される従来の吸引型
浮遊微粒子計数器lは、吸引管2によって採取した試料
空気中の浮遊微粒子−を計数する。しかし、この従来の
吸引型浮遊微粒子計数器には(イ)吸引管及び吸引気流
により被測定空間が乱され観測部位の状態を高精度で捉
えるのが難しく、 (ロ)吸引管内で微粒子が付着・飛
散して測定f1^を乱しがちであり、 (ハ)T=速吸
引が殆ど不可能であり、(ニ)粒子検出に時間遅れを伴
う等の欠点がある。 これらの欠点を避けるため、本発明者等は第3図に示さ
れるレーザ光散乱形微粒子観測装置を提稟l−だ。同図
において、電源3dからイ・i勢されるレーザ光1i 
3が発生するレーザ光4は、表面鏡5によって被観測部
位へ向けられる。レーザ光4は、被観、1111部位に
おける)ツ遊微粒子によって散乱されて(散乱光6を牛
する。望遠レンズを有するカメラ7が被A111定部位
からの散乱光6を捉える。カメラ7のフィルム位置に結
像した像を11視により観察するか又は顕微鏡アダプタ
8付のビデオカメラ9によってヒデオテープレコーグに
記録し反覆観察する。 このレーザ光散乱形観甜装置は、被測定:f6位におけ
る1γ遊微粒子の挙動を非接触的に観察することを11
丁能にするが、浮M微粒子のC度を測定できない問題
Industrial application field 11 is related to observation equipment for fine particles suspended in the air.
In particular, it relates to a suspended particle observation device that non-contactly observes suspended particles at an observation site in a clean room. Yes, leave. In clean rooms that require a high degree of cleanliness,
It is necessary to measure and evaluate properties such as the behavior of spaceborne particles, air flow, air filter, and leakage from equipment connections on the side walls of the room. A conventional suction type suspended particulate counter 1 shown in FIG. 2 counts suspended particulates in a sample air sampled through a suction tube 2. However, with this conventional suction-type suspended particle counter, (a) the measurement space is disturbed by the suction tube and suction airflow, making it difficult to capture the state of the observation area with high precision; and (b) fine particles adhere to the inside of the suction tube. - It tends to scatter and disturb the measurement f1^, (c) T=fast suction is almost impossible, and (d) there is a time delay in particle detection. In order to avoid these drawbacks, the present inventors have proposed a laser light scattering type particle observation device shown in FIG. In the figure, a laser beam 1i is energized from a power source 3d.
Laser light 4 generated by laser beam 3 is directed toward the observed site by surface mirror 5. The laser beam 4 is scattered by the floating particles (in the target area 1111) and the scattered light 6 is captured. A camera 7 having a telephoto lens captures the scattered light 6 from the target area 111. The image formed at the position is observed by 11 viewing or recorded on a video tape recorder by a video camera 9 with a microscope adapter 8 and repeatedly observed. 11 to observe the behavior of 1γ free particles in a non-contact manner.
Problem with not being able to measure the C degree of floating M fine particles


