JPH0511305Y2 - - Google Patents

Info

Publication number
JPH0511305Y2
JPH0511305Y2 JP1986116714U JP11671486U JPH0511305Y2 JP H0511305 Y2 JPH0511305 Y2 JP H0511305Y2 JP 1986116714 U JP1986116714 U JP 1986116714U JP 11671486 U JP11671486 U JP 11671486U JP H0511305 Y2 JPH0511305 Y2 JP H0511305Y2
Authority
JP
Japan
Prior art keywords
pressure
passage
pressure chamber
valve
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986116714U
Other languages
Japanese (ja)
Other versions
JPS6324327U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986116714U priority Critical patent/JPH0511305Y2/ja
Publication of JPS6324327U publication Critical patent/JPS6324327U/ja
Application granted granted Critical
Publication of JPH0511305Y2 publication Critical patent/JPH0511305Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は過給機付内燃機関の吸気制御装置に
係り、特にサージ音の発生を防止する制御機構を
利用して速度制御をも果し得る過給機付内燃機関
の吸気制御装置に関する。
[Detailed description of the invention] [Field of industrial application] This invention relates to an air intake control device for a supercharged internal combustion engine, and in particular, it also achieves speed control using a control mechanism that prevents the generation of surge noise. The present invention relates to an intake control device for a supercharged internal combustion engine.

〔従来の技術〕[Conventional technology]

過給機付内燃機関は、燃焼室に供給する吸気量
を増加させることにより燃焼性を改善し、出力や
燃費の向上を図つている。例えば、実開昭60−
133132号公報に開示の如く、内燃機関の排気エネ
ルギを利用して排気通路に設けたタービンを回転
させ、この回転を吸気通路に設けたコンプレツサ
に伝えて吸気を圧送させている。この公報に記載
のものは、吸気通路に設けたコンプレツサの上流
側と下流側とを連通するバイパス通路を設け、こ
のバイパス通路を開閉するバイパス弁を設け、内
燃機関の通常運転時にバイパス弁を閉位置にする
とともに、機関の急加速又は急減速運転時にはバ
イパス弁を所定時間だけ開位置にし、応答性を向
上させ、走行フイーリングを良好にしている。
A supercharged internal combustion engine improves combustibility by increasing the amount of intake air supplied to the combustion chamber, thereby improving output and fuel efficiency. For example, in 1987-
As disclosed in Japanese Patent No. 133132, exhaust energy from an internal combustion engine is used to rotate a turbine provided in an exhaust passage, and this rotation is transmitted to a compressor provided in an intake passage to forcefully feed intake air. The system described in this publication includes a bypass passage that communicates the upstream and downstream sides of a compressor installed in the intake passage, a bypass valve that opens and closes this bypass passage, and closes the bypass valve during normal operation of the internal combustion engine. In addition, when the engine suddenly accelerates or decelerates, the bypass valve is kept open for a predetermined period of time to improve responsiveness and provide a good running feel.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

ところで、従来、過給機付内燃機関における速
度制御方法としては、燃料供給を停止したり、過
給圧を低下させていた。しかしながら、燃料供給
を停止する速度制御方法においては、内燃機関へ
の燃料供給が停止するので、燃焼状態が悪化して
走行フイーリングが低下する不都合が生じた。ま
た、過給圧を低下させる速度制御方法において
は、バイパス通路を開閉制御するために制御機構
を別途に設ける必要があるので、部品点数が増加
し、構成の複雑化を招くとともに高価になる不都
合があつた。
Incidentally, conventional methods for controlling the speed of a supercharged internal combustion engine include stopping fuel supply or reducing supercharging pressure. However, in the speed control method in which the fuel supply is stopped, the fuel supply to the internal combustion engine is stopped, resulting in a problem that the combustion state deteriorates and the driving feeling deteriorates. In addition, in the speed control method that lowers the boost pressure, it is necessary to separately provide a control mechanism to control the opening and closing of the bypass passage, which increases the number of parts, complicates the configuration, and increases the cost. It was hot.

