JPS6363671B2 - - Google Patents

Info

Publication number
JPS6363671B2
JPS6363671B2 JP27405685A JP27405685A JPS6363671B2 JP S6363671 B2 JPS6363671 B2 JP S6363671B2 JP 27405685 A JP27405685 A JP 27405685A JP 27405685 A JP27405685 A JP 27405685A JP S6363671 B2 JPS6363671 B2 JP S6363671B2
Authority
JP
Japan
Prior art keywords
rubber
carbon fibers
treated
epoxy
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP27405685A
Other languages
Japanese (ja)
Other versions
JPS62133187A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP27405685A priority Critical patent/JPS62133187A/en
Publication of JPS62133187A publication Critical patent/JPS62133187A/en
Publication of JPS6363671B2 publication Critical patent/JPS6363671B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は炭素繊維とゴム配合物との接着方法に
係り、詳しくはゴム中における炭素繊維の耐疲労
性、及び接着性に優れる炭素繊維とゴム配合物と
の接着方法に関する。 (従来技術) 炭素繊維は高弾性率、高強度、寸法安定性、耐
熱性等の優れた特性を有するため、動力伝動用ベ
ルト等のゴム製品の補強材として注目されている
が、その反面、ゴムとの接着力が劣るため今だ実
用化に至つていない。そのため、従来からこの接
着の改善策が種々提案されており、例えば特公昭
57−46427号公報、特公昭53−33998号公報に開示
されているように炭素繊維を水溶性のエポキシ樹
脂あるいは疎水性のエポキシ樹脂等で処理し、熱
処理した後、レゾルシン―ホルマリン―ゴムラテ
ツクスの接着液またはポリイソシアネートを添加
したゴム糊等で処理する方法が提案されている。 (発明が解決しようとする問題点) しかし、上記従来の方法ではゴムとの接着性が
改善された反面、ゴム中での炭素繊維の耐疲労性
あるいは屈曲安定性に欠ける点があつた。本発明
はこのような点を改善するものであり、炭素繊維
とゴム配合物との接着力に優れ、更にゴム中での
炭素繊維の耐疲労性を有する炭素繊維とゴム配合
物との接着方法を提供することを目的とするもの
である。 (発明を解決するための手段) 即ち、本発明の特徴とするところは炭素繊維を
エポキシウレタン樹脂の溶液に浸漬し熱処理した
後、アクリロイル基とエポキシ基を有するアクリ
レート化合物を含むゴム糊で処理し、これを未加
硫ゴムと密着加硫してなる炭素繊維とゴム配合物
との接着方法にある。 本発明では使用する炭素繊維は、PAN(ポリア
クリロニトリル)系、ピツチ系、レーヨン系であ
り、その形状もコード、織物、編物あるいは不織
布である。今日、一般に市販されている炭素繊維
はエポキシ系化合物を含む界面活性剤液でサイシ
ングされており、本発明方法において使用する炭
素繊維もこのように処理されたものが好ましい。 また、被着体として用いるゴム配合物として
は、エチレン―プロピレンゴム(EPR)、エチレ
ン―プロピレンタ―ポリマー(EPT)、クロロプ
レンゴム(CR)、スチレン―ブタジエンゴム
(SBR)、クロルスルホン化ポリエチレン
(CSM)、ニトリルゴム(NBR)、水素添加
NBR、イソプレンゴム(IR)等の単独あるいは
これらのブレンド物であつてパーオキサイド加硫
が可能なものであり、そのうちCSM及び水素添
加NBRを用いたゴム配合物が最も好ましい。 尚、上記ゴム配合物に添加するパーオキサイド
はジクミルパーオキサイド、ジ―t―ブチルパー
オキサイド、1,1―ビス(t―ブチルパーオキ
シ)―3,3,5―トリメチルシクロヘキサン、
シクロヘキサノンパーオキサイド、トルオイルパ
ーオキサイド、ベンゾイルパーオキサイド、メチ
ルエチルケトンパーオキサイド、クメンハイドロ
パーオキサイド、t―ブチルハイドロパーオキサ
イド等を言う。 また、本発明の前処理液に使用するエポキシウ
レタン樹脂は分子内に複数個のウレタン結合をも
ち、分子末端にエポキシ基を有する液状体であつ
て、具体的には下記の分子構造を有している。 このエポキシウレタン樹脂はイソシアネート基
あるいはブロツクイソシアネートを含んでおら
ず、室温では安定している。しかし、約150℃以
上になるとエポキシ基が開環して種々の活性基と
反応する可能性があり、また他方エポキシウレタ
ン樹脂におけるウレタンのアミノ基は、他のエポ
キシウレタン樹脂のエポキシ基と反応して自己架
橋する特性がある。 前処理液は上記エポキシウレタン樹脂を溶剤等
に混入した溶液又は懸濁液もしくは乳濁液等の状
態で使用されるが、この際エポキシウレタン樹脂
の固形分濃度が1〜20%になるようにする。 また、前処理液にはエポキシウレタン樹脂の硬
化速度を速めるために3級アミン等の触媒を添加
してもよい。 このように調整された前処理液に炭素繊維を浸
漬し、約120〜220℃で乾燥した後、更に120〜220
℃で熱処理するが、炭素繊維が紡糸工程中にエポ
キシ系化合物を含む界面活性液でサイジングされ
ている場合には、エポキシウレタン樹脂を含んだ
前処理液と比較的相溶性にすぐれている。これに
より、エポキシウレタン樹脂は炭素繊維の表面に
付着しやすくなり、炭素繊維に対するエポキシウ
レタン樹脂の付着量は1〜10重量%であり、1重
量%未満では接着力に劣り、また10重量%を越え
ると炭素繊維の表面に硬化したエポキシウレタン
樹脂の厚い皮膜が形成されて耐疲労性に欠ける。 また、本発明の後処理に使用するアクリロイル