−人がある。 灸」寥名鰺労二[よa=ta+rυ面力従って、未発明
が解決しようとする間m侭は、観−I11部佼部位ける
)γが微粒子の挙動及びC度の実接触的観察及びAI一
定にある。 肛跪立A方決するためのr−1 第1図を参照するに、本発明による埋M微粒子観り11
#装置1v1は、レーザビーl、4aを一定方向に走査
しつつ観3+11部(々へ11((、射する走査装置1
3、及び観測部位における浮が微粒子−からのl−記し
−ザヒーム4aの散乱光6を検出する検出器14を有す
る。 本発明の好ましい一実施例においては、l二足走査装置
13への入射光路にに記し−ザビーム4aの断面形状と
等しい形状の開11を有するビームスリッ)11を設け
、さらに!−記レーザビーム散乱光6の光路に一定断面
の開11を右する検出スリー、ト1Gを設ける。レーザ
ビーム4aは、好ましくはHe −N e 1y−ザ光
源であるレーザ光源3からのレーザ光4を)二記ヒーム
スリ・ノド11によりビーム化することにより形成され
る。 図し1、例の検出器14は、1−星検出スリー2ト16
の散乱光入射側に配置された望遠レンズ15、ト記検出
スリットIB通iIiSg?の光路に配置されたカメラ
17、及び該カメラ17の出力に接続された光′電子倍
増管I8と増幅器19を右する。しかし、本発明の浮I
!!2微粒子観測装置に使われる検出器14は図示例の
構成に限定されるものではない。 この場合、l−記検出器14はレーザビーム散乱光6の
入射頻度と上記ビームスリットllの開口及びl−、星
検出スリット16の開口の・1法とから前記HN!1部
位における1γ′M微粒子C度を算出する。図示例・に
おけるモ凸レンズ12は、ビームスリー7トllを出た
レーザビームがモ行光線であるときは省略することがで
きる。 作」j 第4図を参照するに、レーザ光源3からのレーザ光4を
ビームスリット11でレーザビーム4dとしこれを走査
装置13により走査しつつ観AI一部位へ照射した場合
、観測部位にある浮遊微粒子はに1eの光散乱理論(G
、 Mie、 Beitrage zur 0ptik
 triiberMedien、 5peziell 
kolloidaler Metallilisung
en。 Ann、 Physik、 Vol 25 (1908
) 377)に従う散乱光を発生することが知られてい
る。従って、検出器14の光軸を上記散乱理論により定
まる受光角0でレーザビーム4aの進行方向と交差する
様に配置するならば、上記散乱光6を検出器14により
捉えることができる。 1A小例の検出器14は、1牧乱光6を検出するごとに
増幅器19からパルスを発生する。そのパルスをパルス
計数器21で数え散乱光6の発生回数を計数することに
より、被測定部位におけるレーザビーム4aと微粒子と
の衝突回数理ら浮遊微粒子の数を計数することができる
。 ビームスリットllの開L】を直径Wの円形とすること
によりレーザビーム4aの断面を同径の円形とし、検出
スリット1Gの開[1を横幅文、縦幅りのM1形とした
場合には、浮′ML微粒子濃度nは第4図から次の(1
)式でγえられる。 n=(Ntasinθ )/(2f*m2 ish*v
*t)       ・  拳  e   (1)ここ
に、 t:l11定時間間隔(s) Nt・時間を内の粒子計数値(個) f:走査装置の振動数(Hz) θ:検出器光軸の受光角度(度) m・検出器の結像倍率係数 W: レーザビームの直径(am) p:矩形スリットの横幅(am) h:矩形スリットの縦幅(C1) 上記(1)式による算定は、例えば第1図のコンピュー
タ22によって行なうことができる。同図の表示器20
は、例えば陰極管表示器であって増幅器19の出力パル
スを目視するためのものである。 −上記(1)式から明らかなように、観測部位における
測定対象空間はビームスリット11の開口寸法及び検出
スリット16の開口寸法によって限定される。L式にお
いて、w+5.18xlO−2cm、 ?0.20 c
m。 b−0,05amである場合、この測定対象空間は1分
間当り83 cIr!となる。その測定対象空間内に含
まれる微粒子の散乱光6のみが検出器14により捉えら
れ、光電子倍増管18によりパルス信りに変換される。 こうして、観測部位の浮遊微粒子を非接触で観察し測定
することが0丁ス敞になる。 笈ム) 以上、本発明を実験例によりさらに詳細に説明する。 [実験例1] 本発明による浮遊微粒子観測装置の性を赴を第5図の(
験システムにより−III定した。即ち、倍直層流形ク
リーンブースへ流速60ci/sで空気を白矢印Fで示
される様に流し、粒径0.79Sμコの標準粒子(PS
LJ>R)を粒子供給管24により気流の上流に供給し
浮遊微粒子25を発生させた。浮遊粒子25の濃度を発
生直ド185 mmの観測部位26で本発明の浮′fL
微粒子観測装置により測定し、発生直下200 mmの
位11なで吸引形量粒子計数器lにより測定した。この
とき、吸引形量粒子計数器1では等速吸引が達成されて
おり、吸引管2も長さ600 m層と短いので、この吸
引形量粒子計数器1の測定値は真の浮遊微粒子濃度を示
すものと考えられた。 第6図に標準粒子の発生濃度を変化させた場合の4−記
吸引形微粒子計数器lによる測定値と本発明の浮遊微粒
子観測装置によるJll定イ1へとを比較して示す。両
者の測定値の間には良好な一致が認められた。 [実験例?] 第7図に示す様に、垂直層流形クリーンブース内に直径
3インチのシリコンウェーハ29ヲ水平に設置し、上流
よりガラス細管で標準粒子を等速発生させ、ウェーハ2
9の直径に沿う断面」二の気流上流側に80 am !
 80 !1mの測定面30を想定し、該測定面30上
の10 ■間隔の81測定点における浮遊微粒子濃度を
本発明による浮遊微粒子観測装置で測定した。第8図は
測定に使われた座標軸を示す。 第8図白矢印Fの気流の速度が30 am/sであると
き、黒点矢印Pの浮′M微粒子が粒径0.605μmの
標準粒子によりウェーハ29の中心上流100 mmで
発生された場合の測定結果を第9図に示す。ただし各点
の濃度は、粒子発生直下10 Wmlの位置で測定した
浮遊微粒子濃度を1とした相対値で示しである。粒子は
ウェーハ29の表面に近づくに従い次第にウェーハ29
の直径方向に広がり、ウェーハのL流10 rm層の位
置でほぼ一様に分散し、その濃度は10−3−10−2
となっている。この場合は、ウェーハ汚染が非常に起き
易い状態だと考えられる。 λ匹二通課 以上詳細に説明した如く、本発明による浮遊微粒子観測
装置は、レーザビームを〜定方向に走査しつつ観測部位
へ照射する走査装置、及び観測部位における浮遊微粒子
−からの上記し−ザビームの散乱光を検出する検出器を
備えてなる構成を用いるので次の顕著な効果を奏する。 (イ)観3(一部位における浮M微粒子の挙動を非接触
的に観測することができる。 (ロ)観測部位における浮遊′e粒子濃度を非接触的に
測定することができる。 (ハ)約10 am程度の間隔で測定面一[−の浮遊微
粒子濃度分布を正確に測定することができる。 (ニ)浮M微粒子の粒径と散乱光の輝度との関係が与え
られれば、粒度別の浮遊微粒子濃度を4舅定することが
”T 走になる。 (ホ)観測部位における浮遊微粒子e度測定を当該部位
における微粒子分布に影響をtえることなく行なうこと
ができる。
[
-There are people. ``Moxibustion''``Moxibustion'' [Yo a = ta + r υ surface force Therefore, while the uninvented is trying to solve the problem, γ is the behavior of fine particles and the actual contact observation of C degree and AI is constant. r-1 for determining anal kneeling position A. Referring to FIG.
#The device 1v1 scans the laser beams 1 and 4a in a fixed direction and scans 3 + 11 parts (11
3, and a detector 14 for detecting the scattered light 6 of Zaheem 4a from the floating particles at the observation site. In a preferred embodiment of the invention, a beam slit 11 having an aperture 11 of the same cross-sectional shape as the beam 4a is provided in the optical path of incidence to the bipedal scanning device 13, and furthermore! - In the optical path of the laser beam scattered light 6, there is provided a detection triplet 1G having an aperture 11 of a constant cross section. The laser beam 4a is formed by converting the laser light 4 from the laser light source 3, which is preferably a He-N e 1y- laser light source, into a beam by the two-head beam throat 11. In Figure 1, the example detector 14 includes 1 - star detection three 2 16