〔考案の目的〕[Purpose of invention]

そこでこの考案の目的は、上述の不都合を除去
し、サージ音の発生の防止と速度制御とを一の制
御機構によつて実行させることにより、部品点数
を低減し、構成の簡素化を図るとともに廉価と
し、しかも速度制御時の走行フイーリングを向上
し得る過給機付内燃機関の吸気制御装置を実現す
るにある。
Therefore, the purpose of this invention is to eliminate the above-mentioned inconveniences, to prevent the generation of surge noise and to control the speed using one control mechanism, thereby reducing the number of parts and simplifying the configuration. An object of the present invention is to realize an intake control device for an internal combustion engine with a supercharger that is inexpensive and can improve running feeling during speed control.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するためにこの考案は、過給機
コンプレツサ上流側の吸気通路と前記過給機コン
プレツサ下流側の前記吸気通路とを連通するバイ
パス通路を設け、このバイパス通路を開閉する制
御機構を設けた過給機付内燃機関の吸気制御装置
において、前記制御機構は、ハウジング内でダイ
ヤフラムにより区画形成された第1圧力室と第2
圧力室とを有する開閉弁を設け、前記第1圧力室
及び前記第2圧力室を第1圧力通路及び第2圧力
通路によつて絞り弁下流側の前記吸気通路に設け
たサージタンクに連通して設け、前記第1圧力通
路には前記内燃機関の通常運転状態で該第1圧力
通路を開放するとともに速度制御の指令があつた
際には該第1圧力通路を閉鎖し且つ前記第1圧力
室を大気圧力とする電気式圧力切換弁を設け、前
記第2圧力通路には前記第2圧力室に作用した吸
気管圧力の低下を遅延させる圧力遅延弁を設けて
構成したことを特徴とする。
In order to achieve this object, this invention provides a bypass passage that communicates the intake passage on the upstream side of the turbocharger compressor with the intake passage on the downstream side of the turbocharger compressor, and includes a control mechanism for opening and closing this bypass passage. In the intake air control device for a supercharged internal combustion engine, the control mechanism includes a first pressure chamber and a second pressure chamber defined by a diaphragm in the housing.
an on-off valve having a pressure chamber, and communicates the first pressure chamber and the second pressure chamber with a surge tank provided in the intake passage downstream of the throttle valve through a first pressure passage and a second pressure passage. The first pressure passage is configured to open the first pressure passage in a normal operating state of the internal combustion engine, and close the first pressure passage when a speed control command is received, and to control the first pressure. An electric pressure switching valve that sets the chamber to atmospheric pressure is provided, and the second pressure passage is provided with a pressure delay valve that delays the decrease in intake pipe pressure acting on the second pressure chamber. .

〔作用〕[Effect]

この考案の構成によれば、機関の通常運転状態
でサージングの発生する運転状態になつた際に
は、バイパス通路を制御機構によつて開放し、過
給機コンプレツサ下流側の吸気通路に生ずる圧力
変動のエネルギをバイパス通路により小さくさせ
てサージ音の発生を防止する。また、速度制御運
転状態においては、バイパス通路を上述の制御機
構によつて開放し、吸気を内燃機関に過給機コン
プレツサを迂回して供給させ、過給圧を低下して
速度制御を果す。これにより、サージ音の発生を
防止する制御機構を利用して速度制御をも果し得
て、速度制御を行う制御機構を別途に設ける必要
がないので、部品点数を低減し、構成の簡素化を
図るとともに廉価とする。また、速度制御運転状
態においては、燃料供給の停止を行わないので、
速度制御時の走行フイーリングを向上し得る。
According to the configuration of this invention, when the engine enters an operating state where surging occurs during normal operating conditions, the bypass passage is opened by the control mechanism, and the pressure generated in the intake passage downstream of the turbocharger compressor is reduced. The energy of the fluctuation is reduced by the bypass passage to prevent the generation of surge noise. In the speed control operating state, the bypass passage is opened by the above-mentioned control mechanism, intake air is supplied to the internal combustion engine bypassing the supercharger compressor, and the supercharging pressure is reduced to achieve speed control. This allows speed control to be performed using the control mechanism that prevents the generation of surge noise, and there is no need to provide a separate control mechanism for speed control, reducing the number of parts and simplifying the configuration. In addition to aiming for low price. In addition, in the speed control operation state, the fuel supply is not stopped, so
The driving feeling during speed control can be improved.

〔実施例〕〔Example〕

以下図面に基づいてこの考案の実施例を詳細且
つ具体的に説明する。
Embodiments of this invention will be described in detail and specifically below based on the drawings.

第1〜4図はこの考案の第1実施例を示すもの
である。図において、2は内燃機関、4は吸気通
路、6は排気通路、8は過給機である。過給機8
は、吸気通路4に臨ませて設けたコンプレツサ1
0を排気通路6に臨ませて設けたタービン12に
より回転させ、エアクリーナ(図示せず)から上
流側吸気通路4−1を経て取入れた空気を下流側
吸気通路4−2を経て内燃機関2に圧送する。コ
ンプレツサ10から内燃機関2の燃焼室(図示せ
ず)に至る下流側吸気通路4−2には、コンプレ
ツサ10に近い側から順次に絞り弁14とサージ
タンク16とを設ける。燃焼室に始端する排気通
路6は、その途中に前記タービン12を臨ませて
設け、マフラ18に連通している。
1 to 4 show a first embodiment of this invention. In the figure, 2 is an internal combustion engine, 4 is an intake passage, 6 is an exhaust passage, and 8 is a supercharger. Supercharger 8
is the compressor 1 installed facing the intake passage 4.
0 is rotated by a turbine 12 provided facing the exhaust passage 6, and air taken from an air cleaner (not shown) through the upstream intake passage 4-1 is sent to the internal combustion engine 2 through the downstream intake passage 4-2. to pump. A downstream intake passage 4-2 extending from the compressor 10 to a combustion chamber (not shown) of the internal combustion engine 2 is provided with a throttle valve 14 and a surge tank 16 in order from the side closer to the compressor 10. An exhaust passage 6 starting from the combustion chamber is provided with the turbine 12 facing in the middle thereof, and communicates with a muffler 18.

前記絞り弁14よりもコンプレツサ10側の下
流側吸気通路4−2には、コンプレツサ10を迂
回するように一端側を上流側吸気通路4−1に連
通したバイパス通路20の他端側を連通して設け
る。このバイパス通路20には、例えば急減速運
転時でサージングの発生する運転状態、速度制御
運転状態において該バイパス通路20を開放する
制御機構22を設ける。
The downstream intake passage 4-2 on the compressor 10 side of the throttle valve 14 is connected to the other end of a bypass passage 20 whose one end communicates with the upstream intake passage 4-1 so as to bypass the compressor 10. shall be established. This bypass passage 20 is provided with a control mechanism 22 that opens the bypass passage 20 in an operating state where surging occurs during rapid deceleration operation, for example, or in a speed control operating state.

この制御機構22は、以下の如く構成される。
即ち、バイパス通路20は、開閉弁24のハウジ
ング26に連設する接続体28によつて分割さ
れ、上流側バイパス通路20−1と下流側バイパ
ス通路20−2とからなる。ハウジング26に
は、ダイヤフラム30によつて第1圧力室32と
第2圧力室34とが区画形成される。第1圧力室
32側のダイヤフラム30面にロツド36の一端
が固着されるとともに、このロツド36の他端に
は前記接続体28に形成した弁座38に接離し前
記上流側バイパス通路20−1と下流側バイパス
通路20−2とを遮断、連通する弁体40が固着
されている。また、第1圧力室32内において、
ロツド36には、スプリング42が嵌装されてい
る。
This control mechanism 22 is configured as follows.
That is, the bypass passage 20 is divided by a connecting body 28 connected to the housing 26 of the on-off valve 24, and consists of an upstream bypass passage 20-1 and a downstream bypass passage 20-2. A first pressure chamber 32 and a second pressure chamber 34 are defined in the housing 26 by a diaphragm 30 . One end of a rod 36 is fixed to the surface of the diaphragm 30 on the side of the first pressure chamber 32, and the other end of the rod 36 is connected to and separated from a valve seat 38 formed in the connecting body 28 and connected to the upstream side bypass passage 20-1. A valve body 40 is fixed to the valve body 40 for blocking and communicating the downstream side bypass passage 20-2. Furthermore, within the first pressure chamber 32,
A spring 42 is fitted into the rod 36.