基とエポキシ基を有するアクリレート化合物は、
下記構造式からなる脂環族ジエポキシサイド部分
アクリレート化合物で通常室温で液状体であり、
加熱あるいはアミンにより硬化する。 (ここにおいて、XはOH、COOH、
(Industrial Application Field) The present invention relates to a method of adhering carbon fibers and rubber compounds, and more specifically, a method of adhering carbon fibers and rubber compounds that has excellent fatigue resistance and adhesive properties of carbon fibers in rubber. Regarding. (Prior art) Because carbon fiber has excellent properties such as high modulus of elasticity, high strength, dimensional stability, and heat resistance, it is attracting attention as a reinforcing material for rubber products such as power transmission belts. It has not yet been put into practical use due to poor adhesion to rubber. Therefore, various measures to improve this adhesion have been proposed in the past, such as the
As disclosed in Japanese Patent Publication No. 57-46427 and Japanese Patent Publication No. 53-33998, carbon fibers are treated with water-soluble epoxy resin or hydrophobic epoxy resin, heat treated, and then bonded with resorcinol-formalin-rubber latex. A method of treating with liquid or rubber glue containing polyisocyanate has been proposed. (Problems to be Solved by the Invention) However, although the above-mentioned conventional methods improved the adhesion to rubber, they lacked the fatigue resistance or bending stability of the carbon fibers in the rubber. The present invention improves these points, and provides a method for adhering carbon fibers and rubber compounds that have excellent adhesive strength and also have the fatigue resistance of carbon fibers in rubber. The purpose is to provide the following. (Means for Solving the Invention) That is, the feature of the present invention is that carbon fibers are immersed in an epoxy urethane resin solution and heat treated, and then treated with a rubber glue containing an acrylate compound having an acryloyl group and an epoxy group. , there is a method of adhering carbon fibers and a rubber compound, which are obtained by closely vulcanizing this with unvulcanized rubber. The carbon fibers used in the present invention are PAN (polyacrylonitrile) type, pitch type, and rayon type, and their shapes are cord, woven, knitted, or nonwoven. Carbon fibers commonly available on the market today are sized with a surfactant solution containing an epoxy compound, and the carbon fibers used in the method of the present invention are preferably treated in this way. Rubber compounds used as adherends include ethylene-propylene rubber (EPR), ethylene-propylene terpolymer (EPT), chloroprene rubber (CR), styrene-butadiene rubber (SBR), and chlorosulfonated polyethylene ( CSM), nitrile rubber (NBR), hydrogenated