The telephoto lens 15 is placed on the scattered light incident side, and the detection slit IB through iIiSg? A camera 17 is placed in the optical path of the camera 17, and a photomultiplier I8 and an amplifier 19 are connected to the output of the camera 17. However, the float I of the present invention
! ! 2. The detector 14 used in the particle observation device is not limited to the configuration shown in the illustrated example. In this case, the detector 14 detects the HN! from the incidence frequency of the laser beam scattered light 6 and the aperture of the beam slit 11 and l-, the 1 method of the aperture of the star detection slit 16. The 1γ'M fine particle C degree at one site is calculated. The mo-convex lens 12 in the illustrated example can be omitted when the laser beam exiting the beam three 7 is a mole beam. Referring to Fig. 4, when the laser beam 4 from the laser light source 3 is converted into a laser beam 4d by the beam slit 11 and is scanned by the scanning device 13 and irradiated to a part of the observation AI, the laser beam 4d from the laser light source 3 is scanned by the scanning device 13. Light scattering theory of suspended particles (G
, Mie, Beitrage zur 0ptik
triiber Medien, 5peziell
kolloidaler Metallilisung
en. Ann, Physik, Vol 25 (1908
) is known to generate scattered light according to 377). Therefore, if the optical axis of the detector 14 is arranged so as to intersect the traveling direction of the laser beam 4a at the acceptance angle 0 determined by the scattering theory, the scattered light 6 can be captured by the detector 14. The detector 14 of the 1A small example generates a pulse from the amplifier 19 every time it detects one wave of scattered light 6. By counting the pulses with the pulse counter 21 and counting the number of times the scattered light 6 is generated, the number of floating particles can be counted based on the number of collisions between the laser beam 4a and the particles at the measurement site. By making the opening L of the beam slit ll circular with a diameter W, the cross section of the laser beam 4a is made circular with the same diameter, and when the opening [1 of the detection slit 1G is set to a shape with a horizontal width and an M1 shape with a vertical width, , the floating 'ML particle concentration n is given by the following (1
) is given by the formula. n=(Ntasinθ)/(2f*m2ish*v
*t) ・Fist e (1) Here, t: l11 constant time interval (s) Particle count value (number) within Nt・time f: Frequency of scanning device (Hz) θ: Detector optical axis Receiving angle (degrees) m・Detector imaging magnification coefficient W: Laser beam diameter (am) p: Width of rectangular slit (am) h: Vertical width of rectangular slit (C1) Calculation using equation (1) above is as follows: , for example, by computer 22 in FIG. Display unit 20 in the same figure
is, for example, a cathode tube display for visually observing the output pulses of the amplifier 19. - As is clear from the above equation (1), the measurement target space at the observation site is limited by the aperture size of the beam slit 11 and the aperture size of the detection slit 16. In the L equation, w+5.18xlO-2cm, ? 0.20c
m. b-0.05 am, this measurement space is 83 cIr per minute! becomes. Only the scattered light 6 of the particles contained within the measurement target space is captured by the detector 14, and converted into a pulse signal by the photomultiplier 18. In this way, it is possible to observe and measure suspended particles at the observation site without contact. The present invention will now be described in more detail with reference to experimental examples. [Experimental Example 1] The characteristics of the suspended particle observation device according to the present invention are shown in Fig. 5 (
-III was determined using an experimental system. That is, air was flowed into a double normal laminar flow clean booth at a flow rate of 60 ci/s as shown by white arrow F, and standard particles (PS) with a particle size of 0.79 Sμ were
LJ>R) was supplied to the upstream side of the airflow through the particle supply pipe 24 to generate suspended particles 25. The concentration of suspended particles 25 was measured at the observation site 26 at a diameter of 185 mm.
