JPS6363729B2 - - Google Patents

Info

Publication number
JPS6363729B2
JPS6363729B2 JP56032715A JP3271581A JPS6363729B2 JP S6363729 B2 JPS6363729 B2 JP S6363729B2 JP 56032715 A JP56032715 A JP 56032715A JP 3271581 A JP3271581 A JP 3271581A JP S6363729 B2 JPS6363729 B2 JP S6363729B2
Authority
JP
Japan
Prior art keywords
exhaust
pressure
passage
valve
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56032715A
Other languages
Japanese (ja)
Other versions
JPS57146024A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56032715A priority Critical patent/JPS57146024A/en
Publication of JPS57146024A publication Critical patent/JPS57146024A/en
Publication of JPS6363729B2 publication Critical patent/JPS6363729B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は過給機付エンジンの過給圧制御装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a boost pressure control device for a supercharged engine.

〔従来の技術〕[Conventional technology]

従来、エンジンの出力を高めるため吸気通路に
過給機を設けた自動車用等の過給機付エンジンに
おいては、あまりに過給圧が上がりすぎるとエン
ジンの耐久性を損ねる等の問題が生じることか
ら、ある程度以上は過給圧が高くならないように
最大過給圧を制御するという手段は知られてい
る。例えば、過給機の駆動を排気タービンにより
行なうターボ過給機にあつては、排気タービンを
迂回するバイパス通路に吸気圧力(過給圧に相当
する圧力)に応動する制御弁を設け、この過給圧
が所定値を越えたときに上記バイパス通路を開い
て排気タービンによる過給機駆動力を減少させる
ようにした所謂ウエストゲート方式がある(実開
昭54−44810号公報)。
Conventionally, in supercharged engines such as automobiles that have a supercharger installed in the intake passage to increase engine output, problems such as impairing the durability of the engine occur if the supercharging pressure increases too much. A known method is to control the maximum boost pressure so that the boost pressure does not increase beyond a certain level. For example, in a turbocharger in which the turbocharger is driven by an exhaust turbine, a control valve that responds to intake pressure (pressure equivalent to boost pressure) is installed in a bypass passage that bypasses the exhaust turbine. There is a so-called waste gate system in which the bypass passage is opened to reduce the supercharger driving force by the exhaust turbine when the supply pressure exceeds a predetermined value (JP-A-54-44810).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のこの種制御手段は、吸気圧力(過給圧)
を基準として、過給圧が予め設定された所定値に
達してからは単に過給圧を一定に維持するように
したものであつた。しかしながら、このように過
給圧を一定に維持しても、エンジン回転数が上昇
すると単位時間当りの吸気ガス量は増加するた
め、とくに高速運転域では吸気ガス量の増大に伴
うエンジン発熱量の過度の上昇を補いきれず、エ
ンジンの耐久性を損ねる。また、高速運転域では
単位時間当りの排気ガス量も増大し、このような
排気ガス量の増大等により排気温度が過度に上昇
すると、排気系に設けられた触媒等の排気浄化手
段および排気タービンに熱劣化が生じる等の欠点
が残されていた。
Conventional control means of this type control intake pressure (supercharging pressure)
After the boost pressure reaches a predetermined value set in advance, the boost pressure is simply maintained constant. However, even if boost pressure is maintained constant in this way, the amount of intake gas per unit time increases as the engine speed increases, so especially in high-speed operating ranges, the amount of heat generated by the engine decreases due to the increase in the amount of intake gas. The excessive rise cannot be compensated for and the durability of the engine is impaired. In addition, in high-speed operation ranges, the amount of exhaust gas per unit time increases, and if the exhaust temperature rises excessively due to such an increase in the amount of exhaust gas, exhaust purification means such as catalysts installed in the exhaust system and exhaust turbine However, some drawbacks remained, such as thermal deterioration.

