JPS6363638B2 - - Google Patents

Info

Publication number
JPS6363638B2
JPS6363638B2 JP58236415A JP23641583A JPS6363638B2 JP S6363638 B2 JPS6363638 B2 JP S6363638B2 JP 58236415 A JP58236415 A JP 58236415A JP 23641583 A JP23641583 A JP 23641583A JP S6363638 B2 JPS6363638 B2 JP S6363638B2
Authority
JP
Japan
Prior art keywords
chloride
solution
cuprous chloride
cathode chamber
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58236415A
Other languages
Japanese (ja)
Other versions
JPS60128279A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58236415A priority Critical patent/JPS60128279A/en
Publication of JPS60128279A publication Critical patent/JPS60128279A/en
Publication of JPS6363638B2 publication Critical patent/JPS6363638B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は金属銅及び塩素を製造する方法に関
するもので、詳しくは電子機器材料に使用するプ
リント配線基板の製造に際して生ずる塩化第二銅
含有廃液、或いは製鋼所における銅含有合金の酸
洗いで生ずる塩化第二銅含有廃液等の廃液を処理
して得た塩化第一銅含有溶液から金属銅及び塩素
を製造する方法に関するものである。 〔従来の技術〕 近年、プリント配線基板のエツチングに塩化第
二銅の水溶液を主成分とし、これに塩酸および過
酸化水素を添加したエツチング剤が多量に使用さ
れるようになり、これに伴いプリント配線基板の
エツチング後に排出される塩化第二銅の含有廃液
の処理が公害防止上の大きな問題となつてきてい
る。 また、製鋼所等で生産される銅含有ステンレス
鋼を塩酸で洗浄した後に生ずる廃液中には、塩化
第二銅が含まれており、この廃液の処理も問題と
なつている。 これらの廃液の処理方法として、無隔膜電解槽
或いは濾隔膜電解槽を使用した電解による銅の回
収方法が知られている。 〔発明が解決しようとする問題点〕 しかしながら、この無隔膜法による電解又は濾
隔膜法による電解においては、電解液中に2価の
銅イオンが存在するため、銅の回収率が低く、か
つ溶液の酸性度によつては還元過程で塩化第一銅
が生じ、この塩化第一銅の溶解度が小さいため、
陰極上に塩化第一銅が析出してくるといつた問題
が生じ、工業的には採用し難いものである。 このように、多量に排出される塩化第二銅廃液
の処理には適切な方法が未だなく、その処理に苦
慮しているのが現状である。 〔問題点を解決するための手段〕 この発明はかゝる現状に鑑み鋭意研究の結果、
プリント配線基板のエツチング後に排出される廃
液、或いは銅合金の酸洗いで生ずる廃液等の塩化
第二銅が、金属銅によつて容易に還元されて塩化
第一銅となることから、かゝる塩化第一銅溶液か
ら、高純度の金属銅と塩素を容易に、しかも著し
く安価に回収することに成功したものである。 すなわち、この発明は陽イオン交換膜によつて
陽極室と陰極室とに区画してなる電解槽の陽極室
に、塩酸又は金属塩化物の水溶液を供給し、陰極
室には、予め塩化第一銅を塩素イオンと反応せし
めて得た塩化第一銅の塩素化錯体溶液を供給する
か、又は/及び塩素イオンを少なくとも塩化第一
銅の塩素化錯体の生成に足る濃度として陰極室内
に存在せしめた状態で塩化第一銅を供給し、電解
により陽極より塩素ガスを発生させ、陰極に金属
銅を電析せしめることを特徴とする金属銅及び塩
素の製造法である。 以下、この発明に使用する電解槽及び電解方法
について、添付の図面を引用してより具体的に説
明する。 第1図はこの発明に使用する電解槽および付帯
設備ならびに経路を示すもので、1は単位電解槽
で構成された電解槽であつて、内部を陽イオン交
換膜4によつて陽極室2、陰極室3に区画してい
る。5は陽極5,6は陰極である。 7は陰極室3に供給する塩化第一銅の塩素化錯
体溶液又は/及び塩化第一銅溶液の供給経路、8
は陰極室3の上部より塩酸又は金属塩化物を含む
陰極室液を抜出して導入経路13を経て塩化第一
銅の塩素化錯体溶液調整用の生成槽12に通ずる
陰極室液の抜出経路である。 生成槽12は、塩化第一銅の塩素化錯体溶液又
は/及び塩化第一銅溶液を陰極室液として陰極室
3に供給する供給経路7に結合され、その末端は
陰極室3に通じている。 9は前記抜出経路8の途中で分岐して陽極室2
の底部に通じる陰極室液の供給経路、10は陽極
室2において発生した塩素ガスの排出部、11は
陽極室より排出する未反応物を含む淡塩水の排
出、14は塩化第一銅溶液の生成槽12への導入
部、15は塩酸又は1価、2価イオンの金属塩化
物水溶液を生成槽12に導入する塩素イオン供給
部である。 塩化第一銅は、例えばプリント配線基板のエツ
チングで得た塩化第二銅を含む廃液を金属銅で処
理することによつて得られるものである。 この塩化第一銅は、電解槽1に付帯する導入部
14から塩化第一銅の塩素化錯体の生成槽12に
供給される。 この生成槽12において、導入経路13を経て
供給される陰極液中の塩酸、又は1価、2価イオ
ンの金属塩化物水溶液又は/及び供給部15によ
り別途新規に供給される塩酸、又は1価、2価イ
オンの金属塩化物水溶液と合流し、塩化第一銅の
塩素化錯体溶液として供給経路7より陰極室3に
導入供給される。 前記陰極室3から抜出経路8を経て取出された
塩酸又は金属塩化物水溶液を含む脱銅後の陰極室
液は、該抜出経路8より分岐した供給経路9から
陽極室2に導入供給される。 なお、図中16は濃度調整用の水の供給部であ
る。 この電解槽1による電解操作は、連続操作とす
ることができる。 具体的には、電解槽1の各部に供給する液およ
び電解槽1から排出する液、ガスを連続して送入
および排出して実施する。 陰極室3に供給される塩化第一銅の塩素化錯体
溶液は、0.01mol/l〜2.2mol/lの濃度であれば充
分であるが、特に限定されるものではない。 陰極室3における1価の銅イオンの濃度が低い
時には、電解液抵抗を減ずるため、電解質として
塩酸又は金属塩化物等の1種又は2種以上を添加
してもよい。 この場合の水素イオン濃度(PH)は、4以下で
あることが望ましい。 陽イオン交換膜4を通して陽極室2から陰極室
3に移行される陽イオンは、配位水と共に通電電
流によりその移行量が決まつてくる。 一方、陽極室2に供給する塩酸又は金属塩化物
水溶液の濃度は、0.5mol/l〜5mol/lの範囲が好
ましい。 これら供給原料は、陰極室3における脱銅後の
塩酸又は金属塩化物を含む陰極室内液であるが、
その一部を新液として別個に、又は合流させて供
給してもよい。 陽極室2への供給用、陰極室3への供給用、及
び電極槽1の外部において塩化第一銅の塩素化錯
体生成用として供給される塩酸および金属塩化物
の内の陽イオン種としては、H+、Li+、Na+
K+、Mg2+、、Ca2+、Sr2+、Ba2+で、具体的には
HCl、NaCl、KCl、MgCl2、CaCl2、SrCl2
BaCl2等を挙げることができる。 陽極室2から排出される希薄な酸又は塩水は、
0.5mol/l以上あればよく、経済的には分解率を大
きくする方が好ましい。 電解槽1の通電電流密度は1A/dm2〜30A/dm2
の範囲が好ましいが、電解槽容量、電解時間、銅
の析出形態等を考慮するならば5A/dm2〜20A/d
m2が特に望ましい。 また、電解反応に供される陽イオン交換膜4に
ついては、カルボン酸膜、スルフオン酸膜等の通
常の陽イオン交換膜が使用できるが、電解浴の水
素イオン濃度が高いので、強酸型の例えばスルフ
オン酸基を有する陽イオン交換膜が望ましい。 弱酸型の陽イオン交換膜を用いると、膜の抵抗
が大きくなり、槽電圧が高くなる傾向なのであま
り好ましくない。 また、電解浴自体が酸性のため、多価陽イオン
の混在があつても交換膜の損傷は小さいが、多価
陽イオンとして銅より貴なる析出電位をもつ金属
イオンは純銅を得る目的ではあまり好ましいもの
ではない。 陽極には、グラフアイト、マグネタイト、過酸
化ナマリ、あるいはチタン上に白金族金属を塗工
した寸法安定性の不溶性金属陽極などが使用され
る。 陰極は、銅の析出電位が水素発生より貴の電位
で電析するため、酸性溶液中においても常温での
電解が可能となるので、例えばニツケル、銅、チ
タン、チタン合金を使用しても腐蝕は問題とはな
らない。 この発明において、陰極室3に供給する塩化第