The particles were measured using a particle observation device and a suction type particle counter 1 at a distance of 200 mm directly below the generation. At this time, the suction type particle counter 1 has achieved uniform suction, and the suction pipe 2 is also short with a length of 600 m, so the measured value of the suction type particle counter 1 is the true suspended particulate concentration. It was thought that this indicates that FIG. 6 shows a comparison between the values measured by the suction type particulate counter 1 and the Jll constant 1 by the suspended particulate observation device of the present invention when the concentration of standard particles generated is varied. Good agreement was observed between both measurements. [Experimental example? ] As shown in Fig. 7, a silicon wafer 29 with a diameter of 3 inches is placed horizontally in a vertical laminar flow clean booth, and standard particles are generated at a constant velocity from upstream using a glass tube.
Cross section along the diameter of 9” 80 am on the upstream side of the second airflow!
80! Assuming a measurement surface 30 of 1 m, the suspended particle concentration at 81 measurement points at 10 cm intervals on the measurement surface 30 was measured using the suspended particle observation device according to the present invention. Figure 8 shows the coordinate axes used in the measurements. When the speed of the airflow indicated by the white arrow F in FIG. The measurement results are shown in Figure 9. However, the concentration at each point is shown as a relative value with the suspended particulate concentration measured at a position 10 Wml directly below particle generation as 1. As the particles approach the surface of the wafer 29, they gradually become
spreads in the diametrical direction of the wafer and is almost uniformly distributed at the position of the L flow 10 rm layer of the wafer, and its concentration is 10-3-10-2
It becomes. In this case, it is considered that wafer contamination is very likely to occur. As explained in detail above, the floating particle observation device according to the present invention includes a scanning device that irradiates the observation area with a laser beam while scanning it in a fixed direction, and - Since a configuration including a detector for detecting the scattered light of the beam is used, the following remarkable effects are achieved. (B) View 3: The behavior of floating M fine particles at one location can be observed non-contact. (B) The concentration of floating M particles at the observation location can be measured non-contact. (C) It is possible to accurately measure the concentration distribution of suspended particles on the measurement surface at intervals of about 10 am. (d) If the relationship between the particle size of floating M particles and the brightness of scattered light is given, 4. Determining the concentration of suspended particulates in 4 points becomes the "T run." (E) Measurement of the degree of suspended particulates at the observation site can be carried out without affecting the particulate distribution at the site.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による浮遊微粒子観測装置の説明図、第
2図及び:jS3図は従来技術の説明図、第4図は作用
の説明図、第5図から:59図までは実験例の説明図で
ある。 l・・・吸引形7γjft微粒子5.1攻2;、  2
・・・吸引省・、3・・・レーザ光源、  4・・・レ
ーザ光、  4a・・・レーザビーム、  5・・・表
面鏡、  6・・・散乱光、7.17・・・カメラ、 
 8・・・顕微鏡アダプタ、  9・・・ビデオカメラ
、 10・・・ビデオチープレコータ、+1・・・ヒー
ムスリ、I・、  12・・・ゼ凸レンズ。 13・・・走査装置、 14・・・検出器、 15・・
・望遠レンズ、16・・・検出スリット18・・・光電
f−倍増管、  19・・・増幅器、 20・・・表小
器、 21・・・パルス計¥!器  22・・・コンピ
ュータ、 24・・・粒子 (jj絵′乙、 25 ・
・・浮fL粒子−126観側部位、  2ト・・ンリコ
ンウェーハ、 30・・・alll 定面。 4ν 1作 出 卯 人      1体    井 
     修   〕°。 特許出願人  1.1  川  −・ 屯#−計出卯代
理人   Jr理十  山東禮次部第4図 、254!i遊I立子 第6図 第7図 9J8図 第9図
Fig. 1 is an explanatory diagram of the suspended particle observation device according to the present invention, Fig. 2 and Fig. 3 are explanatory diagrams of the conventional technology, Fig. 4 is an explanatory diagram of the operation, and Fig. 5 to Fig. 59 are experimental examples. It is an explanatory diagram. l...suction type 7γjft fine particles 5.1 attack 2;, 2
... Suction saving, 3... Laser light source, 4... Laser light, 4a... Laser beam, 5... Surface mirror, 6... Scattered light, 7.17... Camera,
8...Microscope adapter, 9...Video camera, 10...Video chip recorder, +1...Heemsuri, I., 12...Ze convex lens. 13... Scanning device, 14... Detector, 15...
・Telephoto lens, 16...Detection slit 18...Photoelectric f-multiplier tube, 19...Amplifier, 20...Table device, 21...Pulse meter ¥! Device 22...computer, 24...particle (jj picture 'Otsu, 25 ・
・・Floating fL particle-126 viewing side part, 2 tons・・Licon wafer, 30・・all fixed surface. 4ν 1 piece Out Rabbit 1 well
Osamu 〕°. Patent Applicant 1.1 Kawa-・Tun #-Kaide U Agent Jr. Riju Shandong Reiji Department Figure 4, 254! Figure 7 Figure 9J8 Figure 9

Claims (2)

【特許請求の範囲】[Claims] (1)レーザビームを一定方向に走査しつつ観測部位へ
照射する走査装置、及び観測部位における浮遊微粒子か
らの上記レーザビームの散乱光を検出する検出器を備え
てなる浮遊微粒子観測装置。
(1) A floating particle observation device comprising: a scanning device that scans a laser beam in a fixed direction and irradiates the observation region; and a detector that detects scattered light of the laser beam from floating particles in the observation region.
(2)特許請求の範囲第1項記載の浮遊微粒子観測装置
において、上記走査装置への入射光路に配置され上記走
査されるレーザビーム断面形状と等しい形状の開口を有
するビームスリット、及び上記レーザビーム散乱光の光
路に配置され一定断面の開口を有する検出スリットを備
え、上記検出器が入射レーザビームと上記ビームスリッ
トの開口及び上記検出スリットの開口の寸法とから前記
観測部位における浮遊微粒子濃度を算出してなる浮遊微
粒子観測装置。
(2) In the suspended particle observation device according to claim 1, a beam slit having an aperture having the same shape as the cross-sectional shape of the laser beam to be scanned, which is disposed on the optical path of incidence to the scanning device, and the laser beam A detection slit arranged in the optical path of the scattered light and having an aperture of a constant cross section is provided, and the detector calculates the suspended particulate concentration at the observation site from the incident laser beam, the dimensions of the aperture of the beam slit, and the aperture of the detection slit. A floating particle observation device.
JP61206847A 1986-09-04 1986-09-04 Floating fine particle observing apparatus Pending JPS6363943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61206847A JPS6363943A (en) 1986-09-04 1986-09-04 Floating fine particle observing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61206847A JPS6363943A (en) 1986-09-04 1986-09-04 Floating fine particle observing apparatus