NBR, isoprene rubber (IR), etc. alone or a blend thereof can be peroxide vulcanized, and among these, a rubber compound using CSM and hydrogenated NBR is most preferred. The peroxides added to the above rubber compound include dicumyl peroxide, di-t-butyl peroxide, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane,
These include cyclohexanone peroxide, toluoyl peroxide, benzoyl peroxide, methyl ethyl ketone peroxide, cumene hydroperoxide, and t-butyl hydroperoxide. In addition, the epoxy urethane resin used in the pretreatment liquid of the present invention is a liquid material that has multiple urethane bonds in the molecule and an epoxy group at the end of the molecule, and specifically has the following molecular structure. ing. This epoxyurethane resin does not contain isocyanate groups or blocked isocyanates and is stable at room temperature. However, at temperatures above about 150°C, the epoxy groups may ring open and react with various active groups, and on the other hand, the amino groups of the urethane in epoxy urethane resins may react with the epoxy groups of other epoxy urethane resins. It has the property of self-crosslinking. The pretreatment liquid is used in the form of a solution, suspension, or emulsion in which the above epoxy urethane resin is mixed with a solvent, etc., but at this time, the solid content concentration of the epoxy urethane resin is adjusted to be 1 to 20%. do. Furthermore, a catalyst such as a tertiary amine may be added to the pretreatment liquid in order to speed up the curing speed of the epoxy urethane resin. Carbon fibers are immersed in the pretreatment liquid prepared in this manner, dried at approximately 120 to 220℃, and then further heated at approximately 120 to 220℃.
Although the carbon fiber is heat-treated at ℃, if the carbon fiber is sized with a surfactant liquid containing an epoxy compound during the spinning process, it has relatively good compatibility with the pretreatment liquid containing an epoxy urethane resin. As a result, the epoxy urethane resin easily adheres to the surface of the carbon fiber, and the amount of the epoxy urethane resin attached to the carbon fiber is 1 to 10% by weight, and if it is less than 1% by weight, the adhesive strength is poor; If it exceeds this limit, a thick film of hardened epoxy urethane resin will be formed on the surface of the carbon fiber, resulting in a lack of fatigue resistance. In addition, the acrylate compound having an acryloyl group and an epoxy group used in the post-treatment of the present invention is
An alicyclic diepoxide partial acrylate compound consisting of the following structural formula, which is normally liquid at room temperature,
Cured by heating or amines. (Here, X is OH, COOH,