一銅の塩素化錯体溶液に代えて、原料塩化第一銅
の溶液を導入部14から生成槽12、供給経路7
を経て陰極室3に供給しているが、直接塩化第一
銅のスラリーを陰極室3に供給してもよい。 但し、直接供給の場合、供給した塩化第一銅溶
液が少なくとも陰極室3内において、塩化第一銅
の塩素化錯体を形成するに足る濃度の塩素イオン
を存在させることが必要である。 かゝる塩素イオンは、塩化第一銅溶液の陰極室
3への供給に平行して直接陰極室3に加えるか、
あるいは供給部15から塩酸等の塩素イオン含有
液を生成槽12に加えて塩化第一銅スラリーに添
加するなど、陰極室3への供給に先立つて、該塩
化第一銅のスラリー中に加えることによつて達成
される。 また、生成槽12において、予め調整した塩化
第一銅の塩素化錯体溶液を、供給経路7から陰極
室3に供給する手段と、前記した塩化第一銅溶液
を陰極室3に直接供給する手段はこれを併用して
実施してもよい。 〔作 用〕 図示した電解槽1における陽極5、陰極6への
通電によつて、陰極室3の塩化第一銅の塩素化錯
体水溶液は還元されて、金属銅として陰極6の表
面に電析される。 一方、陽極室2内では塩酸又は金属塩化物水溶
液は、解離して陽イオン(水素イオン、又は該当
する金属塩化物の金属イオン)として存在し、こ
れが陽イオン交換膜4を通して配位水と共に陰極
室3内に移行し、陰極室3内において塩素イオン
により塩酸又は金属塩化物を生成する。 かくして脱銅により生成した塩酸又は金属塩化
物を含み、かつ塩化第一銅の塩素化錯体溶液中に
含まれる遊離塩酸等を含有する陰極室液は、抜出
経路8から、その一部が供給経路9を通じて陽極
室2に供給され、陽極室2への供給原料として再
使用に供され、残りの陰極室液は導入経路13を
経て塩化第一銅の塩素化錯体調整用として生成槽
12に供給される。 陽極室2においては、発生する塩素イオンが塩
素ガスとして排出部10から系外に排出される。 生成槽12においては、導入部14から供給さ
れる新規な塩化第一銅溶液が、導入経路13より
の陰極室液中の塩酸、又は金属塩化物又は/及び
供給部15から別途新規に導入される塩酸、又は
1価、2価イオンの金属塩化物水溶液と混合して
反応して、塩化第一銅の塩素化錯体溶液として供
給経路7から陰極室3に供給される。 〔実 施 例〕 以下に実施例を掲げてこの発明の方法をさらに
具体的に説明する。 実施例 1 第1図に示す電解槽構造および付属配管系路に
より次の通り連続運転による電解を行つた。 プリント配線基板のエツチングによつて得られ
た塩化第二銅を含む廃液を、予め金属銅によつて
処理して得た塩化第一銅含有液を原料塩化第一銅
溶液として使用した。 この原料塩化第一銅溶液を、新液として導入部
14から生成槽12に送入し、これを塩酸と反応
させて塩化第一銅の塩素化錯体溶液となし、得た
塩化第一銅の塩素化錯体溶液を供給経路7を通し
て電解槽1の陰極室3の底部から供給した。 生成槽12で使用した前記の塩酸は、導入経路
13からの塩酸と、供給部15における新規補給
分である。 陽極室2には、抜出経路8から供給経路9を経
て得られる塩酸を含む陰極室液を供給しつゝ、陰
極室3において金属銅を電析し、排出部10から
塩素ガスを取出し、排出部11からは未反応の塩
酸を含む液を排出した。 この場合の各部の送入、排出の諸元、及び運転
条件その他、ならびに運転結果は第1表の通りで
あつた。
[Industrial Application Field] This invention relates to a method for producing metallic copper and chlorine, and more specifically, it relates to a method for producing metallic copper and chlorine, and more specifically, it relates to a method for producing metallic copper and chlorine. The present invention relates to a method for producing metallic copper and chlorine from a cuprous chloride-containing solution obtained by treating a waste solution such as a cupric chloride-containing waste solution generated during pickling of an alloy. [Prior Art] In recent years, a large amount of etching agents containing an aqueous solution of cupric chloride, to which hydrochloric acid and hydrogen peroxide have been added, have come to be used in large quantities for etching printed wiring boards. The treatment of waste liquid containing cupric chloride discharged after etching wiring boards has become a major problem in terms of pollution prevention. Further, the waste liquid generated after washing copper-containing stainless steel produced in steel mills and the like with hydrochloric acid contains cupric chloride, and the treatment of this waste liquid has also become a problem. As a method for treating these waste liquids, a method for recovering copper by electrolysis using an electrolytic cell without a diaphragm or an electrolytic cell with a filter diaphragm is known. [Problems to be solved by the invention] However, in electrolysis using the non-diaphragm method or electrolysis using the filtration diaphragm method, the recovery rate of copper is low and the solution Depending on the acidity of
Problems arise when cuprous chloride precipitates on the cathode, making it difficult to adopt it industrially. As described above, there is still no suitable method for treating the cupric chloride waste liquid that is discharged in large quantities, and the current situation is that it is difficult to dispose of it. [Means for solving the problem] This invention was developed as a result of intensive research in view of the current situation.