本発明はこれらの事情に鑑み、排気ターボ過給
機を具備するエンジンにおいて、単に過給圧制御
値(最大過給圧)を一定に維持するだけでは防止
できない高速運転域でのエンジン発熱量の過度の
上昇を防止し、これによつてエンジンの耐久性を
高め、かつ、排気系に設けられた触媒等の排気浄
化手段および排気タービンの熱劣化も防ぐことが
でき、とくに簡単な構造でかかる要求を満足する
ことができる過給機付エンジンの過給圧制御装置
を提供するものである。
In view of these circumstances, the present invention has been developed to reduce the amount of heat generated by the engine in the high-speed operating range, which cannot be prevented by simply maintaining the boost pressure control value (maximum boost pressure) constant in an engine equipped with an exhaust turbo supercharger. Excessive rise can be prevented, thereby increasing the durability of the engine, and thermal deterioration of the exhaust purification means such as a catalyst provided in the exhaust system and the exhaust turbine can be prevented, and the structure is particularly simple. An object of the present invention is to provide a supercharging pressure control device for a supercharged engine that can satisfy the requirements.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、吸気通路内に排気ターボ過給機のコ
ンプレツサを介設するとともに、排気通路内に排
気タービンを介設する一方、該排気タービンの上
流側と下流側とを連通する排気ガスバイパス通路
内に圧力作動式のバイパス制御弁を設け、該バイ
パス制御弁の圧力作動室を連通路を介して上記コ
ンプレツサより下流の吸気通路に連結するととも
に、上記排気タービン下流の排気通路内に排気浄
化手段を備えた過給機付エンジンにおいて、上記
バイパス制御弁の圧力作動室に連通路を介して導
入される吸気圧の一部を外部にリリーフするリリ
ーフ通路と、上記排気浄化手段上流の排気圧を受
けて該排気圧の上昇に伴い上記リリーフ通路を閉
じる弁手段とを設けたものである。
The present invention provides a compressor for an exhaust turbo supercharger in the intake passage, an exhaust turbine in the exhaust passage, and an exhaust gas bypass passage that communicates the upstream side and the downstream side of the exhaust turbine. A pressure-operated bypass control valve is provided in the exhaust turbine, and the pressure-operated chamber of the bypass control valve is connected to the intake passage downstream of the compressor via a communication passage, and an exhaust purification means is provided in the exhaust passage downstream of the exhaust turbine. A supercharged engine equipped with a relief passage for externally relieving a part of the intake pressure introduced into the pressure operating chamber of the bypass control valve via the communication passage, and a relief passage for relieving to the outside a part of the intake pressure introduced into the pressure operating chamber of the bypass control valve, and the exhaust pressure upstream of the exhaust purification means. A valve means is provided for closing the relief passage as the exhaust pressure increases.

〔作用〕[Effect]

上記構成によると、上記排気浄化手段上流の排
気圧が高くなるほど、上記リリーフ通路への吸気
圧のリリーフが抑えられて、バイパス制御弁の圧
力作動室へ吸気圧が導入される度合が高くなり、
従つて排気圧に応じて過給圧制御作用が調整され
ることとなる。
According to the above configuration, the higher the exhaust pressure upstream of the exhaust purification means, the more the relief of the intake pressure to the relief passage is suppressed, and the more the intake pressure is introduced into the pressure operating chamber of the bypass control valve,
Therefore, the boost pressure control action is adjusted according to the exhaust pressure.

〔実施例〕〔Example〕

本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described based on the drawings.

第1図において、1はエンジン本体、2は吸気
通路、3は排気通路、4は吸気通路2中に設けら
れたスロツトルバルブ、5は吸気通路2に吸入さ
れる空気を浄化するエアクリーナ、6は排気通路
3に設けられた触媒装置等の排気浄化手段であ
る。また、7は排気ターボ過給機のブロア型コン
プレツサ、8は同排気タービンで、上記コンプレ
ツサ7は吸気通路2中に、排気タービン8は排気
通路3中にそれぞれ設けられ、かつ、両者が連動
連結されることにより、排気ガス流にて排気ター
ビン8が回転せしめられるに伴いコンプレツサ7
が回転して強制的に空気をエンジン本体1に送り
込むようにしている。上記排気浄化手段6は排気
タービン8より下流に設けられている。
In FIG. 1, 1 is the engine body, 2 is an intake passage, 3 is an exhaust passage, 4 is a throttle valve provided in the intake passage 2, 5 is an air cleaner that purifies the air taken into the intake passage 2, and 6 is an exhaust purification means such as a catalyst device provided in the exhaust passage 3. Further, 7 is a blower-type compressor of the exhaust turbo supercharger, and 8 is the same exhaust turbine. The compressor 7 is installed in the intake passage 2, and the exhaust turbine 8 is installed in the exhaust passage 3, and both are interlocked and connected. As the exhaust gas flow rotates the exhaust turbine 8, the compressor 7
rotates to forcibly send air into the engine body 1. The exhaust purification means 6 is provided downstream of the exhaust turbine 8.