【式】―CH2―CH=CH2[Formula] -CH2 -CH= CH2 ,

【式】等であり、またn=1〜5であ る。) そして、後処理液は主として被着体として用い
るゴム配合物と同じく、EPR、EPT、CR、
SBR、CSM、NBR、水素添加NBR、IR等にパ
ーオキサイド化合物を初め、カーボンブラツク、
老化防止剤、充填剤等のゴム配合物と上記アクリ
レート化合物を溶剤に溶かして得られるゴム糊あ
るいは上記アクリレート化合物を種々の配合物を
含んであるSBR、CRのゴムラテツクスに添加し
てなるゴム糊であり、上記アクリレート化合物の
添加量は固形分濃度として10〜100重量%である。 このようにして調整された後処理液に既に前処
理液に浸漬して熱処理し終わつた炭素繊維を再度
浸漬した後、180〜240℃で熱処理する。この場
合、炭素繊維に付着する後処理液の固形付着量は
2〜15重量%が適当であり、2重量%未満ではゴ
ムとの接着力が充分でなく、一方15重量%を越え
ると炭素繊維の可撓性に欠ける。 上記のように処理された炭素繊維の表面には、
前処理液により付着硬化したエポキシウレタン樹
脂層と後処理液により付着硬化したゴム糊層の2
層が形成され、まずエポキシウレタン樹脂は炭素
繊維と相溶性があつて良好に接着し、また弾性の
あるウレタンを含んでいるため処理繊維の可撓性
を保持している。更に、後処理液のゴム糊はアク
リレート化合物に含まれるエポキシ基が第1層目
のエポキシウレタン樹脂に含まれるウレタンのア
ミノ基と反応する可能性が高く、第1層目と良好
に結合する。その結果、接着処理された炭素繊維
は被着体であるゴムとの接着性が良好になり、し
かも柔軟な被覆層を形成しているため、耐屈曲性
が良好であるところから、動力伝動用ベルト、コ
ンベヤベルト、タイヤ等の動的条件下で使用され
る製品に適用される。 以下実施例により本発明を更に具体的に説明す
る。 実施例 1 1800D/1×4の構成からなる炭素繊維コード
(東レ(株)製トリカT―300)を下記第1表に示され
る前処理液及び熱処理条件にて浸漬し熱処理した
後、第2表に示される後処理液及び熱処理条件に
接着処理を行つた。 次に、このように処理した炭素繊維コードをド
ラムに巻かれた粘着テープの上にスピニングし、
その上に第3表に示される厚さ0.5mmのクロスル
ホン化ポリエチレン配合物を積層した後、積層さ
れた試料をカツトして150℃で30分間加硫した。
加硫後、該試料を巾2.5mmにカツトし、剥離試験
機(島津製作所製オートグラフ)で引張速度50
mm/minで剥離接着力を測定した。その結果を第
4表に示す。
[Formula] etc., and n=1 to 5. ) The post-treatment liquid is mainly used for EPR, EPT, CR, as well as the rubber compound used as the adherend.
SBR, CSM, NBR, hydrogenated NBR, IR, etc., including peroxide compounds, carbon black,
A rubber paste obtained by dissolving a rubber compound such as an anti-aging agent, a filler, etc. and the above acrylate compound in a solvent, or a rubber paste obtained by adding the above acrylate compound to SBR or CR rubber latex containing various compounds. The amount of the acrylate compound added is 10 to 100% by weight as a solid content concentration. The carbon fibers that have already been immersed in the pre-treatment liquid and heat-treated are immersed again in the post-treatment liquid prepared in this way, and then heat-treated at 180 to 240°C. In this case, the appropriate amount of solid adhesion of the post-treatment liquid on the carbon fibers is 2 to 15% by weight; if it is less than 2% by weight, the adhesion to the rubber is insufficient, while if it exceeds 15% by weight, the amount of solids attached to the carbon fibers is lacks flexibility. The surface of carbon fiber treated as above has
Two layers: epoxy urethane resin layer adhered and hardened by pre-treatment liquid and rubber glue layer adhered and hardened by post-treatment liquid.
A layer is formed, and first, the epoxy urethane resin is compatible with carbon fibers and adheres well, and since it contains elastic urethane, the treated fibers maintain their flexibility. Furthermore, in the rubber paste of the post-treatment liquid, there is a high possibility that the epoxy group contained in the acrylate compound reacts with the amino group of the urethane contained in the epoxy urethane resin of the first layer, so that it bonds well with the first layer. As a result, the adhesive-treated carbon fiber has good adhesion to the rubber adherend, and also forms a flexible coating layer, so it has good bending resistance and is suitable for power transmission. Applies to products used under dynamic conditions such as belts, conveyor belts, tires, etc. The present invention will be explained in more detail with reference to Examples below. Example 1 A carbon fiber cord (Torika T-300 manufactured by Toray Industries, Inc.) consisting of 1800D/1×4 was immersed and heat-treated in the pre-treatment liquid and heat treatment conditions shown in Table 1 below. Adhesion treatment was performed using the post-treatment liquid and heat treatment conditions shown in the table. The carbon fiber cord treated in this way is then spun onto an adhesive tape wrapped around a drum.