Cupric chloride, such as waste fluid discharged after etching printed wiring boards or waste fluid generated during pickling of copper alloys, is easily reduced by metallic copper to become cuprous chloride. This method succeeded in recovering highly pure metallic copper and chlorine from a cuprous chloride solution easily and at a significantly low cost. That is, in this invention, an aqueous solution of hydrochloric acid or a metal chloride is supplied to the anode chamber of an electrolytic cell which is divided into an anode chamber and a cathode chamber by a cation exchange membrane, and first chloride is preliminarily supplied to the cathode chamber. Supplying a solution of a chlorinated complex of cuprous chloride obtained by reacting copper with chloride ions, or/and allowing chlorine ions to be present in the cathode chamber at least in a concentration sufficient to form a chlorinated complex of cuprous chloride. This is a method for producing metallic copper and chlorine, which is characterized in that cuprous chloride is supplied in a state in which copper chloride is dissolved, chlorine gas is generated from an anode by electrolysis, and metallic copper is electrodeposited on a cathode. Hereinafter, the electrolytic cell and electrolysis method used in the present invention will be described in more detail with reference to the attached drawings. FIG. 1 shows an electrolytic cell, ancillary equipment, and routes used in the present invention. Reference numeral 1 is an electrolytic cell composed of unit electrolytic cells, and the inside is connected to an anode chamber 2 by a cation exchange membrane 4. It is divided into cathode chamber 3. 5 is an anode, and 6 is a cathode. 7 is a supply route for a chlorinated complex solution of cuprous chloride and/or a cuprous chloride solution to be supplied to the cathode chamber 3; 8
is an extraction route for the cathode compartment solution which draws out the cathode compartment solution containing hydrochloric acid or metal chloride from the upper part of the cathode compartment 3 and leads to the production tank 12 for preparing the chlorinated complex solution of cuprous chloride via the introduction route 13. be. The generation tank 12 is connected to a supply path 7 that supplies a chlorinated complex solution of cuprous chloride and/or a cuprous chloride solution to the cathode chamber 3 as a cathode chamber liquid, and the end thereof is connected to the cathode chamber 3. . 9 branches off in the middle of the extraction path 8 and connects to the anode chamber 2.
10 is a discharge section for the chlorine gas generated in the anode chamber 2, 11 is a discharge section for fresh salt water containing unreacted substances discharged from the anode chamber, and 14 is a channel for discharging the cuprous chloride solution. An introduction section 15 into the generation tank 12 is a chlorine ion supply section that introduces hydrochloric acid or a metal chloride aqueous solution of monovalent and divalent ions into the generation tank 12 . Cuprous chloride is obtained, for example, by treating a waste liquid containing cupric chloride obtained from etching printed wiring boards with metallic copper. This cuprous chloride is supplied from an introduction section 14 attached to the electrolytic cell 1 to a production tank 12 for producing a chlorinated complex of cuprous chloride. In this generation tank 12, hydrochloric acid in the catholyte supplied via the introduction route 13, or a metal chloride aqueous solution of monovalent or divalent ions, or/and hydrochloric acid newly supplied separately from the supply section 15, or monovalent , and an aqueous metal chloride solution of divalent ions, and is introduced and supplied to the cathode chamber 3 through the supply path 7 as a chlorinated complex solution of cuprous chloride. The decopper-removed cathode chamber solution containing hydrochloric acid or metal chloride aqueous solution taken out from the cathode chamber 3 via the extraction path 8 is introduced and supplied to the anode chamber 2 through a supply path 9 branched from the extraction path 8. Ru. Note that 16 in the figure is a water supply section for concentration adjustment. The electrolysis operation using this electrolytic cell 1 can be a continuous operation. Specifically, the liquid to be supplied to each part of the electrolytic cell 1 and the liquid and gas to be discharged from the electrolytic cell 1 are continuously fed and discharged. The chlorinated complex solution of cuprous chloride supplied to the cathode chamber 3 has a sufficient concentration of 0.01 mol/l to 2.2 mol/l, but is not particularly limited. When the concentration of monovalent copper ions in the cathode chamber 3 is low, one or more of hydrochloric acid or metal chlorides may be added as an electrolyte in order to reduce electrolyte resistance. In this case, the hydrogen ion concentration (PH) is preferably 4 or less. The amount of cations transferred from the anode chamber 2 to the cathode chamber 3 through the cation exchange membrane 4 is determined by the applied current together with coordination water. On the other hand, the concentration of the hydrochloric acid or metal chloride aqueous solution supplied to the anode chamber 2 is preferably in the range of 0.5 mol/l to 5 mol/l. These feed materials are the cathode chamber solution containing hydrochloric acid or metal chloride after copper removal in the cathode chamber 3;
A part of the liquid may be supplied separately as a new liquid, or may be combined and supplied. As cationic species of hydrochloric acid and metal chlorides supplied to the anode chamber 2, to the cathode chamber 3, and to generate a chlorinated complex of cuprous chloride outside the electrode chamber 1, , H + , Li + , Na + ,
K + , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , specifically
HCl, NaCl, KCl, MgCl2 , CaCl2 , SrCl2 ,
Examples include BaCl 2 and the like. The dilute acid or salt water discharged from the anode chamber 2 is
It is sufficient if it is 0.5 mol/l or more, and economically it is preferable to increase the decomposition rate. The current density of electrolytic cell 1 is 1A/dm 2 to 30A/dm 2
The range is preferably 5A/dm 2 to 20A/d, considering the electrolytic cell capacity, electrolysis time, copper precipitation form, etc.
m 2 is particularly desirable. Regarding the cation exchange membrane 4 used in the electrolytic reaction, ordinary cation exchange membranes such as carboxylic acid membranes and sulfonic acid membranes can be used, but since the concentration of hydrogen ions in the electrolytic bath is high, strong acid type membranes such as A cation exchange membrane having sulfonic acid groups is preferred. If a weak acid type cation exchange membrane is used, the resistance of the membrane increases and the cell voltage tends to increase, which is not very preferable. In addition, since the electrolytic bath itself is acidic, damage to the exchange membrane is small even if polyvalent cations are present, but as polyvalent cations, metal ions with a deposition potential nobler than copper are not suitable for obtaining pure copper. Not desirable. For the anode, a dimensionally stable insoluble metal anode such as graphite, magnetite, peroxide, or titanium coated with a platinum group metal is used. As the cathode is electrodeposited at a higher potential than hydrogen generation, electrolysis at room temperature is possible even in acidic solutions, so even if nickel, copper, titanium, or titanium alloys are used, corrosion will not occur. is not a problem. In this invention, instead of the chlorinated complex solution of cuprous chloride supplied to the cathode chamber 3, a solution of raw material cuprous chloride is supplied from the introduction part 14 to the production tank 12 and the supply path 7.
Although the slurry of cuprous chloride is supplied to the cathode chamber 3 through the slurry, the cuprous chloride slurry may be directly supplied to the cathode chamber 3. However, in the case of direct supply, it is necessary that the supplied cuprous chloride solution contains chlorine ions at a concentration sufficient to form a chlorinated complex of cuprous chloride at least in the cathode chamber 3. Such chloride ions can be added directly to the cathode compartment 3 in parallel with the supply of the cuprous chloride solution to the cathode compartment 3, or