また、この過給機付エンジンには、ウエストゲ
ート方式で過給圧を制御する手段として、排気通
路3における排気タービン8の上流側と下流側と
を連結するバイパス通路10と、該バイパス通路
10を開閉する圧力作動式のバイパス制御弁11
と、該バイパス制御弁11の圧力作動室15を前
記コンプレツサ7より下流の吸気通路2に連通す
る連通路18とを具備している。上記バイパス制
御弁11は、バイパス通路10中に設けた弁体1
2と、該弁体12にロツド13を介して連結した
ダイヤフラム14により圧力作動室15と大気室
16とを画成したダイヤフラム装置とからなり、
上記圧力作動室15は連通路18を介してコンプ
レツサ7より下流の吸気通路2に連結され、大気
室16には過給圧制御条件調整用のバネ17が縮
装されている。
In addition, this supercharged engine includes a bypass passage 10 that connects the upstream side and the downstream side of the exhaust turbine 8 in the exhaust passage 3, and a bypass passage 10 that connects the upstream side and the downstream side of the exhaust turbine 8 in the exhaust passage 3. Pressure-operated bypass control valve 11 that opens and closes
and a communication passage 18 that communicates the pressure working chamber 15 of the bypass control valve 11 with the intake passage 2 downstream of the compressor 7. The bypass control valve 11 includes a valve body 1 provided in the bypass passage 10.
2, and a diaphragm device defining a pressure operating chamber 15 and an atmospheric chamber 16 by a diaphragm 14 connected to the valve body 12 via a rod 13,
The pressure operation chamber 15 is connected to the intake passage 2 downstream of the compressor 7 via a communication passage 18, and a spring 17 for adjusting supercharging pressure control conditions is compressed in the atmospheric chamber 16.

この過給機付エンジンにおいて、上記バイパス
制御弁11の圧力作動室15に導入される吸気圧
(過給圧)の一部を外部にリリーフするリリーフ
通路と、上記排気浄化手段6より上流の排気圧を
受けて該排気圧の上昇に伴い上記リリーフ通路を
閉じる弁手段とが設けられている。当実施例で
は、前記の過給圧導入用の連通路18を途中で分
岐させた分岐路(リリーフ通路)19が排気浄化
手段6より上流の排気通路3に連結され、該分岐
路19中に逆止弁(弁手段)20が介設されてい
る。該逆止弁20は、分岐路19中に設けた弁室
に、チエツクボール21と、比較的小さな弾発力
でチエツクボール21を閉弁方向に付勢するバネ
22とを有し、前記連通路18に導かれる過給圧
と分岐路19に加わる排気圧との関係により、過
給圧が排気圧(バネ22の弾発力を含む)より高
いときは開弁し、その圧力差が小さくなるほど開
度が小さくなり、過給圧より排気圧が高くなると
閉弁する構造となつている。
In this supercharged engine, there is provided a relief passage for relieving part of the intake pressure (supercharging pressure) introduced into the pressure working chamber 15 of the bypass control valve 11 to the outside, and an exhaust gas upstream of the exhaust purification means 6. Valve means is provided that receives atmospheric pressure and closes the relief passage as the exhaust pressure increases. In this embodiment, a branch passage (relief passage) 19 which is formed by branching off the communication passage 18 for introducing supercharging pressure in the middle is connected to the exhaust passage 3 upstream of the exhaust purification means 6. A check valve (valve means) 20 is provided. The check valve 20 has a check ball 21 in a valve chamber provided in the branch passage 19, and a spring 22 that biases the check ball 21 in the valve closing direction with a relatively small elastic force. Due to the relationship between the boost pressure guided to the passage 18 and the exhaust pressure applied to the branch passage 19, the valve opens when the boost pressure is higher than the exhaust pressure (including the elastic force of the spring 22), and the pressure difference is small. Indeed, the valve is designed to close when the opening becomes smaller and the exhaust pressure becomes higher than the boost pressure.