A cross-sulfonated polyethylene compound having a thickness of 0.5 mm shown in Table 3 was laminated thereon, and then the laminated sample was cut and vulcanized at 150°C for 30 minutes.
After vulcanization, the sample was cut to a width of 2.5 mm and tested at a tensile speed of 50 using a peel tester (Autograph manufactured by Shimadzu Corporation).
Peel adhesion was measured in mm/min. The results are shown in Table 4.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 実施例 2 実施例1で処理した各コードを別途ドラム上に
巻かれた厚み1.0mmの第3表のクロルスルホン化
ポリエチレンゴム配合物(1)の上にスピニングし、
その上に同厚、同配合のクロルスルホン化ポリエ
チレンゴム配合物を積層した後、8Kg/cm2、40分
間蒸気加硫を行い、加硫物に2本のコードを埋設
した試料を作製した。この試料を上下方向に位置
する回転屈曲バーに巻き掛け、試料の一端をフレ
ームに固定し、他端に2Kg荷重をかけ、該回転屈
曲バーを上下に5万回往復運動をする屈曲テスト
を行つた。その後、この試料を引張速度50mmで強
力を測定した。その結果は第5表に示す通りであ
る。尚、第5表に示される強力保持率(%)は屈
曲テスト前の強力を屈曲テスト後の強力で除した
値である。 実施例 3 実施例1の後処理液(D)において、アクリロイル
基とエポキシ基を有するアクリレート化合物とク
ロルスルホン化ポリエチレンゴムとの重量比を適
宜変えて処理されたコードを第1表のゴム配合物
(1)を被着体ゴムとして使用し実施例1、実施例2
の方法と同様に処理し、接着テスト、屈曲テスト
を行つた。 その結果を第6表に示す。 実施例 4 実施例1の前処理液(A)を用い、また後処理液(D)
のクロルスルホン化ポリエチレンゴムのかわりに
第7表の水素化NBRを用いた処理液を作成し、
これらの処理液により処理されたコードを実施例
1と同様に第7表の水素化NBRゴム配合物を被
着体として用いて試料とし、その試料を実施例1
及び実施例2と同様の条件で接着テスト、屈曲テ
ストを行つた。その結果、接着力は31.2Kg/mm、
強力保持率(%)は89%であつた。
[Table] Example 2 Each cord treated in Example 1 was spun onto the chlorosulfonated polyethylene rubber compound (1) of Table 3 having a thickness of 1.0 mm, which was separately wound on a drum.
A chlorosulfonated polyethylene rubber compound of the same thickness and composition was laminated thereon, and steam vulcanization was performed at 8 kg/cm 2 for 40 minutes to produce a sample in which two cords were embedded in the vulcanizate. This sample was wrapped around a rotating bending bar positioned vertically, one end of the sample was fixed to a frame, a load of 2 kg was applied to the other end, and the rotating bending bar was reciprocated up and down 50,000 times for a bending test. Ivy. Thereafter, the strength of this sample was measured at a tensile speed of 50 mm. The results are shown in Table 5. The strength retention rate (%) shown in Table 5 is the value obtained by dividing the strength before the bending test by the strength after the bending test. Example 3 Cords treated by appropriately changing the weight ratio of the acrylate compound having an acryloyl group and an epoxy group to the chlorosulfonated polyethylene rubber in the post-treatment liquid (D) of Example 1 were treated with the rubber compound shown in Table 1.
Example 1 and Example 2 using (1) as the adherend rubber
The material was treated in the same manner as described above, and an adhesion test and a bending test were conducted. The results are shown in Table 6. Example 4 The pre-treatment liquid (A) of Example 1 was used, and the post-treatment liquid (D) was used.
A treatment solution was created using hydrogenated NBR shown in Table 7 instead of the chlorosulfonated polyethylene rubber.
The cords treated with these treatment solutions were used as samples in the same manner as in Example 1, using the hydrogenated NBR rubber compounds shown in Table 7 as adherends, and the samples were used as samples in Example 1.
An adhesion test and a bending test were conducted under the same conditions as in Example 2. As a result, the adhesive strength was 31.2Kg/mm.
Strong retention rate (%) was 89%.