前記第1圧力室32及び第2圧力室34は、圧
力通路を介して前記サージタンク16に連通して
いる。つまり、第1圧力室32は、サージタンク
16に連通する主圧力通路44から分岐した第1
圧力通路46によつてサージタンク16に連通し
ている。また、第2圧力室34は、前記主圧力通
路44から分岐した第2圧力通路48によつてサ
ージタンク16に連通している。
The first pressure chamber 32 and the second pressure chamber 34 communicate with the surge tank 16 via a pressure passage. In other words, the first pressure chamber 32 is a first pressure chamber branched from the main pressure passage 44 communicating with the surge tank 16.
It communicates with the surge tank 16 by a pressure passage 46 . Further, the second pressure chamber 34 communicates with the surge tank 16 through a second pressure passage 48 branched from the main pressure passage 44 .

第1圧力通路46には、内燃機関2の通常運転
状態において該第1圧力通路46を開放し大気開
口50を閉鎖するとともに、速度制御運転状態に
おいては該第1圧力通路46のサージタンク16
側を遮断し大気開口50を開放して第1圧力室3
2を大気圧力とする電気式圧力切換弁52を設け
る。この電気式圧力切換弁52は、車速を検知す
る例えば機関回転数センサ等の速度検出機構(図
示せず)に連絡し、この速度検出機構から信号を
入力して第1圧力通路46を遮断して大気開口5
0を開放するものである。第2圧力通路48に
は、第2圧力室34に作用した吸気管圧力の低下
を第1圧力室32に作用した吸気管圧力の低下に
比し遅延させるチエツク弁54及び絞り56を有
する圧力遅延弁58を設ける。
In the first pressure passage 46, the first pressure passage 46 is opened and the atmospheric opening 50 is closed in the normal operating state of the internal combustion engine 2, and the surge tank 16 of the first pressure passage 46 is provided in the first pressure passage 46 in the speed control operating state.
The first pressure chamber 3 is opened by blocking the side and opening the atmospheric opening 50.
An electric pressure switching valve 52 is provided which sets pressure 2 to atmospheric pressure. This electric pressure switching valve 52 communicates with a speed detection mechanism (not shown) such as an engine speed sensor that detects the vehicle speed, receives a signal from this speed detection mechanism, and shuts off the first pressure passage 46. atmospheric opening 5
0 is released. The second pressure passage 48 includes a check valve 54 and a throttle 56 for delaying the decrease in intake pipe pressure acting on the second pressure chamber 34 compared to the decrease in intake pipe pressure acting on the first pressure chamber 32. A valve 58 is provided.

以下、この第1実施例の作用を説明する。 The operation of this first embodiment will be explained below.

内燃機関2の通常運転状態において、第2図に
示す如く、電気式圧力切換弁52は第1圧力通路
46を開放するとともに大気開口50を閉鎖す
る。これにより、サージタンク16からの吸気管
圧力である正圧が主圧力通路44、第1圧力通路
46を経て第1圧力室32に作用する(第2図の
矢印で示す)。またこのとき、主圧力通路44の
正圧は、第2圧力通路48とチエツク弁54が開
状態にある圧力遅延弁58とを経て第2圧力室3
4に作用する(第2図の矢印で示す)。従つて、
第1圧力室32と第2圧力室34とには同一の正
圧が作用した圧力差が生じないので、ダイヤフラ
ム30が変位せず、弁体40が弁座38に当接し
て上流側バイパス通路20−1と下流側バイパス
通路20−2とを遮断している。
In the normal operating state of the internal combustion engine 2, the electric pressure switching valve 52 opens the first pressure passage 46 and closes the atmospheric opening 50, as shown in FIG. As a result, positive pressure, which is the intake pipe pressure from the surge tank 16, acts on the first pressure chamber 32 via the main pressure passage 44 and the first pressure passage 46 (indicated by the arrow in FIG. 2). At this time, the positive pressure in the main pressure passage 44 is transferred to the second pressure chamber 3 through the second pressure passage 48 and the pressure delay valve 58 in which the check valve 54 is in the open state.
4 (indicated by the arrow in Figure 2). Therefore,
Since the same positive pressure acts on the first pressure chamber 32 and the second pressure chamber 34 and there is no pressure difference, the diaphragm 30 does not displace and the valve body 40 abuts against the valve seat 38, causing the upstream side bypass passage. 20-1 and the downstream bypass passage 20-2 are cut off.

次いで、例えば急減速運転状態等で絞り弁14
が急閉動作した際、つまりサージングの発生する
運転状態においては、第3図に示す如く、コンプ
レツサ10と絞り弁14間の下流側吸気通路4−
2の圧力変動のエネルギが大きくなろうとする。
絞り弁14が閉状態になると、サージタンク16
の正圧が低下するもので、主圧力通路44の正圧
も低下する。このとき、圧力遅延弁58のチエツ
ク弁54が閉状態にあり、第2圧力室34に作用
した正圧は絞り56からのみ流れるので、この正
圧の低下(第3図の1点鎖線の矢印で示す)は第
1圧力室32に作用した正圧の低下(第3図の2
点鎖線で示す)よりも遅くなる。つまり、第1圧
力室32と第2圧力室34とには、圧力差が生ず
る。よつて、第2圧力室34には第1圧力室32
よりも高い正圧が作用し、ダイヤフラム30がス
プリング42の付勢力に抗して第1圧力室32の
縮小方向に変位する。このダイヤフラム30の変
位によりロツド36を介して弁体40が弁座38
から離間し、上流側バイパス通路20−1と下流
側バイパス通路20−2とを連通する。この結
果、下流側吸気通路4−2に生じた圧力変動はバ
イパス通路20が連通することによつてこのバイ
パス通路20に作用し、そのエネルギが小さくな
り、サージ音の発生を防止することができる。
Then, for example, in a sudden deceleration operation state, the throttle valve 14
When the valve suddenly closes, that is, in an operating state where surging occurs, as shown in FIG.
The energy of the pressure fluctuation in step 2 is about to increase.
When the throttle valve 14 is closed, the surge tank 16
As the positive pressure in the main pressure passage 44 decreases, the positive pressure in the main pressure passage 44 also decreases. At this time, the check valve 54 of the pressure delay valve 58 is in the closed state, and the positive pressure acting on the second pressure chamber 34 flows only from the throttle 56. ) is the decrease in positive pressure acting on the first pressure chamber 32 (shown by 2 in Figure 3).
(indicated by the dotted chain line). That is, a pressure difference occurs between the first pressure chamber 32 and the second pressure chamber 34. Therefore, the second pressure chamber 34 has the first pressure chamber 32
A higher positive pressure acts on the diaphragm 30, and the diaphragm 30 is displaced in the direction of contraction of the first pressure chamber 32 against the biasing force of the spring 42. Due to this displacement of the diaphragm 30, the valve body 40 is moved to the valve seat 38 via the rod 36.
The upstream side bypass passage 20-1 and the downstream side bypass passage 20-2 are communicated with each other. As a result, pressure fluctuations occurring in the downstream intake passage 4-2 act on the bypass passage 20 due to the communication with the bypass passage 20, and its energy is reduced, making it possible to prevent the generation of surge noise. .

一方、速度制御運転状態においては、第4図に
示す如く、所定速度に達すると、電気式圧力切換
弁52は速度検出機構からの指令によつて第1圧
力通路46のサージタンク16側を閉鎖するとと
もに大気開口50を開放する。これにより、第1
圧力室32には大気開口50から大気が導入し
(第4図の黒塗りの矢印で示す)、第1圧力室32
が大気圧力となる。また、第2圧力室34には、
サージタンク16からの正圧(第4図の矢印で示
す)が作用している。つまり、第1圧力室32と
第2圧力室34とには、圧力差が生ずる。よつ
て、第2圧力室34の正圧が第1圧力室32の大
気圧力よりも高くなるので、ダイヤフラム30が
スプリング42の付勢力に抗して第1圧力室32
の縮小方向に変位する。このダイヤフラム30の
変位により、弁体40が弁座38から離間し、上
流側バイパス通路20−1と下流側バイパス通路
20−2とを連通する。よつて、吸気は、コンプ
レツサ10を迂回してバイパス通路20、サージ
タンク16を経て内燃機関2に供給される。従つ
て、過給圧が低下し、速度制御が果される。
On the other hand, in the speed control operation state, as shown in FIG. 4, when a predetermined speed is reached, the electric pressure switching valve 52 closes the surge tank 16 side of the first pressure passage 46 in response to a command from the speed detection mechanism. At the same time, the atmospheric opening 50 is opened. This allows the first
Atmospheric air is introduced into the pressure chamber 32 from the atmospheric opening 50 (indicated by the black arrow in FIG. 4), and the first pressure chamber 32
becomes atmospheric pressure. Moreover, in the second pressure chamber 34,
Positive pressure from the surge tank 16 (indicated by the arrow in FIG. 4) is acting. That is, a pressure difference occurs between the first pressure chamber 32 and the second pressure chamber 34. Therefore, the positive pressure in the second pressure chamber 34 becomes higher than the atmospheric pressure in the first pressure chamber 32, so that the diaphragm 30 resists the biasing force of the spring 42 and moves toward the first pressure chamber 32.
Displaced in the direction of reduction. This displacement of the diaphragm 30 causes the valve body 40 to separate from the valve seat 38, thereby establishing communication between the upstream bypass passage 20-1 and the downstream bypass passage 20-2. Therefore, the intake air bypasses the compressor 10 and is supplied to the internal combustion engine 2 via the bypass passage 20 and the surge tank 16. Therefore, the supercharging pressure is reduced and speed control is achieved.

この結果、サージ音の発生の防止と速度制御と
を、一の制御機構22によつて行うことができる
ので、部品点数を低減し、構成の簡素化を図ると
ともに廉価とする。また、速度制御運転状態にお
いては、燃料供給の停止を行わないので、速度制
御時の走行フイーリングを向上する。
As a result, prevention of surge noise and speed control can be performed by one control mechanism 22, which reduces the number of parts, simplifies the configuration, and lowers the cost. Furthermore, since the fuel supply is not stopped in the speed control operating state, the driving feeling during speed control is improved.

第5図はこの考案の第2実施例を示すものであ
る。以下の実施例においては、上述の第1実施例
と同一機能を果す箇所には同一符号を付して説明
する。
FIG. 5 shows a second embodiment of this invention. In the following embodiments, parts having the same functions as those in the first embodiment described above are given the same reference numerals and explained.

この第2実施例の特徴とするところは、第1圧
力通路46に設けた電気式切換弁52の大気開口
50部位に所定形状の絞り62を設けた点にあ
る。
The feature of this second embodiment is that a throttle 62 of a predetermined shape is provided at the atmospheric opening 50 of the electric switching valve 52 provided in the first pressure passage 46.

この第2実施例の構成によれば、速度制御運転
状態においては、開閉弁24の第2圧力室34に
サージタンク16からの正圧が作用し、また第1
圧力室32には大気圧力が作用している。そし
て、速度制御を実行している途中にサージタンク
16の正圧が大気圧力に近づくと、スプリング4
2の付勢力がサージタンク16の正圧、つまり第
2圧力室34に作用している正圧よりも大きくな
り、弁体40が弁座38に当接し、バイパス通路
20を閉鎖する。このため、サージタンク16の
圧力が高くなり、再び第2圧力室48に大なる正
圧が作用すると、弁体40が弁座38から離間す
るのを繰返し、いわゆるハンチングが生じようと
する。しかし、大気開口50部位には所定絞り形
状の絞り62が設けられているので、第1圧力室
32と第2圧力室34との圧力差をバランスさ
せ、ハンチングを効果的に防止し得る。
According to the configuration of the second embodiment, in the speed control operating state, positive pressure from the surge tank 16 acts on the second pressure chamber 34 of the on-off valve 24, and the first
Atmospheric pressure acts on the pressure chamber 32. If the positive pressure in the surge tank 16 approaches atmospheric pressure during speed control, the spring 4
The biasing force 2 becomes larger than the positive pressure in the surge tank 16, that is, the positive pressure acting on the second pressure chamber 34, and the valve body 40 comes into contact with the valve seat 38, closing the bypass passage 20. Therefore, when the pressure in the surge tank 16 increases and a large positive pressure acts on the second pressure chamber 48 again, the valve element 40 repeatedly separates from the valve seat 38, causing so-called hunting. However, since the aperture 62 having a predetermined aperture shape is provided at the atmospheric opening 50, the pressure difference between the first pressure chamber 32 and the second pressure chamber 34 can be balanced and hunting can be effectively prevented.