Alternatively, a chlorine ion-containing liquid such as hydrochloric acid may be added to the cuprous chloride slurry from the supply unit 15 to the generation tank 12 before being supplied to the cathode chamber 3. achieved by. In addition, in the generation tank 12, means for supplying a chlorinated complex solution of cuprous chloride prepared in advance to the cathode chamber 3 from the supply path 7, and means for directly supplying the cuprous chloride solution described above to the cathode chamber 3. may be carried out in combination. [Function] By energizing the anode 5 and cathode 6 in the illustrated electrolytic cell 1, the chlorinated complex aqueous solution of cuprous chloride in the cathode chamber 3 is reduced and deposited on the surface of the cathode 6 as metallic copper. be done. On the other hand, in the anode chamber 2, the hydrochloric acid or metal chloride aqueous solution dissociates and exists as cations (hydrogen ions or metal ions of the corresponding metal chloride), which pass through the cation exchange membrane 4 together with the coordinated water to the cathode. It moves into the chamber 3, and generates hydrochloric acid or metal chloride with chlorine ions in the cathode chamber 3. A part of the cathode chamber solution containing hydrochloric acid or metal chloride produced by copper removal and free hydrochloric acid etc. contained in the chlorinated complex solution of cuprous chloride is supplied from the extraction route 8. The liquid is supplied to the anode chamber 2 through a path 9 and is reused as a feed material to the anode chamber 2, and the remaining cathode chamber liquid is passed through an introduction path 13 to a production tank 12 for preparing a chlorinated complex of cuprous chloride. Supplied. In the anode chamber 2, generated chlorine ions are discharged out of the system from the discharge section 10 as chlorine gas. In the generation tank 12, the new cuprous chloride solution supplied from the introduction part 14 is replaced with hydrochloric acid or metal chloride in the cathode chamber solution from the introduction route 13, or/and newly introduced separately from the supply part 15. The mixture is mixed with hydrochloric acid or an aqueous solution of monovalent or divalent metal chloride, and reacts, and is supplied from the supply path 7 to the cathode chamber 3 as a chlorinated complex solution of cuprous chloride. [Examples] The method of the present invention will be explained in more detail below with reference to Examples. Example 1 Electrolysis was carried out in continuous operation as follows using the electrolytic cell structure and attached piping system shown in FIG. A cuprous chloride-containing liquid obtained by previously treating a waste liquid containing cupric chloride obtained by etching a printed wiring board with metal copper was used as a raw material cuprous chloride solution. This raw material cuprous chloride solution is sent as a new solution from the introduction part 14 to the generation tank 12, and is reacted with hydrochloric acid to form a chlorinated complex solution of cuprous chloride. The chlorinated complex solution was supplied from the bottom of the cathode chamber 3 of the electrolytic cell 1 through the supply path 7. The aforementioned hydrochloric acid used in the generation tank 12 is the hydrochloric acid from the introduction route 13 and the newly replenished amount in the supply section 15. While supplying the cathode chamber solution containing hydrochloric acid obtained from the extraction path 8 to the supply path 9 to the anode chamber 2, metal copper is electrodeposited in the cathode chamber 3, and chlorine gas is taken out from the discharge section 10. A liquid containing unreacted hydrochloric acid was discharged from the discharge section 11. In this case, the specifications of the supply and discharge of each part, the operating conditions, etc., and the operating results were as shown in Table 1.