さらに、図例では燃料供給系として燃料噴射装
置を用い、吸気通路2内に臨ませた燃料噴射弁2
5と、吸気通路2を流れる空気の流量を測定する
計量計26と、該流量計26からの信号により燃
料噴射弁25を制御する制御回路27とで、吸入
空気量に応じて燃料供給量を制御すようにしてい
るが、燃料供給装置は気化器を用いたものでもよ
い。
Furthermore, in the illustrated example, a fuel injection device is used as the fuel supply system, and the fuel injection valve 2 is placed facing into the intake passage 2.
5, a meter 26 that measures the flow rate of air flowing through the intake passage 2, and a control circuit 27 that controls the fuel injection valve 25 based on the signal from the flow meter 26, and controls the amount of fuel supplied according to the amount of intake air. However, the fuel supply device may be one using a carburetor.

この実施例に示す如き過給圧制御装置による
と、エンジン回転数の変化に対する過給圧特性は
第2図のグラフに実線Aで示すようになり、この
装置の動作および作用を上記グラフに対応づけて
次に説明する。
According to the boost pressure control device as shown in this embodiment, the boost pressure characteristics with respect to changes in engine speed are shown by the solid line A in the graph of FIG. 2, and the operation and action of this device correspond to the above graph. This will be explained next.

前記バイパス制御弁11においては、その圧力
作動室15に加わる圧力が前記バネ17の弾発力
より弱いときには前記弁体12によりバイパス通
路10を閉じた状態に保ち、この状態にあるとき
エンジン回転数が上昇するにつれ、排気タービン
8を通過する排気ガス量が増加してコンプレツサ
7の駆動力が高められ、これに応じて過給圧(コ
ンプレツサ7より下流の吸気通路2内の圧力)が
高められる。ただし、このときに前記圧力作動室
15に加わる圧力は過給圧そのものではなく、前
記分岐路19の逆止弁20を通してリリーフされ
る分だけ低下した圧力となる。すなわち、通常は
排気圧(第2図に一点鎖線Bで示す)より過給圧
が高く、とくに過給圧が上昇する過程にあるとき
は過給圧と排気圧との圧力差が比較的大きいた
め、前記逆止弁20がこの圧力差に応じた開度に
開き、これによるリリーフ分だけ過給圧より低い
圧力が上記圧力作動室15に加わる。そして、エ
ンジン回転数がある程度の値r1に達して、この圧
力作動室15に加わる圧力が前記バネ17の弾発
力より大きくなると、前記バイパス制御弁11の
ダイヤフラム14が押動されて弁体12を開き、
排気ガスの一部をバイパス通路10に逃がすこと
により、排気タービン8によるコンプレツサ7の
駆動力が抑制され、もつて、このときの所定過給
圧P以上に過給圧が高くなることが防止される。
In the bypass control valve 11, when the pressure applied to the pressure working chamber 15 is weaker than the elastic force of the spring 17, the bypass passage 10 is kept closed by the valve body 12, and in this state, the engine rotational speed is As the amount of exhaust gas increases, the amount of exhaust gas passing through the exhaust turbine 8 increases, increasing the driving force of the compressor 7, and the supercharging pressure (pressure in the intake passage 2 downstream of the compressor 7) increases accordingly. . However, the pressure applied to the pressure working chamber 15 at this time is not the supercharging pressure itself, but a pressure reduced by the amount relieved through the check valve 20 of the branch passage 19. In other words, normally the boost pressure is higher than the exhaust pressure (shown by the dashed line B in Figure 2), and especially when the boost pressure is in the process of increasing, the pressure difference between the boost pressure and the exhaust pressure is relatively large. Therefore, the check valve 20 opens to an opening degree corresponding to this pressure difference, and a pressure lower than the supercharging pressure is applied to the pressure operating chamber 15 by the amount of relief caused by this. When the engine speed reaches a certain value r1 and the pressure applied to the pressure working chamber 15 becomes greater than the elastic force of the spring 17, the diaphragm 14 of the bypass control valve 11 is pushed and the valve body Open 12,
By letting a portion of the exhaust gas escape into the bypass passage 10, the driving force of the compressor 7 by the exhaust turbine 8 is suppressed, thereby preventing the supercharging pressure from becoming higher than the predetermined supercharging pressure P at this time. Ru.