〔考案の効果〕[Effect of idea]

以上詳細な説明から明らかなようにこの考案に
よれば、制御機構は、ハウジング内でダイヤフラ
ムにより区画形成された第1圧力室と第2圧力室
とを有する開閉弁を設け、第1圧力室及び第2圧
力室を第1圧力通路及び第2圧力通路によつて絞
り弁下流側の吸気通路に設けたサージタンクに連
通して設け、第1圧力通路には内燃機関の通常運
転状態で第1圧力通路を開放するとともに速度制
御の指令があつた際には第1圧力通路を閉鎖し且
つ第1圧力室を大気圧力とする電気式圧力切換弁
を設け、第2圧力通路には第2圧力室に作用した
吸気管圧力の低下を遅延させる圧力遅延弁を設け
て構成したことにより、サージ音の発生の防止と
速度制御とを一の制御機構によつて実行すること
ができ、部品点数を低減し、構成の簡素化を図る
とともに廉価とし得る。また、速度制御運転状態
においては、燃料供給の停止を行わないので、速
度制御時の走行フイーリングを向上し得る。
As is clear from the above detailed description, according to this invention, the control mechanism includes an on-off valve having a first pressure chamber and a second pressure chamber defined by a diaphragm in a housing, and A second pressure chamber is provided in communication with a surge tank provided in an intake passage on the downstream side of the throttle valve through a first pressure passage and a second pressure passage, and the second pressure chamber is provided in communication with a surge tank provided in an intake passage downstream of the throttle valve. An electric pressure switching valve is provided that opens the pressure passage and closes the first pressure passage when a speed control command is received and sets the first pressure chamber to atmospheric pressure. By providing a pressure delay valve that delays the decrease in intake pipe pressure acting on the chamber, prevention of surge noise and speed control can be performed by one control mechanism, reducing the number of parts. The structure can be simplified and the cost can be reduced. Furthermore, since the fuel supply is not stopped in the speed control operating state, the driving feeling during speed control can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図はこの考案の第1実施例を示し、第
1図は吸気制御装置の概略構成図、第2〜4図は
制御機構の作用を示す説明図である。第5図はこ
の考案の第2実施例を示し、制御機構の概略構成
図である。 図において、2は内燃機関、4は吸気通路、6
は排気通路、8は過給機、10はコンプレツサ、
12はタービン、14は絞り弁、16はサージタ
ンク、20はバイパス通路、22は制御機構、2
4は開閉弁、30はダイヤフラム、32は第1圧
力室、34は第2圧力室、46は第1圧力通路、
48は第2圧力通路、50は大気開口、52は電
気式圧力切換弁、そして58は圧力遅延弁であ
る。
1 to 4 show a first embodiment of this invention, FIG. 1 is a schematic diagram of the intake control device, and FIGS. 2 to 4 are explanatory diagrams showing the operation of the control mechanism. FIG. 5 shows a second embodiment of this invention, and is a schematic diagram of the control mechanism. In the figure, 2 is an internal combustion engine, 4 is an intake passage, and 6 is an internal combustion engine.
is an exhaust passage, 8 is a supercharger, 10 is a compressor,
12 is a turbine, 14 is a throttle valve, 16 is a surge tank, 20 is a bypass passage, 22 is a control mechanism, 2
4 is an on-off valve, 30 is a diaphragm, 32 is a first pressure chamber, 34 is a second pressure chamber, 46 is a first pressure passage,
48 is a second pressure passage, 50 is an atmospheric opening, 52 is an electric pressure switching valve, and 58 is a pressure delay valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 過給機コンプレツサ上流側の吸気通路と前記過
給機コンプレツサ下流側の前記吸気通路とを連通
するバイパス通路を設け、このバイパス通路を開
閉する制御機構を設けた過給機付内燃機関の吸気
制御装置において、前記制御機構は、ハウジング
内でダイヤフラムにより区画形成された第1圧力
室と第2圧力室とを有する開閉弁を設け、前記第
1圧力室及び前記第2圧力室を第1圧力通路及び
第2圧力通路によつて絞り弁下流側の前記吸気通
路に設けたサージタンクに連通して設け、前記第
1圧力通路には前記内燃機関の通常運転状態で該
第1圧力通路を開放するとともに速度制御の指令
があつた際には該第1圧力通路を閉鎖し且つ前記
第1圧力室を大気圧力とする電気式圧力切換弁を
設け、前記第2圧力通路には前記第2圧力室に作
用した吸気管圧力の低下を遅延させる圧力遅延弁
を設けて構成したことを特徴とする過給機付内燃
機関の吸気制御装置。
Intake control of an internal combustion engine with a supercharger, which includes a bypass passage that communicates an intake passage upstream of a supercharger compressor with the intake passage downstream of the supercharger compressor, and a control mechanism that opens and closes this bypass passage. In the apparatus, the control mechanism includes an on-off valve having a first pressure chamber and a second pressure chamber defined by a diaphragm in a housing, and connects the first pressure chamber and the second pressure chamber to a first pressure passage. and a second pressure passage that communicates with a surge tank provided in the intake passage downstream of the throttle valve, and the first pressure passage is opened in the normal operating state of the internal combustion engine. In addition, an electric pressure switching valve is provided that closes the first pressure passage and sets the first pressure chamber to atmospheric pressure when a speed control command is received, and the second pressure passage is provided with an electric pressure switching valve that closes the first pressure passage and sets the first pressure chamber to atmospheric pressure. 1. An intake air control device for an internal combustion engine with a supercharger, comprising a pressure delay valve that delays a decrease in intake pipe pressure acting on the engine.
JP1986116714U 1986-07-31 1986-07-31 Expired - Lifetime JPH0511305Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986116714U JPH0511305Y2 (en) 1986-07-31 1986-07-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986116714U JPH0511305Y2 (en) 1986-07-31 1986-07-31

Publications (2)

Publication Number Publication Date
JPS6324327U JPS6324327U (en) 1988-02-17
JPH0511305Y2 true JPH0511305Y2 (en) 1993-03-19

Family

ID=31001565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986116714U Expired - Lifetime JPH0511305Y2 (en) 1986-07-31 1986-07-31

Country Status (1)

Country Link
JP (1) JPH0511305Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040000117A (en) * 2002-06-24 2004-01-03 현대자동차주식회사 Control apparatus of waste gate valve
DE102010024297B4 (en) 2010-06-18 2016-06-16 Pierburg Gmbh Regulating device for internal combustion engines

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129027B2 (en) * 1982-11-22 1986-07-03 Fujitsu Ltd

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177735U (en) * 1983-05-13 1984-11-28 三菱自動車工業株式会社 Supercharging control device
JPS6129027U (en) * 1984-03-30 1986-02-21 ダイハツ工業株式会社 Maximum speed limiter for vehicles equipped with supercharged engines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129027B2 (en) * 1982-11-22 1986-07-03 Fujitsu Ltd

Also Published As

Publication number Publication date
JPS6324327U (en) 1988-02-17

Similar Documents

Publication Publication Date Title
JP3046826B2 (en) Intake control device for supercharged engine
JPS5930178Y2 (en) Exhaust bypass valve device for internal combustion engine with turbo gear
JPS6367018B2 (en)
JPS6161920A (en) Supercharge pressure controller for supercharged engine
JPH0511305Y2 (en)
JPS6363730B2 (en)
JPH0125883B2 (en)
JPS60198334A (en) Discharge controller for internal-combustion engine associated with supercharger
JPS6228290B2 (en)
JPH03281932A (en) Supercharging pressure controller of two-stage supercharging internal combustion engine
JPS6246843Y2 (en)
JPS6233412B2 (en)
JPS6246817Y2 (en)
JPH0221563Y2 (en)
JPS6246815Y2 (en)
JP3084136B2 (en) Exhaust control device for supercharged engine
JP2023045440A (en) Control device of vehicle
JPH0229848B2 (en)
JPH0561454B2 (en)
JPS6030449Y2 (en) Boost pressure control device for diesel engine with supercharger
JPH0236929Y2 (en)
JPH0218287Y2 (en)
JPS631449B2 (en)
JPS6161918A (en) Air intake device of internal-combustion engine
JPH04370324A (en) Deceleration air bypass valve control device for engine having supercharger