【表】【table】

【表】 実施例 2 実施例1において塩化第一銅の塩素化錯体の生
成槽12における供給部15からの塩酸の新規補
給を行わず陰極室3からの塩化ナトリウムを含む
脱銅された陰極室液を抜出経路8及び導入経路1
3を経て供給し、生成槽12で経路14からの塩
化第一銅溶液と合流せしめると共に、供給経路9
から塩化ナトリウムを含む陰極室液を陽極室2に
供給し、別途陰極室3に塩化ナトリウム溶液を送
入して電解せしめた。 この場合の各部の送入、排出の諸元、及び電解
運転条件その他、ならびに運転結果は第2表の通
りであつた。
[Table] Example 2 A cathode chamber decoppered containing sodium chloride from the cathode chamber 3 without newly replenishing hydrochloric acid from the supply section 15 in the production tank 12 of the chlorinated complex of cuprous chloride in Example 1. Liquid extraction route 8 and introduction route 1
3, and is combined with the cuprous chloride solution from the route 14 in the generation tank 12, and the supply route 9
A cathode chamber solution containing sodium chloride was supplied to the anode chamber 2, and a sodium chloride solution was separately introduced into the cathode chamber 3 for electrolysis. In this case, the specifications of the supply and discharge of each part, the electrolytic operation conditions, and the operation results are as shown in Table 2.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

この発明は、陽イオン交換膜によつて陰陽両極
室を形成した電解槽の陽極室に、塩酸又は金属塩
化物の水溶液を供給し、陰極室に予め塩化第一銅
を塩素イオンと反応せしめて得た塩化第一銅の塩
素化錯体溶液を供給するか、又は/及び塩素イオ
ンを少なくとも塩化第一銅の塩素化錯体の生成に
足る濃度として該陰極室内に存在せしめた状態で
塩化第一銅を供給して電解し、もつて陽極から塩
素ガスを、陰極に金属銅を得んとするもので、
かゝる電解処理によつて高純度の金属銅と、塩素
を高い効率で容易に取得することができるもので
ある。 また、その際、前記陽極室に供給する塩酸又は
金属塩化物の水溶液として、金属銅の電析によつ
て脱銅された陰極室液の一部を使用して電解を行
うことにより、新液の供給を極力節約しつゝ高純
度の金属銅および塩素をより高能率で回収するこ
とができるものである。 この発明の方法に使用する塩化第一銅溶液は、
プリント配線基板のエツチングで得られる廃液、
或いは製鋼所の銅含有合金の酸洗いで得られる廃
液等の塩化第二銅含有液を還元処理して頗る簡単
に得られるものである。 かゝる第一銅溶液を原料として電解することに
より、塩化第二銅含有廃液をそのまゝ電解処理す
る場合に比べて約半分の電力でほゞ同量の金属銅
を製造し得るのみならず、陽極からの酸素の発生
や陰極における銅の溶解が生ずることがなく、有
用性の高い塩素を生産することができるもので、
塩化第二銅含有廃液の還元処理費用を考慮しても
充分な利益回収が可能な経済的方法といえる。
This invention involves supplying hydrochloric acid or an aqueous solution of a metal chloride to the anode chamber of an electrolytic cell in which both cathode and cathode chambers are formed by a cation exchange membrane, and reacting cuprous chloride with chloride ions in advance to the cathode chamber. The obtained chlorinated complex solution of cuprous chloride is supplied, or/and cuprous chloride is supplied in a state in which chlorine ions are present in the cathode chamber at a concentration sufficient to form a chlorinated complex of cuprous chloride. The purpose is to supply chlorine gas and electrolyze it to obtain chlorine gas from the anode and metallic copper from the cathode.
Through such electrolytic treatment, high purity metallic copper and chlorine can be easily obtained with high efficiency. In addition, at that time, a part of the cathode chamber solution decoppered by electrodeposition of metal copper is used as the aqueous solution of hydrochloric acid or metal chloride to be supplied to the anode chamber, and a part of the cathode chamber solution is electrolyzed. It is possible to recover high-purity metallic copper and chlorine with higher efficiency while saving the supply of chlorine as much as possible. The cuprous chloride solution used in the method of this invention is
Waste liquid obtained from etching printed wiring boards,
Alternatively, it can be obtained very easily by reducing a cupric chloride-containing liquid such as a waste liquid obtained from pickling copper-containing alloys at a steel mill. By electrolyzing such a cuprous solution as a raw material, it is possible to produce approximately the same amount of metallic copper using approximately half the electricity compared to directly electrolytically treating waste liquid containing cupric chloride. First, it does not generate oxygen from the anode or dissolve copper at the cathode, and can produce highly useful chlorine.
This can be said to be an economical method that allows sufficient profit recovery even when the cost of reduction treatment of waste liquid containing cupric chloride is considered.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法に使用する電解槽およ
びその付帯設備の一例を示す構造図である。 1…電解槽、2…陽極室、3…陰極室、4…陽
イオン交換膜、5…陽極、6…陰極、7…塩化第
一銅溶液又は/及び塩化第一銅の塩素化錯体溶液
の陰極室への供給経路、8…脱銅された陰極室液
の抜出経路、9…脱銅された陰極室液の陽極室供
給経路、10…塩素ガス排出部、11…未反応物
を含む淡塩水の排出部、12…生成槽、13…陰
極室液の導入経路、14…塩化第一銅溶液の導入
部、15…塩素イオン供給部。
FIG. 1 is a structural diagram showing an example of an electrolytic cell and its ancillary equipment used in the method of the present invention. 1... Electrolytic cell, 2... Anode chamber, 3... Cathode chamber, 4... Cation exchange membrane, 5... Anode, 6... Cathode, 7... Cuprous chloride solution or/and chlorinated complex solution of cuprous chloride. Supply route to the cathode chamber, 8... Extraction route for the decoppered cathode compartment solution, 9... Supply route for the anode compartment solution for the decoppered cathode compartment solution, 10... Chlorine gas discharge section, 11... Contains unreacted materials. Fresh salt water discharge section, 12... Generation tank, 13... Cathode chamber liquid introduction path, 14... Cuprous chloride solution introduction section, 15... Chlorine ion supply section.