この最高過給圧に相当する所定過給圧Pは、予
め前記バイパス制御弁11におけるバネ17の弾
発力の調整によつて任意に設定し得るところであ
り、従来の過給圧をそのままバイパス制御弁の圧
力作動室に導入する場合と比べ、圧力作動室15
に導入される過給圧のリリーフによる低下に見合
うだけ上記バネ17の弾発力を弱くしておけば、
最高過給圧は従来と同程度に設定し得る。
The predetermined supercharging pressure P corresponding to this maximum supercharging pressure can be set arbitrarily in advance by adjusting the elastic force of the spring 17 in the bypass control valve 11, and the conventional supercharging pressure can be directly used for bypass control. Compared to the case where it is introduced into the pressure working chamber of the valve, the pressure working chamber 15
If the elastic force of the spring 17 is weakened to correspond to the reduction in boost pressure introduced by the relief,
The maximum boost pressure can be set to the same level as before.

次に、エンジン回転数がさらに高くなると、過
給圧が前述の如く抑制される一方、排気圧はエン
ジン回転数の上昇につれて高くなり、両者の圧力
差がしだいに小さくなるため、これに応じて前記
逆止弁20の開度が小さくなる。これに伴い、該
逆止弁20における過給圧リリーフ量が減少する
ことにより、その分だけ過給圧が前記バイパス制
御弁11の圧力作動室15に導入される度合が高
くなり、開弁作用ひいては過給圧抑制作用を助長
する。その結果、過給圧が最高値に達した後の高
速運転域では、エンジン回転数の上昇に伴つてし
だいに過給圧が低下することとなる。
Next, as the engine speed increases, the boost pressure is suppressed as described above, while the exhaust pressure increases as the engine speed increases, and the pressure difference between the two gradually decreases. The opening degree of the check valve 20 becomes smaller. Along with this, the amount of supercharging pressure relief in the check valve 20 decreases, and the degree to which supercharging pressure is introduced into the pressure operating chamber 15 of the bypass control valve 11 increases accordingly, resulting in a valve opening effect. This further promotes the supercharging pressure suppression effect. As a result, in the high-speed operating range after the boost pressure reaches its maximum value, the boost pressure gradually decreases as the engine speed increases.

このような制御動作により、運転手段に適合し
た過給効果をもたせることができる。つまり、過
給機を備えてエンジン出力(トルク)を向上させ
るようにした過給機付エンジンにおいては、加速
時等の過給効果による出力アツプを期待する例え
ば3000rpm前後の運転域でこの過給性能を充分利
用する必要があるが、逆にそれ以上の高速運転域
では、エンジン本体や排気系の耐久性等の面から
本発明の如く過給圧を低下させる必要がある。従
つて、前記した過給圧を低下させる運転域(回転
数)はこうしたことをふまえて適宜設定すればよ
い。また、排気圧が過給圧より高くなると前記逆
止弁20においてリリーフが完全に遮断され、そ
れ以上のエンジン回転数(グラフ中の回転数r2
上)では過給圧が一定になるが、このような領域
は極力小さくして、それまでに充分過給圧が引下
げられるように設定しておけばよい。
Such a control operation can provide a supercharging effect that is suitable for the driving means. In other words, in a supercharged engine that is equipped with a supercharger to improve engine output (torque), this supercharging occurs in the operating range of around 3000 rpm, where an increase in output is expected due to the supercharging effect during acceleration. It is necessary to fully utilize the performance, but conversely, in higher-speed operating ranges, it is necessary to reduce the supercharging pressure as in the present invention from the viewpoint of durability of the engine body and exhaust system. Therefore, the operating range (rotational speed) in which the supercharging pressure is lowered may be appropriately set with this in mind. Furthermore, when the exhaust pressure becomes higher than the supercharging pressure, the relief is completely cut off at the check valve 20, and at higher engine speeds (revolutions r2 or more in the graph), the supercharging pressure becomes constant. Such a region should be made as small as possible and set so that the supercharging pressure can be sufficiently lowered by then.

また、排気浄化手段6より上流の排気圧に応じ
て逆止弁20における過給圧リリーフ量が変えら
れることにより、エンジン回転数の上昇により排
気量が増大する場合のほかに、排気浄化手段6の
目詰り等によつて排気圧が上昇した場合にも、そ
の排気圧上昇に応じ、排気ガスを排気タービン8
に対しバイパスさせて過給圧を引下げる作用が高
められる。つまり、排気浄化手段6は排気中に含
まれるカーボン等の堆積もしくは熱溶損などによ
り目詰りを起こす可能性があり、このように目詰
りを起こすと排気浄化手段6より上流の排気圧が
上昇し、それに伴う排気温度の上昇によつて排気
タービン8に熱害を与え、かつ、排圧上昇によつ
てノツキングが生じ易くなるが、このような場合
にも、排気圧の上昇に応じてバイパス制御弁11
が開弁され排気タービン8に対して排気ガスがバ
イパスされることにより、排気タービン8が受け
る熱が減少するとともに、過給圧の低下によりノ
ツキングが抑制されることとなる。
In addition, by changing the amount of supercharging pressure relief in the check valve 20 according to the exhaust pressure upstream of the exhaust purification means 6, in addition to the case where the displacement increases due to an increase in engine speed, the exhaust purification means 6 Even if the exhaust pressure increases due to clogging, etc., the exhaust gas is transferred to the exhaust turbine 8
The effect of lowering the supercharging pressure by bypassing the boost pressure is enhanced. In other words, the exhaust gas purification means 6 may become clogged due to the accumulation of carbon, etc. contained in the exhaust gas or thermal erosion, and if such clogging occurs, the exhaust pressure upstream of the exhaust gas purification means 6 will increase. However, the accompanying rise in exhaust temperature will cause heat damage to the exhaust turbine 8, and the rise in exhaust pressure will likely cause knocking, but even in such cases, bypass control valve 11
By opening the valve and bypassing the exhaust gas to the exhaust turbine 8, the heat received by the exhaust turbine 8 is reduced, and knocking is suppressed due to a decrease in supercharging pressure.

第3図は本発明の別の実施例を示し、この実施
例は、バイパス制御弁11の圧力作動室15と吸
気通路2との間の連通路18から分岐した分岐路
(リリーフ通路)19′を、前記コンプレツサ7よ
り上流の吸気通路2に連通し、この分岐路19′
に、分岐路開閉制御弁(弁手段)30を具備して
いる。この分岐路開閉制御弁30は、分岐路1
9′中に設けた弁体31にロツド32を介して連
結したダイヤフラム33により大気室34と圧力
室35とを画成したダイヤフラム機構を用い、上
記大気室34にバネ36を縮装するとともに、圧
力室35に排気浄化手段6上流の排気圧を導入し
ている。他の構造は前記基本実施例と同様であ
る。この第2実施例による場合も、前記連通路1
8内の過給圧が分岐路19′を通してリリーフさ
れ、かつ、排気浄化手段6上流の排気圧が低いと
きには前記分岐路開閉弁30の開度が大きく、排
気圧が高くなるにつれて該分岐路開閉制御弁30
の開度が小さくなることにより、基本実施例と同
様の過給圧制御が行なわれる。
FIG. 3 shows another embodiment of the present invention, in which a branch passage (relief passage) 19' branches from a communication passage 18 between the pressure operating chamber 15 of the bypass control valve 11 and the intake passage 2. communicates with the intake passage 2 upstream from the compressor 7, and this branch passage 19'
is equipped with a branch passage opening/closing control valve (valve means) 30. This branch road opening/closing control valve 30 is connected to the branch road 1
Using a diaphragm mechanism in which an atmospheric chamber 34 and a pressure chamber 35 are defined by a diaphragm 33 connected to a valve body 31 provided in a valve body 9' via a rod 32, a spring 36 is compressed into the atmospheric chamber 34, and The exhaust pressure upstream of the exhaust purification means 6 is introduced into the pressure chamber 35. The other structure is the same as that of the basic embodiment. Also in the case of this second embodiment, the communication path 1
8 is relieved through the branch passage 19', and when the exhaust pressure upstream of the exhaust purification means 6 is low, the opening degree of the branch passage opening/closing valve 30 is large, and as the exhaust pressure increases, the opening/closing of the branch passage becomes large. control valve 30
By decreasing the opening degree, the same supercharging pressure control as in the basic embodiment is performed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、排気ターボ過
給機の排気タービンを迂回するバイパス通路およ
びバイパス制御弁を備えるとともに、排気タービ
ン下流の排気通路内に排気浄化手段を備えたエン
ジンにおいて、上記バイパス制御弁の圧力作動室
に連通路を介して導入される吸気圧の一部を外部
にリリーフするリリーフ通路と、上記排気浄化手
段上流の排気圧を受けて排気圧の上昇に伴い上記
リリーフ通路を閉じる弁手段とを設けているた
め、過給圧が所定値に達してからは不必要に過給
圧が上昇することを防止するのみならず、上記排
気圧が高くなる高速運転域では上記リリーフ量の
減少によつて過給圧を引下げ、高速域でのエンジ
ン発熱量の過度の上昇を防止してエンジンの耐久
性を高めるとともに、排気温度の上昇に起因する
排気タービンや排気浄化手段の熱劣化も防止する
ことができる。さらに、排気浄化手段の目詰りに
起因して排気浄化手段上流の排気圧が上昇したと
きにも、それに応じて排気ガスが排気タービンに
対してバイパスされ、過給圧が引下げられるた
め、排気タービンの熱害を防止するとともにノツ
キングを抑制することができる。しかも、電気的
な制御手段を必要とせずに簡単な構造で信頼性良
く上記制御動作を行なうことができるものであ
る。
As described above, the present invention provides an engine that includes a bypass passage and a bypass control valve that bypass an exhaust turbine of an exhaust turbocharger, and an exhaust purification means in an exhaust passage downstream of the exhaust turbine. a relief passage that relieves a portion of the intake pressure introduced into the pressure operating chamber of the control valve via the communication passage to the outside; and a relief passage that receives the exhaust pressure upstream of the exhaust purification means and operates as the exhaust pressure increases. Since the provision of a closing valve means not only prevents the supercharging pressure from increasing unnecessarily after the supercharging pressure reaches a predetermined value, but also prevents the above-mentioned relief valve from increasing in the high-speed operation range where the exhaust pressure increases. By reducing the amount of heat generated by the exhaust gas, the boost pressure is lowered and engine heat generation is prevented from increasing excessively at high speeds, increasing engine durability. Deterioration can also be prevented. Furthermore, even when the exhaust pressure upstream of the exhaust purification means increases due to clogging of the exhaust purification means, the exhaust gas is bypassed to the exhaust turbine and the supercharging pressure is lowered. It is possible to prevent heat damage and suppress knocking. Moreover, the above-mentioned control operation can be performed with a simple structure and with high reliability without requiring any electrical control means.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の過給圧制御装置を備えた過給
機付エンジンの一実施例を示す概略図、第2図は
この過給圧制御装置による過給圧特性と排気圧を
エンジン回転数に対応づけて示すグラフ、第3図
は本発明の別の実施例を示す概略図である。 1……エンジン、2……吸気通路、3……排気
通路、6……排気浄化手段、7……コンプレツ
サ、8……排気タービン、10……バイパス通
路、11……バイパス制御弁、18……連通路、
19,19′……分岐路、20……逆止弁、30
……分岐路開閉制御弁。
FIG. 1 is a schematic diagram showing an embodiment of a supercharged engine equipped with a boost pressure control device of the present invention, and FIG. The graph shown in correspondence with the numbers, FIG. 3 is a schematic diagram showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Engine, 2... Intake passage, 3... Exhaust passage, 6... Exhaust purification means, 7... Compressor, 8... Exhaust turbine, 10... Bypass passage, 11... Bypass control valve, 18... ...Communication path,
19, 19'... Branch road, 20... Check valve, 30
... Branch road opening/closing control valve.

Claims (1)

【特許請求の範囲】[Claims] 1 吸気通路内に排気ターボ過給機のコンプレツ
サを介設するとともに、排気通路内に排気タービ
ンを介設する一方、該排気タービンの上流側と下
流側とを連通する排気ガスバイパス通路内に圧力
作動式のバイパス制御弁を設け、該バイパス制御
弁の圧力作動室を連通路を介して上記コンプレツ
サより下流の吸気通路に連結するとともに、上記
排気タービン下流の排気通路内に排気浄化手段を
備えた過給機付エンジンにおいて、上記バイパス
制御弁の圧力作動室に連通路を介して導入される
吸気圧の一部を外部にリリーフするリリーフ通路
と、上記排気浄化手段上流の排気圧を受けて該排
気圧の上昇に伴い上記リリーフ通路を閉じる弁手
段とを設けたことを特徴とする過給機付エンジン
の過給圧制御装置。
1 A compressor for an exhaust turbo supercharger is interposed in the intake passage, an exhaust turbine is interposed in the exhaust passage, and pressure is maintained in the exhaust gas bypass passage that communicates the upstream and downstream sides of the exhaust turbine. An actuated bypass control valve is provided, a pressure operating chamber of the bypass control valve is connected to an intake passage downstream of the compressor via a communication passage, and an exhaust purification means is provided in the exhaust passage downstream of the exhaust turbine. In a supercharged engine, there is provided a relief passage for externally relieving part of the intake pressure introduced into the pressure operating chamber of the bypass control valve via the communication passage, and a relief passage that receives the exhaust pressure upstream of the exhaust purification means. A supercharging pressure control device for a supercharged engine, comprising a valve means for closing the relief passage as exhaust pressure increases.
JP56032715A 1981-03-06 1981-03-06 Supercharge pressure controller of engine with supercharger Granted JPS57146024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56032715A JPS57146024A (en) 1981-03-06 1981-03-06 Supercharge pressure controller of engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56032715A JPS57146024A (en) 1981-03-06 1981-03-06 Supercharge pressure controller of engine with supercharger

Publications (2)

Publication Number Publication Date
JPS57146024A JPS57146024A (en) 1982-09-09
JPS6363729B2 true JPS6363729B2 (en) 1988-12-08

Family

ID=12366526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56032715A Granted JPS57146024A (en) 1981-03-06 1981-03-06 Supercharge pressure controller of engine with supercharger

Country Status (1)

Country Link
JP (1) JPS57146024A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121426U (en) * 1983-02-04 1984-08-16 三菱自動車工業株式会社 Overspeed prevention device for supercharged engines
JPS6095134A (en) * 1983-10-29 1985-05-28 Isuzu Motors Ltd Control device of turbo-charger
JP6339464B2 (en) * 2014-09-24 2018-06-06 日野自動車株式会社 Two-stage turbocharged engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578329A (en) * 1980-06-16 1982-01-16 Nissan Motor Co Ltd Supercharging pressure control unit for engine with supercharger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578329A (en) * 1980-06-16 1982-01-16 Nissan Motor Co Ltd Supercharging pressure control unit for engine with supercharger

Also Published As

Publication number Publication date
JPS57146024A (en) 1982-09-09

Similar Documents

Publication Publication Date Title
US3906729A (en) Multiple turbocharger system
JPH0214531B2 (en)
US4679992A (en) Turbo-compound compressor system
JPH06257519A (en) Exhaust reflux device of engine with turbo supercharger
JPS6053166B2 (en) Boost pressure control device for supercharged engines
JPS5930178Y2 (en) Exhaust bypass valve device for internal combustion engine with turbo gear
KR20120015386A (en) Operation controling system of waste gate unit for turbocharger
JPH0543860B2 (en)
JPS6363729B2 (en)
JP3468989B2 (en) Exhaust brake system for turbocharged diesel engine
JPH04134138A (en) Internal combustion engine with mechanical supercharger
JPS61190114A (en) Surge preventer for turbo supercharger associated with inter-cooler
JPS605772B2 (en) Boost pressure control device for supercharged engines
JPS635572B2 (en)
JPH0563615B2 (en)
JP3073401B2 (en) Highest speed control method for supercharged engine
JPS6233412B2 (en)
JP2789848B2 (en) Turbocharger supercharging pressure controller
JPH0511305Y2 (en)
JPH0329547Y2 (en)
JP3357089B2 (en) Engine boost pressure control device
JPS61277820A (en) Engine equipped with exhaust turbosupercharger
JPS594535B2 (en) supercharged engine
JPS6229626Y2 (en)
JPS6361496B2 (en)