Publications (1)

Publication Number Publication Date
JPS6363943A true JPS6363943A (en) 1988-03-22

Family

ID=16530039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61206847A Pending JPS6363943A (en) 1986-09-04 1986-09-04 Floating fine particle observing apparatus

Country Status (1)

Country Link
JP (1) JPS6363943A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682358A (en) * 1992-03-26 1994-03-22 Internatl Business Mach Corp <Ibm> Particle detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231133A (en) * 1984-05-01 1985-11-16 Hoya Corp Measurement of floated particles
JPS61245041A (en) * 1985-04-23 1986-10-31 Fujitsu Ltd Dust counter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231133A (en) * 1984-05-01 1985-11-16 Hoya Corp Measurement of floated particles
JPS61245041A (en) * 1985-04-23 1986-10-31 Fujitsu Ltd Dust counter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682358A (en) * 1992-03-26 1994-03-22 Internatl Business Mach Corp <Ibm> Particle detector

Similar Documents

Publication Publication Date Title
JP3248910B2 (en) Analysis of particle properties
US4942305A (en) Integrating sphere aerosol particle detector
WO2017131316A1 (en) Imaging particle analyzing apparatus
JPH0266427A (en) Particulate measuring device by direct scattered-light detection
Opiolka et al. Combined effects of electrophoresis and thermophoresis on particle deposition onto flat surfaces
US5092675A (en) Vacuum line particle detector with slab laser
JPH0143901B2 (en)
JP2960911B2 (en) A method for detecting the mass flow distribution of a flow in a plane
JP2002502490A (en) Concave angle irradiation system for particle measuring device
JPS61159135A (en) Particle analyzing device
US5262841A (en) Vacuum particle detector
US5033851A (en) Light scattering method and apparatus for detecting particles in liquid sample
EP0383460B1 (en) Apparatus for measuring particles in liquid
JP3102925B2 (en) Particle analyzer
JPS6363943A (en) Floating fine particle observing apparatus
JPH01301145A (en) Real time particle drop monitor
US6005662A (en) Apparatus and method for the measurement and separation of airborne fibers
JPS61288139A (en) Fine particle detecting device
JPH05264433A (en) Bubble measuring apparatus
GB2264556A (en) Diffraction analysis of particle size, shape and orientation
JPH07229826A (en) Method and apparatus for measuring floating dust
Yao et al. Synthetic jets in quiescent air
JPS61262633A (en) Apparatus for measuring suspended fine particles
JPH0656358B2 (en) Light scattering type particle measuring device
JPH11352059A (en) System and method for evaluating detection capacity of aerosol detection apparatus