【表】【table】

【表】 第 7 表 (重量部) 水素化NBR 100 ステアリン酸 1 カーボンブラツク 45 プロセスオイル 10 ZnO 2 MgO 4 ジフエニルアミン誘導体 3 トリメチロールプロパントリメタアクリレート
3 ジクミルパーオキサイド 4 (発明の効果) 以上のように、本発明の方法においては、炭素
繊維の表面に前処理液と後処理液が硬化した状態
で付着し、この前処理液が後処理液を炭素繊維に
強固に付着させる機能を担い、しかも前処理液の
エポキシウレタン樹脂が可撓性を有するため炭素
繊維の屈曲性を阻害せず、そして後処理液が被着
体であるゴム配合物と相溶性を有するため、得ら
れるゴム配合物と炭素繊維との接着力が向上し、
更に屈曲テスト後の強力保持率も良好で極めて良
好な耐疲労性を有している。これにより、本発明
では動力伝動用ベルト、コンベヤベルト、タイヤ
等の動的製品の補強体の接着方法に充分適用でき
るものである。
[Table] Table 7 (Parts by weight) Hydrogenated NBR 100 Stearic acid 1 Carbon black 45 Process oil 10 ZnO 2 MgO 4 Diphenylamine derivative 3 Trimethylolpropane trimethacrylate
3 Dicumyl peroxide 4 (Effects of the invention) As described above, in the method of the present invention, the pre-treatment liquid and the post-treatment liquid adhere to the surface of the carbon fiber in a hardened state, and this pre-treatment liquid is used in the post-treatment. The rubber compound has the function of firmly adhering the liquid to the carbon fibers, and since the epoxy urethane resin of the pre-treatment liquid is flexible, it does not inhibit the flexibility of the carbon fibers, and the post-treatment liquid is the adherend. Because it is compatible with carbon fibers, the adhesive strength between the resulting rubber compound and carbon fibers is improved.
Furthermore, the strength retention rate after the bending test is good, and it has extremely good fatigue resistance. Therefore, the present invention can be fully applied to a method of adhering reinforcing bodies for dynamic products such as power transmission belts, conveyor belts, and tires.

Claims (1)

【特許請求の範囲】 1 炭素繊維をエポキシウレタン樹脂の溶液に浸
漬し熱処理した後、アクリロイル基とエポキシ基
を有するアクリレート化合物を含んだゴム糊に浸
漬し熱処理した後、これを被着体である未加流の
ゴム配合物と密着加硫してなることを特徴とする
炭素繊維とゴム配合物との接着方法。 2 上記被着体である未加硫のゴム配合物がパー
オキサイド加硫可能であることを特徴とする特許
請求の範囲の第1項記載の炭素繊維とゴム配合物
との接着方法。
[Scope of Claims] 1 Carbon fibers are immersed in an epoxy urethane resin solution and heat-treated, then immersed in a rubber glue containing an acrylate compound having an acryloyl group and an epoxy group, and then heat-treated, and then used as an adherend. A method for adhering carbon fibers and a rubber compound, characterized by vulcanizing the rubber compound in close contact with an uncured rubber compound. 2. The method of bonding carbon fibers and a rubber compound according to claim 1, wherein the unvulcanized rubber compound as the adherend can be peroxide vulcanized.
JP27405685A 1985-12-04 1985-12-04 Adhesive treatment of carbon fiber and rubber compound Granted JPS62133187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27405685A JPS62133187A (en) 1985-12-04 1985-12-04 Adhesive treatment of carbon fiber and rubber compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27405685A JPS62133187A (en) 1985-12-04 1985-12-04 Adhesive treatment of carbon fiber and rubber compound