Claims (1)

【特許請求の範囲】 1 陽イオン交換膜によつて陽極室と陰極室とに
区画してなる電解槽の陽極室に、塩酸又は金属塩
化物の水溶液を供給し、陰極室には、予め塩化第
一銅を塩素イオンと反応せしめて得た塩化第一銅
の塩素化錯体溶液を供給するか、又は/及び塩素
イオンを少なくとも塩化第一銅の塩素化錯体の生
成に足る濃度として陰極室内に存在せしめた状態
で塩化第一銅を供給し、電解により陽極より塩素
ガスを発生させ、陰極に金属銅を電析せしめるこ
とを特徴とする金属銅及び塩素の製造法。 2 前記陽極室に供給する塩酸又は金属塩化物の
水溶液は、電析によつて脱銅された陰極室液を用
いることを特徴とする特許請求の範囲第1項記載
の金属銅及び塩素の製造法。 3 前記塩化第一銅の塩素化錯体溶液は、脱銅さ
れた陰極室液を抜出して陽極室に供給した残りの
陰極室液中の塩素イオンを、別途供給する塩化第
一銅と反応せしめたものであることを特徴とする
特許請求の範囲第1項記載の金属銅及び塩素の製
造法。 4 前記陰極室に供給する塩化第一銅の塩素化錯
体溶液又は/及び塩素イオンを少なくとも塩化第
一銅の塩素化錯体の生成に足る濃度として陰極室
内に存在せしめた状態で供給する塩化第一銅にお
ける当該塩化第一銅は、プリント配線基板のエツ
チングで生じた廃液中の塩化第二銅を還元して得
たものであることを特徴とする特許請求の範囲第
1項又は第2項記載の金属銅及び塩素の製造法。
[Claims] 1. An aqueous solution of hydrochloric acid or a metal chloride is supplied to the anode chamber of an electrolytic cell which is divided into an anode chamber and a cathode chamber by a cation exchange membrane, and the cathode chamber is preliminarily filled with chloride. A chlorinated complex solution of cuprous chloride obtained by reacting cuprous chloride with chloride ions is supplied, or/and chlorine ions are added to the cathode chamber at a concentration sufficient to form a chlorinated complex of cuprous chloride. A method for producing metallic copper and chlorine, which comprises supplying cuprous chloride in a state in which it exists, generating chlorine gas from an anode by electrolysis, and electrodepositing metallic copper on a cathode. 2. Production of metallic copper and chlorine according to claim 1, characterized in that the aqueous solution of hydrochloric acid or metal chloride supplied to the anode chamber is a cathode chamber solution decoppered by electrodeposition. Law. 3 The chlorinated complex solution of cuprous chloride is obtained by extracting the decoppered cathode chamber solution and supplying it to the anode chamber, and reacting the chlorine ions in the remaining cathode chamber solution with cuprous chloride that is supplied separately. A method for producing metallic copper and chlorine according to claim 1, characterized in that: 4 A chlorinated complex solution of cuprous chloride supplied to the cathode chamber and/or a cuprous chloride solution supplied with chlorine ions present in the cathode chamber at a concentration sufficient to at least generate a chlorinated complex of cuprous chloride. The cuprous chloride in copper is obtained by reducing cupric chloride in the waste liquid generated during etching of printed wiring boards, as described in claim 1 or 2. A method for producing metallic copper and chlorine.
JP58236415A 1983-12-16 1983-12-16 Method for producing metallic copper and chlorine from cuprous chloride Granted JPS60128279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58236415A JPS60128279A (en) 1983-12-16 1983-12-16 Method for producing metallic copper and chlorine from cuprous chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58236415A JPS60128279A (en) 1983-12-16 1983-12-16 Method for producing metallic copper and chlorine from cuprous chloride

Publications (2)

Publication Number Publication Date
JPS60128279A JPS60128279A (en) 1985-07-09
JPS6363638B2 true JPS6363638B2 (en) 1988-12-08

Family

ID=17000413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58236415A Granted JPS60128279A (en) 1983-12-16 1983-12-16 Method for producing metallic copper and chlorine from cuprous chloride

Country Status (1)

Country Link
JP (1) JPS60128279A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3913725B2 (en) * 2003-09-30 2007-05-09 日鉱金属株式会社 High purity electrolytic copper and manufacturing method thereof
KR20140068871A (en) * 2011-07-08 2014-06-09 인스티튜트 오브 케미컬 테크놀로지 (딤드 유니버시티) Electrochemical cell used in production of hydrogen using cu-cl thermochemical cycle
WO2013054341A2 (en) 2011-07-08 2013-04-18 Ganapati Dadasaheb Yadav Effect of operating parameters on the performance of electrochemical cell in copper-chlorine cycle
CN103422154A (en) * 2012-05-24 2013-12-04 叶福祥 Cuprous chloride (Cu+, cuCL) ion diaphragm electrodeposition regeneration of circuit board acidic waste etching solution

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829977A (en) * 1971-08-20 1973-04-20
JPS5440520A (en) * 1977-09-07 1979-03-30 Hitachi Ltd Magnet ring driving mechanism
JPS5518558A (en) * 1978-07-27 1980-02-08 Kagaku Gijutsu Shinkoukai Recovering method for copper from ferric chloride etching waste solution containing copper

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829977A (en) * 1971-08-20 1973-04-20
JPS5440520A (en) * 1977-09-07 1979-03-30 Hitachi Ltd Magnet ring driving mechanism
JPS5518558A (en) * 1978-07-27 1980-02-08 Kagaku Gijutsu Shinkoukai Recovering method for copper from ferric chloride etching waste solution containing copper

Also Published As

Publication number Publication date
JPS60128279A (en) 1985-07-09

Similar Documents

Publication Publication Date Title
JP5277448B2 (en) Electrochemical treatment method for recovering the value of metallic iron and chlorine from iron rich metal chloride waste
JPH05214572A (en) Electrocehmical process and reactor for producing sulfuric acid and sodium hydroxide
AU607921B2 (en) Process for refining gold and apparatus employed therefor
KR910001138B1 (en) Combined process for production of clorine dioxine and sodium hydroxide
JP3818619B2 (en) Hypochlorite production apparatus and method
CA2121628C (en) Process for the production of alkali metal chlorate
EP0199957B1 (en) Electrolysis of alkali metal chloride brine in catholyteless membrane cells employing an oxygen consuming cathode
PL82400B1 (en)
JPS6363638B2 (en)
US3855089A (en) Process for the electrolytic refining of heavy metals
JPS6363637B2 (en)
JPS5927385B2 (en) Production method of basic aluminum chloride
US4888099A (en) Process for the production of alkali metal chlorate
JPS6330991B2 (en)
US2810685A (en) Electrolytic preparation of manganese
US3364127A (en) Method for producing caustic soda and chlorine by means of electrolysis of sea water or other similar saltish water
KR20170108424A (en) Electrolysis cell, smelter and smelting method using same
US4609443A (en) Procedure for the cathodic electrowinning of metals, with the corresponding acid generation, from its salt solution
JP5344278B2 (en) Indium metal production method and apparatus
SE455706B (en) SET FOR PREPARATION OF ALKALIA METAL CHLORATE
PL160949B1 (en) Method of producing chlorine dioxide in an electrolytic chamber
WO1995023880A1 (en) Treatement of electrolyte solutions
JPS5985879A (en) Electric refinement
JP2571591B2 (en) Precious metal recovery method
US3119757A (en) Process and apparatus for the conversion of hydrochloric acid to chlorine