Publications (2)

Publication Number Publication Date
JPS62133187A JPS62133187A (en) 1987-06-16
JPS6363671B2 true JPS6363671B2 (en) 1988-12-08

Family

ID=17536350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27405685A Granted JPS62133187A (en) 1985-12-04 1985-12-04 Adhesive treatment of carbon fiber and rubber compound

Country Status (1)

Country Link
JP (1) JPS62133187A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271077A (en) * 1988-09-07 1990-03-09 Osaka Shosen Mitsui Senpaku Kk Refrigerator for container
JPH0271075A (en) * 1988-09-07 1990-03-09 Osaka Shosen Mitsui Senpaku Kk Refrigerator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6531245B1 (en) * 2018-04-03 2019-06-19 株式会社ハリガイ工業 Composite material combining carbon fiber woven fabric and elastic polymer compound and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271077A (en) * 1988-09-07 1990-03-09 Osaka Shosen Mitsui Senpaku Kk Refrigerator for container
JPH0271075A (en) * 1988-09-07 1990-03-09 Osaka Shosen Mitsui Senpaku Kk Refrigerator

Also Published As

Publication number Publication date
JPS62133187A (en) 1987-06-16

Similar Documents

Publication Publication Date Title
KR0163651B1 (en) Fiber reinforced elastic body and power transmission belt using it
JP3707332B2 (en) Glass fiber and rubber products
JPS6363671B2 (en)
JP3030467B2 (en) Method of bonding hydrogenated nitrile rubber compound to fiber
JP4030499B2 (en) Glass fiber for rubber reinforcement
JPS6024131B2 (en) Method of adhering fibers and hydrogenated nitrile rubber compounds
EP0084453B1 (en) Fiber reinforced rubber manufacture
JP4465514B2 (en) Polyester fiber cord processing method
JP4286393B2 (en) Adhesive treatment method between rubber composition and fiber material
JPH06299134A (en) Adhesive composition for polyester fiber
JP3231644B2 (en) Polyester fiber bonding method
JP3762583B2 (en) Polyester fiber cord manufacturing method
JP3762581B2 (en) Polyester fiber cord manufacturing method
JPH03273032A (en) Bonding of hydrogenated nitrile rubber composition to fiber
JPH05346140A (en) Toothed belt
JPH0218426A (en) Method for bonding hydrogenated nitrile rubber blend to fiber
JPH02170830A (en) Bonding of aromatic polyamide fiber and rubber compound
JP2004292735A (en) Process for producing bonded product of ethylene-alpha-olefin rubber composition to fiber and power transmission belt
JPH0270726A (en) Method of bonding hydrogenated nitrile rubber compound to fiber
JPH04198326A (en) Bonding of hydrogenated nitrile rubber compound and fiber
JPH0641525B2 (en) Method of bonding hydrogenated nitrile rubber compound to fiber
JPH02175974A (en) Bonding of aromatic polyamide fiber to rubber formulation
AU615893B2 (en) Adhesive active finish for reinforcing members and related methods
JP3173527B2 (en) Method for bonding aromatic polyamide fiber to hydrogenated nitrile rubber compound
JPH0240094B2 (en) SENITOGOMUHAIGOBUTSUTONOSETSUCHAKUHOHO

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees