JPS6363627A - Production of cycloolefin - Google Patents
Production of cycloolefinInfo
- Publication number
- JPS6363627A JPS6363627A JP61206763A JP20676386A JPS6363627A JP S6363627 A JPS6363627 A JP S6363627A JP 61206763 A JP61206763 A JP 61206763A JP 20676386 A JP20676386 A JP 20676386A JP S6363627 A JPS6363627 A JP S6363627A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- catalyst
- ruthenium
- zinc sulfate
- cycloolefin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000001925 cycloalkenes Chemical class 0.000 title claims description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000003054 catalyst Substances 0.000 claims abstract description 81
- 238000006243 chemical reaction Methods 0.000 claims abstract description 64
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 claims abstract description 49
- 229910000368 zinc sulfate Inorganic materials 0.000 claims abstract description 47
- 229960001763 zinc sulfate Drugs 0.000 claims abstract description 41
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 31
- 229910052751 metal Inorganic materials 0.000 claims abstract description 29
- 239000002184 metal Substances 0.000 claims abstract description 29
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000007787 solid Substances 0.000 claims abstract description 23
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 22
- 239000001257 hydrogen Substances 0.000 claims abstract description 22
- 239000002245 particle Substances 0.000 claims abstract description 21
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- -1 monocyclic aromatic hydrocarbon Chemical class 0.000 claims abstract description 10
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 9
- 229910052742 iron Inorganic materials 0.000 claims abstract description 8
- 230000002378 acidificating effect Effects 0.000 claims abstract description 7
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 5
- 230000007935 neutral effect Effects 0.000 claims abstract description 5
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 4
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 4
- 239000011701 zinc Substances 0.000 claims description 30
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 26
- 229910052725 zinc Inorganic materials 0.000 claims description 26
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- 239000011651 chromium Substances 0.000 claims description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 8
- 229910017052 cobalt Inorganic materials 0.000 claims description 8
- 239000010941 cobalt Substances 0.000 claims description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 239000010955 niobium Substances 0.000 claims description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cis-cyclohexene Natural products C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 abstract description 37
- 150000002739 metals Chemical class 0.000 abstract description 10
- 150000001875 compounds Chemical class 0.000 abstract description 6
- 239000002994 raw material Substances 0.000 abstract description 6
- 239000004952 Polyamide Substances 0.000 abstract description 2
- 229920002647 polyamide Polymers 0.000 abstract description 2
- 239000013078 crystal Substances 0.000 abstract 1
- 229910044991 metal oxide Inorganic materials 0.000 abstract 1
- 150000004706 metal oxides Chemical class 0.000 abstract 1
- 238000000034 method Methods 0.000 description 40
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 27
- 239000007864 aqueous solution Substances 0.000 description 15
- 239000000843 powder Substances 0.000 description 12
- 238000006722 reduction reaction Methods 0.000 description 12
- 150000003839 salts Chemical class 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 230000002776 aggregation Effects 0.000 description 10
- 150000003304 ruthenium compounds Chemical class 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 238000005054 agglomeration Methods 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 5
- 239000011686 zinc sulphate Substances 0.000 description 5
- 235000009529 zinc sulphate Nutrition 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 150000001805 chlorine compounds Chemical class 0.000 description 4
- 150000002823 nitrates Chemical class 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 150000004679 hydroxides Chemical class 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 150000003752 zinc compounds Chemical class 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical group [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 239000012456 homogeneous solution Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- DJHGAFSJWGLOIV-UHFFFAOYSA-N Arsenic acid Chemical compound O[As](O)(O)=O DJHGAFSJWGLOIV-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229940000488 arsenic acid Drugs 0.000 description 1
- GCPXMJHSNVMWNM-UHFFFAOYSA-N arsenous acid Chemical compound O[As](O)O GCPXMJHSNVMWNM-UHFFFAOYSA-N 0.000 description 1
- GOOXRYWLNNXLFL-UHFFFAOYSA-H azane oxygen(2-) ruthenium(3+) ruthenium(4+) hexachloride Chemical compound N.N.N.N.N.N.N.N.N.N.N.N.N.N.[O--].[O--].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Ru+3].[Ru+3].[Ru+4] GOOXRYWLNNXLFL-UHFFFAOYSA-H 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000003842 bromide salts Chemical class 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 150000001934 cyclohexanes Chemical class 0.000 description 1
- 150000001935 cyclohexenes Chemical class 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000001637 plasma atomic emission spectroscopy Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 150000003303 ruthenium Chemical class 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 1
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 1
- 229940007718 zinc hydroxide Drugs 0.000 description 1
- IPCXNCATNBAPKW-UHFFFAOYSA-N zinc;hydrate Chemical compound O.[Zn] IPCXNCATNBAPKW-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、単環芳香族炭化水素全部分還元し、高選択ぶ
、高収率で対応するシクロオレフィン類。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides cycloolefins that completely reduce monocyclic aromatic hydrocarbons with high selectivity and high yield.
%にシクロヘキセン類を製造する方法に関するものであ
る。% of cyclohexene.
シクロヘキセン類は有機fヒ学工業に品の中間原科とし
てその価値が高<、vfにポリアミド原料。Cyclohexenes have high value as intermediate raw materials for organic materials and polyamide raw materials.
リジン原料などとして重要である。It is important as a raw material for lysine.
(従来の技術) かかるシクロヘキセン類の刃造方法としては。(Conventional technology) As a method for making blades of such cyclohexene.
例えば、(1)水およびアルカリ剤と周期表第VI族元
素を含有する触媒組成物を用いる方法(特公昭56−2
2850号公報) 、+21ニツケル、コバルト。For example, (1) a method using a catalyst composition containing water, an alkaline agent, and an element of Group VI of the periodic table (Japanese Patent Publication No. 56-2
2850), +21 nickel, cobalt.
クロム、チタンまfcはジルコニウムの酸化物に担持し
たルテニウム触媒音用い、アルコールまたはエステルを
添加剤として用いる方法(!¥i公昭52−5935号
公報) 、 f31鋼、銀、コバルト、ま之はカリウム
を含有するルテニウム触媒と水およびリン酸塩化合物を
使用する方法(特公昭56−4536号公1a ) 、
+41ルテニウム触媒ならびに周期表のIAA族金属
[A属金属、シよびマンガン。Chromium, titanium, fc uses ruthenium catalyst supported on zirconium oxide, alcohol or ester is used as an additive (Publication No. 52-5935), F31 steel, silver, cobalt, and potassium. A method using a ruthenium catalyst containing water and a phosphate compound (Japanese Patent Publication No. 1a of Japanese Patent Publication No. 56-4536 1a),
+41 Ruthenium catalyst as well as metals of group IAA of the periodic table [group A metals, carbon dioxide and manganese.
より選ばれた少なくとも1種の陽イオンの塩を含む中性
i比は酸性水溶液の存在下に反応を行なう方法(%公開
57−7607号公報) 、 (5)ルテニウムおよび
ロジウムの少なくとも1mk主成分とする固体触媒を周
期表I A族金属、[A族金属。A neutral i-ratio containing a salt of at least one cation selected from a method of carrying out a reaction in the presence of an acidic aqueous solution (% Publication No. 57-7607), (5) at least 1 mK main components of ruthenium and rhodium The solid catalyst is a group I A metal of the periodic table, [a group A metal.
マンガン、鉄、シよび亜鉛よりなる群から選ばれ之少な
くとも1穂の陽イオンの塩を含む水溶液で予め処理しt
ものを用い、水の存在下に反21行なう方法(特公昭5
1−98243号公報) 、[6]ルテニウム触媒を用
い、酸化亜鉛および水絃比亜鉛の少なくとも1種を反応
系に活性fヒ成分として添加して反応を行なう方法(特
開1)1359−184138号公報) 、(7)水お
よび少なくとも1aの亜鉛fヒ合物の存在下に、200
A以下の平均。Pre-treated with an aqueous solution containing a salt of at least one cation selected from the group consisting of manganese, iron, iron and zinc.
A method of performing anti-21 in the presence of water using a
1-98243), [6] A method of carrying out a reaction using a ruthenium catalyst and adding at least one of zinc oxide and water-fired zinc to the reaction system as an active component (JP-A-1) 1359-184138 (7) In the presence of water and at least 1a of zinc f-hide,
Average below A.
結晶子径を有する金属ルテニウム結晶子および/または
その凝集した粒子を使用する方法(%開開41−509
30号公報)などが提案されている。A method using metallic ruthenium crystallites and/or aggregated particles thereof having a crystallite diameter (% opening 41-509
Publication No. 30), etc. have been proposed.
(発明が解決しようとする問題点) しかし、これらの従来公知の方法におめては。(Problem to be solved by the invention) However, in these conventionally known methods.
目的とするシクロヘキセン類の選択it高める文めに、
原料の転化率を著しく抑える必要があったシ1反6速度
が極めて小さいなど、一般にシクロヘキセン類の収率な
らび罠生産性が低く、実用的なシクロヘキセン類の製造
方法となっていないのが現状である。To enhance the selection of the desired cyclohexene,
Currently, the yield and trap productivity of cyclohexene are low, such as the need to significantly suppress the conversion rate of the raw material and the very low conversion rate of cyclohexene, making it not a practical method for producing cyclohexene. be.
ま几、かかるシクロヘキセン類の製造方法が実用的なも
のとなる沈めには1反応に用いられる触媒が、継続的に
安定な活性もしくは選択性を維持できるものであること
が必要かつ重要であるが。However, in order for this method of producing cyclohexene to become practical, it is necessary and important that the catalyst used in one reaction be capable of continuously maintaining stable activity or selectivity. .
従来の技術においては、この点において必ずしも充分と
はいえない。Conventional techniques are not necessarily sufficient in this respect.
また1本発明者らの検討によれば1例えば、*開開61
−50930号公報で提案されている金、属ルテニウム
粒子を単独に触媒として用い次場合には、比較的高収率
でシクロオレフィンが得られる場合もあるが1反応器と
反応液の接液部などに該触媒が付着、堆積し几り、触媒
自身が変fヒするなど、安定な反応系を維持することが
困難である場合が少なからず発生することが判った。Also, according to the study by the present inventors, 1 For example, *Opening 61
In some cases, cycloolefins can be obtained in relatively high yields when gold or metal ruthenium particles are used alone as a catalyst, as proposed in Publication No. 50930. It has been found that there are many cases in which it is difficult to maintain a stable reaction system, such as when the catalyst adheres to, accumulates on, etc., and the catalyst itself becomes deformed.
(問題点を解決する九めの手段〕
本発明者らは、かかる問題点を解決する定め、シクロヘ
キセン類の収率向上、および工業的に有利な安定し友触
媒系を得るため、単環芳香族炭(ヒ水素の部分還元法に
おける触媒系、すなわち、主触媒とその他の成分からな
る系について鋭意検討し、本発明に到達し友啄のである
。(Ninth Means for Solving the Problems) The present inventors have determined to solve the problems, improve the yield of cyclohexanes, and obtain a stable friendly catalyst system that is industrially advantageous. The present invention was achieved through intensive study of the catalyst system in the partial reduction method of arsenic group carbon (arsenic hydrogen), that is, the system consisting of the main catalyst and other components.
すなわち1本発明は、単環芳香族炭化水素を水の共存下
、水素圧よ)部分還元するに際し、200^以下の平均
結晶子径を有する金属ルテニウムを主成分とする水素化
触媒粒子を用い、該触媒粒子トハ別に、チタン、ニオブ
、タンタル、クロム。In other words, the present invention uses hydrogenation catalyst particles containing metal ruthenium as a main component and having an average crystallite diameter of 200^ or less when partially reducing monocyclic aromatic hydrocarbons (in the presence of water and under hydrogen pressure). , the catalyst particles are titanium, niobium, tantalum, and chromium.
鉄、コバルト、アルミニウム、ガリウム、ケイ素よシ選
ばれた少なくとも1種の金属の酸化物を添加し、さらに
、少なくとも1種の固体塩基性硫酸亜鉛の共存下、中性
または酸性の条件下に反13ヲ行なうことにより、従来
にない良好な収率でシクロオレフィン類を得、しかも驚
くほど安定し7を触媒系として使用できるシクロオレフ
ィンの製造法である。本発明方法によれば、シクロオレ
フィン類の収ぶを40係以上とすることが可ロヒである
と同時に0本発明の如き組合わせによって初めて。An oxide of at least one metal selected from iron, cobalt, aluminum, gallium, and silicon is added, and the mixture is reacted under neutral or acidic conditions in the coexistence of at least one solid basic zinc sulfate. By carrying out step 13, it is a method for producing cycloolefins in which cycloolefins can be obtained in unprecedentedly good yields, and which is also surprisingly stable and can be used as a catalyst system. According to the method of the present invention, it is possible to increase the concentration of cycloolefins to 40 or more, and at the same time, it is possible to achieve a concentration of cycloolefins of 40 or more, and at the same time, it is possible to achieve a concentration of cycloolefins of 40 or more, and at the same time, it is only possible to achieve a concentration of 0.
水素化触媒の様々な変質1例えば、経時的な凝集の進行
、平均結晶子径の変化な゛どによる反応底績■変化全署
しく抑制することができ、実用的な見池から極めて有用
な方法である。Various changes in the hydrogenation catalyst 1 For example, the progress of agglomeration over time, changes in the average crystallite diameter, etc.Changes in the reaction process can be completely suppressed, and from a practical perspective, it is extremely useful. It's a method.
以下1本発明の具体的な実施態様全8明する。Eight specific embodiments of the present invention will be explained below.
本発明の原料となる単環芳香5炭化水素とは。What is the monocyclic aromatic 5-hydrocarbon that is the raw material of the present invention?
ベンゼン、トルエン、キシレンa、 Jli[a4以下
のアルキル基を有する低級アルキルベンゼン類ヲいう。Benzene, toluene, xylene a, Jli[lower alkylbenzenes having an alkyl group of 4 or less.
本発明においては、 2oo′A以下の平均結晶子径を
有する金属ルテニウムを主取分とする水素化触媒粒子を
用いる。この触媒は、檻々のルテニウム化合物を還元し
て得られるもの、ま友はその真裏段階もしくは調製後に
シいて他の金属1例えば。In the present invention, hydrogenation catalyst particles containing metallic ruthenium as a main fraction having an average crystallite diameter of 2oo'A or less are used. This catalyst is obtained by reducing a ruthenium compound in the form of a ruthenium compound, which may be mixed with other metals, for example in a step behind it or after its preparation.
亜鉛もしくはクロム、モリブデン、タングステン。Zinc or chromium, molybdenum, tungsten.
マンガン、コバルト、ニッケル、鉄、Mなトラ加えたル
テニウムを主成分とするものである。81々のルテニウ
ム化合物としては特に制限はないが。Its main components are ruthenium with manganese, cobalt, nickel, iron, and M. There are no particular restrictions on the ruthenium compounds.
例えば、塩化物、臭化物、ヨウ化物、硝酸塩、硫酸塩、
水酸化物、酸化物、ルテニウムレッド、あるいは各種の
ルテニウムを含む錯体などを用いることができ、還元法
としては、水素ガス圧よる還元あるいはホルマリン、水
素化ホウ素ナトリウム。For example, chlorides, bromides, iodides, nitrates, sulfates,
Hydroxide, oxide, ruthenium red, or various complexes containing ruthenium can be used. Reduction methods include reduction by hydrogen gas pressure, formalin, and sodium borohydride.
ヒドラジン等による化学還元法によって行うことができ
る。特にルテニウムの塩を加水分解して水酸化物とし、
これを還元する方法は好ましく用いられる。This can be carried out by a chemical reduction method using hydrazine or the like. In particular, ruthenium salts are hydrolyzed to form hydroxides,
A method of reducing this is preferably used.
また1本発明方法においては、あらかじめ亜鉛全含有せ
しめたルテニウム化合物の還元物を使用すると、シクロ
オレフィンの収itさらに高めることができ、有効に使
用きれる。かかる触媒は。In addition, in the method of the present invention, if a reduced product of a ruthenium compound containing all zinc in advance is used, the yield of cycloolefin can be further increased and the product can be used effectively. Such a catalyst.
あらかじめ有価のルテニウム化合物に亜鉛化合物を含有
せしめ友後、還元して得られる還元物でらり、ルテニウ
ムは金槁状態まで還元され7tものである。使用できる
有価のルテニウム化合物は1例えば、塩化物、硝酸塩、
硫酸塩などの塩、アンミン錯塩などの錯体、水酸化物、
酸化物などであるが、特に3価もしくは4価のルテニウ
ムのfヒ合物が入手もしやすく、ま几、威扱い上も容易
であるので好ましい。また、使用できる亜鉛化合物は、
塩化物、硝酸塩、硫酸塩などの塩、アンミン錯塩などの
錯体、水酸化物、酸化物など巾広いものが使用可能であ
る。A zinc compound is added to a valuable ruthenium compound in advance, and then the reduced product obtained by reduction is used.Ruthenium is reduced to a golden state and has a weight of 7 tons. Valuable ruthenium compounds that can be used include chlorides, nitrates,
Salts such as sulfates, complexes such as ammine complexes, hydroxides,
Among these oxides, trivalent or tetravalent ruthenium f-hybrid compounds are particularly preferred because they are readily available and easy to prepare and handle. In addition, the zinc compounds that can be used are
A wide range of substances can be used, including salts such as chlorides, nitrates, and sulfates, complexes such as ammine complexes, hydroxides, and oxides.
かかる触媒中の亜鉛含有量は、ルテニウムに対し0.1
〜50重量幅、好ましくは2〜20重量囁iC調整され
る。したがって、触媒の主構成要素は。The zinc content in such catalysts is 0.1 to ruthenium.
~50 weight range, preferably 2-20 weight whisper iC adjusted. Therefore, the main components of the catalyst are.
ろく1でルテニウムであシ、亜鉛は担体ではない。Ruthenium is used as a carrier, and zinc is not a carrier.
このような亜鉛を含有する有価のルテニウム化合物は、
亜鉛訃よびルテニウムの化合物の混合浴at用いて、一
般的な共沈法などKよって固体として得てもよいし、あ
るいは均一溶液の状態で得てもよい。Valuable ruthenium compounds containing such zinc are
It may be obtained as a solid by a general coprecipitation method using a mixed bath of zinc and ruthenium compounds, or it may be obtained as a homogeneous solution.
かかる亜鉛を含有する有価のルテニウム化合物の還元方
法としては、一般的なルテニウムの還元方法を応用する
ことができる6例えば、気相におりて水素で還元する方
法、液相において水素もしくは適当な化学還元剤、例え
ば、 NaB)I4やホルマリンなどを届いて還元する
方法が好ましく応用され、水素により気相もしくは液相
で還元する方法は特に好フしい。As a method for reducing such a valuable ruthenium compound containing zinc, a general method for reducing ruthenium can be applied6.For example, a method of reducing with hydrogen in a gas phase, a method of reducing with hydrogen or an appropriate chemical in a liquid phase, etc. A method in which a reducing agent such as NaB)I4 or formalin is used for reduction is preferably applied, and a method in which hydrogen is used for reduction in the gas or liquid phase is particularly preferred.
気相において水素で還元する場合は、結晶子径の増加を
避ける意味で、極度の高温を避けたシ。When reducing with hydrogen in the gas phase, avoid extremely high temperatures to avoid increasing the crystallite size.
あるいは水素を他の不活性気体で希釈するなどの工夫を
するとよい。ま几、液相で還元する場合には、水やアル
コール類に、亜鉛を含有する有価のルテニウム化合物の
固体を分散させて行なってもよいし、もしくは均一溶液
の状態で行なってもよい。この際、還元をよシよく進行
させる九めに。Alternatively, it may be a good idea to dilute hydrogen with another inert gas. When the reduction is carried out in a liquid phase, a solid valuable ruthenium compound containing zinc may be dispersed in water or alcohol, or it may be carried out in the form of a homogeneous solution. At this time, the ninth point is to make sure that the reduction progresses well.
攪拌1Mi熱などを適当に行なうとよい。ま几、水のか
わりにアルカリ水溶液や適当な金属塩水溶液。It is advisable to carry out appropriate heating such as stirring for 1 Mi. Alternatively, use an alkaline aqueous solution or an appropriate metal salt aqueous solution instead of water.
例えば、アルカリ金属塩水溶液などを用いてもよい。For example, an aqueous alkali metal salt solution or the like may be used.
以上0如き水素化触媒粒子は偽主にルテニウムよりなる
結晶子訃よび/″1fcはその凝集し九粒子として反応
系に存在するが、シクロオレフィン類の選択藁や収率、
さらには反応速度を高めるためには、該結晶子の平均結
晶子径は200X以下であることが必要であり、150
X以下であることが好ましく、1ooX以下であること
がさらに好ましい。ここで、平均結晶子径は一般的方法
、すなわち、X線回折法によって得られる回折線巾の拡
がシから、 5cherrerの式によシ算出きれるも
のでちる。具体的には、 CuKcz線をX線源として
用いた場合は1回折角(2θ)で4411付近に極大を
もつ回折嶽の拡がシから算出されるものである。The above hydrogenation catalyst particles are crystallites mainly composed of ruthenium, and /''1fc is aggregated and exists in the reaction system as nine particles, but the selectivity and yield of cycloolefins,
Furthermore, in order to increase the reaction rate, the average crystallite diameter of the crystallites needs to be 200X or less, and 150X or less.
It is preferably less than or equal to X, and more preferably less than or equal to 1ooX. Here, the average crystallite diameter can be calculated by a general method, that is, from the spread of the diffraction line width obtained by the X-ray diffraction method, using the formula of 5cherrer. Specifically, when a CuKcz ray is used as an X-ray source, the spread of a diffraction peak having a maximum around 4411 at one diffraction angle (2θ) is calculated from .
本発明においては、上記の如き水素化触媒粒子トハ別に
、チタン、ニオブ、メンタル、クロム。In the present invention, the hydrogenation catalyst particles as mentioned above are titanium, niobium, mental, and chromium.
鉄、コバルト、アルミニウム、ガリウム、ケイ素より選
ばれえ少なくとも1種の金属の酸化物を添加して反るが
行なわれる。Warping is performed by adding an oxide of at least one metal selected from iron, cobalt, aluminum, gallium, and silicon.
添加でれる酸化物の量は1反応系に共存する水に対しt
x t o’−s 〜o、s重量倍、好IL、<Fi
IX1〇−宜〜0.1重量倍である。The amount of oxide that can be added is t relative to the water coexisting in one reaction system.
x t o'-s ~o, s weight times, good IL, <Fi
IX1〇-yi ~ 0.1 times the weight.
添加される酸化物は、微粉末状であることが好ましく、
その平均粒子径はo、o o s〜100μであること
が好ましく、0.005〜10μであることがさらに好
ましい。平均粒子径は、エタノール全分散媒に用い、こ
れに分散媒に対し1重量慢以下の酸化物を入れ、数百ワ
ットの超音波発振檜において30〜60分間分散操作を
施し九のち1通常の沈降法(自然沈降法、遠心沈降法)
における分散液の吸光度変fヒの測定によう算出される
逼であ 、る。The oxide to be added is preferably in the form of fine powder,
The average particle diameter is preferably from o, o o s to 100 μ, more preferably from 0.005 to 10 μ. The average particle size is determined by using ethanol as a total dispersion medium, adding an oxide with a weight of less than 1% to the dispersion medium, and performing a dispersion operation for 30 to 60 minutes in an ultrasonic oscillator of several hundred watts. Sedimentation method (natural sedimentation method, centrifugal sedimentation method)
It is calculated as follows to measure the change in absorbance of the dispersion.
かかる酸化物を添加することによって得られる効果は非
常に有用なものであって、ひとつにはシクロオレ7−(
ンの選択率、収巡ヲ向上させることができ、場らには1
反1乙器表面への水素化触媒の付着や、水素化触媒の凝
集などによる反応系の変動を抑制し、安定な反応系を維
持することであって、特に長い期間に亘って連萩的にシ
クロオレフィンを製造するに際しては、大きな効果を発
揮する。The effects obtained by adding such oxides are very useful, and one is that cycloole 7-(
It is possible to improve the selection rate and convergence of
The goal is to maintain a stable reaction system by suppressing fluctuations in the reaction system due to adhesion of the hydrogenation catalyst to the surface of the container or agglomeration of the hydrogenation catalyst, and to maintain a stable reaction system over a long period of time. It is highly effective in producing cycloolefins.
また、7X素比触媒を含むスラリーの取扱いを容易圧す
ること1例えば、水素化触媒をみかけ上。It also makes it easier to handle slurries containing 7X catalysts, for example, hydrogenation catalysts.
希釈、増量し、触媒の仕込みや1回収を容易にするなど
の効果もある。It also has the effect of diluting and increasing the amount, making catalyst preparation and recovery easier.
一方、BA記されるべきことは、かかる改化物に浸漬法
、乾固法、沈殿法等の通常の方法によりルテニウムを担
持し、還元して調製したルテニウム担持触媒を水素化触
媒として用いた場合、シクロオレフィン類の選択率は、
本発明方法と比較して極めて低いものでロク、本発明方
法における散fヒ物の添加は、ルテニウム担持触媒とは
本質的に異なるものである。On the other hand, what should be noted in BA is that when a ruthenium-supported catalyst prepared by supporting ruthenium on such a modified product by a normal method such as a dipping method, drying method, or precipitation method and reducing it is used as a hydrogenation catalyst. , the selectivity of cycloolefins is
The addition of a dispersant in the method of the present invention, which is extremely low compared to the method of the present invention, is essentially different from that of supported ruthenium catalysts.
本発明くおいては、さらに、少述くとも1種の固体塩基
性硫酸亜鉛上皮り系に共存させる。ここで、固体塩基性
硫酸亜鉛とは、ZnSO4−mZno−nH,0もしく
はZn5O,・mZn(OR)、 (ここでm、nはそ
れぞれ0.5≦m≦49、o≦n≦8なる数を表わす)
。In the present invention, at least one solid basic zinc sulfate coating system is further used. Here, solid basic zinc sulfate refers to ZnSO4-mZno-nH,0 or Zn5O, mZn(OR), (where m and n are numbers such that 0.5≦m≦49 and o≦n≦8, respectively. )
.
さらKはZn(z+1 )(OH)*t−so、 (C
?ニー T: 、Lは1≦t≦4なるJI数を表わす)
などの一般式で表わし得る化合物であって、具体的には
、znso4・士ZnQ 。Additionally, K is Zn(z+1)(OH)*t-so, (C
? Knee T: , L represents the JI number of 1≦t≦4)
A compound that can be represented by a general formula such as znso4.ZnQ.
ZnSO4@ ZnO・HtO(ZnSO4・Zn(O
H)t t 7tはZfl*(OH)1804)。ZnSO4@ZnO・HtO (ZnSO4・Zn(O
H)t t 7t is Zfl*(OH)1804).
Zn5O,−3ZnO、ZnSO4・5ZnO−AH,
O(ZnSO,・5Zn(OH)1 ) 。Zn5O, -3ZnO, ZnSO4.5ZnO-AH,
O(ZnSO, 5Zn(OH)1).
Zn5O,−3ZnO−6H,O、ZnSO4−5Zn
O−7H10、ZnSO4・5Zn0・8 HlO−Z
nSO4@ 4 Zn0 ・4 H* O(ZnSO4
@ 4 Zn (OH% )などがあシ、成著(例えば
、無機化学全書、■−1゜500頁、丸善)Kも多くみ
られる化合物群である。Zn5O, -3ZnO-6H,O, ZnSO4-5Zn
O-7H10, ZnSO4・5Zn0・8 HlO-Z
nSO4@4 Zn0 ・4 H* O(ZnSO4
@4 Zn (OH%) is a group of compounds that are often found in published works (for example, Inorganic Chemistry Zensho, ■-1゜500 pages, Maruzen).
これら塩基性硫酸亜鉛は古くから知られてお)。These basic zinc sulfates have been known for a long time).
様々な方法で得ることができるが、一般的には硫酸亜鉛
水溶液を母液として、こ九に適当なアルカリを作用させ
たシ、さらには熱したシして得ることができる。また、
硫酸水溶液もしくは硫酸亜鉛水溶液に水酸fヒ亜鉛を加
えて熱することによっても1種々の塩基性硫酸亜鉛の混
合物として得ることができる。It can be obtained by various methods, but generally it can be obtained by using an aqueous solution of zinc sulfate as a mother liquor and reacting it with an appropriate alkali, or by heating it. Also,
It can also be obtained as a mixture of various basic zinc sulfates by adding arsenic hydroxide to an aqueous sulfuric acid solution or an aqueous zinc sulfate solution and heating the mixture.
これら固体塩基性硫酸亜鉛を反応系に共存させるKは、
これらの1覆もしくは混合物を粉末の形で水素化触媒や
酸化物と混合し、4しくは別個に反応系へ添加すること
が好ましい、ま几、後述の如く、硫酸亜鉛水溶液を反る
に用いる場合においてFi、該反応系中において、その
一部もしくはすべてが固体塩基性硫酸亜鉛に変化するf
ヒ合物1例えば、水酸化亜鉛や酸化亜鉛を反応系へ添加
してもよい。K in which these solid basic zinc sulfates coexist in the reaction system is
It is preferable to mix one or a mixture of these with a hydrogenation catalyst or oxide in powder form and add it to the reaction system or separately, or use an aqueous zinc sulfate solution for warping as described below. In the case, Fi, a part or all of which is converted into solid basic zinc sulfate in the reaction system, f
Hydrate 1 For example, zinc hydroxide or zinc oxide may be added to the reaction system.
一般的に塩基性硫酸亜鉛の水に対する溶解度は小さく、
わずかな量の添加で反る系において固体として共存でき
る。ま九1本発明の水素化触媒を用いると、水素化触媒
が持つ吸着力によって、塩基性硫酸亜鉛の反応系内にお
けるた和溶解度以下の添加量であっても、水素化触媒上
、さらに#′i酸r上物上に固体として共存できる。Generally, the solubility of basic zinc sulfate in water is low;
It can coexist as a solid in systems that warp with the addition of a small amount. 91. When the hydrogenation catalyst of the present invention is used, due to the adsorption power of the hydrogenation catalyst, even if the amount added is less than the solubility of basic zinc sulfate in the reaction system, # It can coexist as a solid on top of acid.
本発明においては、かかる固体塩基性硫酸亜鉛を、水素
化触媒および添加する金属orgrと物の総量に対し、
亜鉛としてlX10−’〜1重2倍、好ましくはI X
10−”〜0.5重量倍共存させて反+6を行なう。In the present invention, such solid basic zinc sulfate is added to the hydrogenation catalyst and the total amount of metal orgr to be added.
IX10-' to 1x2 as zinc, preferably IX
10-'' to 0.5 times by weight are co-existed and anti-+6 is carried out.
共存量が少なすぎるとシクロオレフィンの選沢主、収率
の向上に対する効果が希薄であり、多すぎると反応速度
が低下して、結果的だ多量の水素化触媒が必要となる之
め、工業的に有利な反り系とはなシ難い。If the coexisting amount is too small, the effect on improving the cycloolefin selector and yield will be weak, and if it is too large, the reaction rate will decrease, and as a result, a large amount of hydrogenation catalyst will be required. It is difficult to find a warping system that is advantageous.
このように、固体塩基性硫酸亜鉛を共存させることによ
シ、シクロオレフィンの選択率、収率を高めることがで
きる。さらには、同等の高選択率。In this way, by coexisting solid basic zinc sulfate, the selectivity and yield of cycloolefins can be increased. Moreover, it has an equally high selectivity.
高収憲を維持できる反応@度範囲が拡大し、比較的低温
においてもシクロオレフィンを収率良く得ることができ
るので1反応条件選定の自由度が拡大し、工業的に極め
て価値の高いものとなる。The range of reactions that can maintain high yield has been expanded, and cycloolefins can be obtained in good yield even at relatively low temperatures, increasing the degree of freedom in selecting reaction conditions, making it extremely valuable industrially. Become.
このように、塩基性硫酸亜鉛を共存させることによって
何故シクロオレフィンの選択率、収車が向上するかは必
ずしも定かではないが、共存する不溶塩基性硫酸亜鉛が
水素化触媒上に吸ゼし、シクロオレフィンの虫取に有利
な活住点を現出していると考えられる。It is not necessarily clear why the coexistence of basic zinc sulfate improves the selectivity and collection of cycloolefins, but the coexisting insoluble basic zinc sulfate is adsorbed onto the hydrogenation catalyst, It is thought that this provides an advantageous habitat for insect removal of cycloolefins.
一万1本発明における酸「ヒ物の添加および固体塩基性
亜鉛の共存は、下記の如く触媒の安定性に対して驚くべ
き効果を発揮する。In the present invention, the addition of an arsenic acid and the coexistence of a solid basic zinc exhibit a surprising effect on the stability of the catalyst as described below.
一股に、微粒の金属触媒を用いることは、その金属が担
体上に担持された触媒と異な91反応系においてしばし
ば2次凝集やシンタリ/グなどが進行し、安定な触媒系
としての持続性に誰点がある。このことは本発明方法に
使用する金属ルテニウム触媒についても同様であり、実
用性の貌点に立つ次場合、2次凝集やシンタリングなど
の進行を回避することは、是非とも必要な技術となる。At the same time, the use of fine metal catalysts is different from catalysts in which the metal is supported on a carrier. 91 In the reaction system, secondary aggregation, sintering, etc. often proceed, and the sustainability of the catalyst system as a stable one. Who has the points? This also applies to the metal ruthenium catalyst used in the method of the present invention, and in the following cases where practicality is concerned, it is an absolutely necessary technology to avoid the progression of secondary agglomeration and sintering. .
本発明における固体塩基性硫酸亜鉛の共存は、、2gく
べきことに、かかる2次凝集やシンタリングなどくよる
触媒の変化を抑制する効果も併せもっことが明らかとな
つ几。チタン、ニオブ、タンタル。It is clear that the coexistence of solid basic zinc sulfate in the present invention has the effect of suppressing changes in the catalyst such as secondary agglomeration and sintering, in addition to the presence of 2 g of solid basic zinc sulfate. titanium, niobium, tantalum.
クロム、鉄、コバルト、アルミニウム、カリウム。Chromium, iron, cobalt, aluminum, potassium.
ケイ素よシ選ばれた少なくとも181の金属の酸化物の
添加も同様の効果を併せ持ち、これら酸化物と固体塩基
性亜鉛の併用による相乗的効果によシ。The addition of oxides of at least 181 selected metals to silicon also has similar effects, and the combined use of these oxides and solid basic zinc has a synergistic effect.
触媒や反応系を極めて安定なものとすることができる。Catalysts and reaction systems can be made extremely stable.
同体塩基性硫酸亜鉛および酸化物の非存在下で。In the absence of isobasic zinc sulfate and oxides.
本発明で使用する水素化触媒を反応条件下で保持した場
合、触媒の2次凝集が芒らに進行する。When the hydrogenation catalyst used in the present invention is maintained under reaction conditions, secondary aggregation of the catalyst progresses in an awn-like manner.
このように2次凝集かさらに進行した触媒は。In this way, the catalyst has undergone secondary aggregation.
水相中での触媒粒子の分散性が著しく悪くなる。The dispersibility of catalyst particles in the aqueous phase becomes significantly poor.
このような状態になった凝集体では、その凝集体の中の
金属ルテニウムへの水素およびベンゼンの拡・散、特に
水素の拡散が困難となシ1反応に必要な十分な量を触媒
上べ供給することができず、満足する反応の状!lを得
ることができない。特に水素の触媒上への供給が不足す
ると1反応器度の低下および細反6の増加が著しくなる
。ま次1反るによシ生匠し几シクロオレフィンの反応の
場の外への拡散または既凝集体の外への拡散がシそくな
シ、さらに水添反応が進行し、シクロアルカンへの副反
応が増加する。このような凝集状態の変化は、直接電子
顕微鏡によシ観察することもできる。In aggregates in such a state, a sufficient amount of hydrogen and benzene must be applied on the catalyst to diffuse and diffuse hydrogen and benzene into the metal ruthenium in the aggregate, especially for the 1 reaction in which diffusion of hydrogen is difficult. Unable to supply, the state of the reaction satisfies! I can't get l. In particular, if the supply of hydrogen to the catalyst is insufficient, the reduction in 1 reactor degree and the increase in the number of thin strips 6 become significant. First, the cycloolefin will not diffuse out of the reaction field or out of the pre-agglomerated body, and the hydrogenation reaction will proceed further, resulting in the formation of cycloalkane. Increased side reactions. Such changes in the state of aggregation can also be directly observed using an electron microscope.
まえ、同様に0本発明で使用する水素「ヒ触媒全固体塩
基性硫酸亜鉛および酸化物の非存在下で。Similarly, the hydrogen catalyst used in the present invention is completely solid basic in the absence of zinc sulfate and oxides.
反応条件下に長時間保持すると、X線旦折法で求められ
る金属ルテニウムの平均結晶子径が増大することが判つ
友、かかる平均結晶子径の経時的増大は、触媒の表面積
の減少をもたらし、特に反応速度が経時的に低下し、長
期にわtって安定な反応を制御することが難しくなる。It has been found that the average crystallite size of ruthenium metal determined by X-ray diffraction increases when the reaction conditions are maintained for a long time. In particular, the reaction rate decreases over time, making it difficult to control a stable reaction over a long period of time.
この傾向は、水素化触媒濃度や反応温度を高くすると、
さらに類著になシ1例えば1反応器体積当りのシクロオ
レフィンの生産性を高めて1本反応を行なおうとすると
きくおいては、その反応の安定性の維持がよシ難しくな
ることを意味し、実用上好ましくない。This tendency increases when the hydrogenation catalyst concentration and reaction temperature are increased.
Furthermore, as stated in similar works, for example, when attempting to perform a single reaction by increasing the productivity of cycloolefin per reactor volume, this means that it becomes more difficult to maintain the stability of the reaction. However, this is not practical.
このような触媒の変化は、できるだけ小さめことが望ま
しいことは明白である0本発明にシいて使用される酸化
物および塩基性硫酸亜鉛の併用によって初めて、上記の
如き金属ルテニウムの平均結晶子径の経時的増大を実質
的に無視できる状況が得ら、れることか判つ九。It is clear that it is desirable that such changes in the catalyst be as small as possible. Only by the combination of the oxide and basic zinc sulfate used in the present invention can the average crystallite size of ruthenium metal as described above be reduced. It is clear that a situation can be obtained in which the increase over time can be virtually ignored.9.
このような本発明による反応系の安定化が発現する機購
につ8ては必ずしも足かではないが、固体塩基性硫酸亜
鉛が水素化触媒やはfヒ物の表面上に存在し、その表面
の性質を変えているものと考えられる。酸化物の共存は
、水素化触媒どうしの衝突を大きく仰制し1表面積の低
下や、結晶子径のユソ大を引き起こす開会的な原因とな
る触媒の2次幾果を、さらに抑制しているものと考えら
れる。The reason for the stabilization of the reaction system according to the present invention is not necessarily certain, but solid basic zinc sulfate is present on the surface of the hydrogenation catalyst or the like. It is thought that the surface properties are changed. The coexistence of oxides greatly suppresses collisions between hydrogenation catalysts, further suppressing the secondary effects of catalysts that are the primary cause of decreasing surface area and increasing crystallite diameter. considered to be a thing.
以上のように1本発明方法の如き組合せによって初めて
連部され次極めて安定な反応系は、実用的、工業的見地
からみて非常に価値の高いものということができる。As described above, the extremely stable reaction system that is first linked by a combination such as the method of the present invention can be said to be extremely valuable from a practical and industrial standpoint.
本発明に3いては、水の存在が必要である。水の量とし
ては6反応形式によって異なるが、一般的に用いる単壌
芳香族炭比水素に対して0.01〜100重量倍共存さ
せることができるが1反応条件下において、原料および
虫取物を主成分とする有機液相と、水を含む液相とが2
相を形成することが必要であシ1反応条件下において均
一相となるような極く微量の水の共存、もしくは極く多
量の水の共存は効果を減少させ、また、■の全が多すぎ
ると反応器を大きくする必要性も生ずるので、実用的に
FiO,5〜20ii倍共存さぜることが望ましい。The present invention requires the presence of water. The amount of water varies depending on the reaction format, but it can be allowed to coexist at 0.01 to 100 times the weight of hydrogen in a single aromatic hydrocarbon, which is generally used. The organic liquid phase as the main component and the liquid phase containing water are two
It is necessary to form a phase, and the coexistence of an extremely small amount of water that forms a homogeneous phase under the reaction conditions (1), or the coexistence of an extremely large amount of water, will reduce the effect; If it is too large, it will be necessary to enlarge the reactor, so it is practically desirable to coexist with 5 to 20 times as much FiO.
ま九1本発明にシ込ては、水のかわりに、従来知られ之
方法の如く金属の塩の水溶Qk用いることにより、さら
に、好ましかシクロオレフィンの選択ぶ、収ぶを得るこ
とができる。金属の塩としては1周期表iA族金属、I
IA族金属、[B族金属、マンガン、(例えば、特公昭
57−7607号公報)、コバルトなどの硝酸塩、塩化
物、硫酸塩、酢酸塩、リン酸塩などが使用されるが、I
A族金属、[A族金属および亜鉛の塩が好ましく、さら
には、塩「上物。硫酸塩の如き強酸塩が好ましい。Furthermore, in the present invention, by using an aqueous solution of a metal salt in place of water as in a conventionally known method, it is possible to obtain a preferable combination of selected cycloolefins. can. Metal salts include Group IA metals of the periodic table, I
Nitrates, chlorides, sulfates, acetates, phosphates, etc. of group IA metals, group B metals, manganese (e.g., Japanese Patent Publication No. 7607/1983), cobalt, etc. are used;
Salts of Group A metals, [Group A metals and zinc are preferred, and more preferably salts such as strong salts such as sulfates are preferred.
さらに、本発明にs?’yては、水のかわ#)に亜鉛の
強酸塩、特に硫酸亜鉛の水溶液を用いると好ましい結果
を得ることができる。硫酸亜鉛水溶液中に塩基性硫酸亜
鉛を共存させると、イオンおよび化合物間に溶解度平衡
が成立し、硫酸亜鉛水溶液が酸性でありながら、塩基性
硫酸亜鉛は極く微量が水溶液中に溶けるのみで、塩基性
硫酸亜鉛を不溶の状態で安定に系中に保つことができる
。−例をめげると1例えば、室温で硫酸亜鉛の10襲水
沁液(p H約5)に、ZnSO4+ 5Zn (OH
)t k水に対し数十泗以上710えると、液のpHは
5.7〜5.8付近で安定し、znsO4・3Zn(O
H)tは不溶のまま水中に存在することができる。ま友
、硫酸亜鉛水溶液に塩基性硫酸亜鉛?共存させることは
、上述の例の如く水芯液のpHを中性へ近づける効果も
あり。Furthermore, the present invention includes s? Favorable results can be obtained by using an aqueous solution of a strong acid salt of zinc, especially zinc sulfate, as the water solution. When basic zinc sulfate coexists in a zinc sulfate aqueous solution, solubility equilibrium is established between ions and compounds, and even though the zinc sulfate aqueous solution is acidic, only a very small amount of basic zinc sulfate dissolves in the aqueous solution. Basic zinc sulfate can be stably maintained in the system in an insoluble state. - To give an example, 1. For example, in a solution of 100% zinc sulfate (pH about 5) at room temperature, ZnSO4 + 5Zn (OH
)t k When the water is heated to 710 or more, the pH of the liquid becomes stable at around 5.7 to 5.8, and znsO4.3Zn(O
H) t can remain insoluble in water. Mayu, basic zinc sulfate in zinc sulfate aqueous solution? Having them coexist also has the effect of bringing the pH of the water core liquid closer to neutrality, as in the above example.
硫酸亜鉛水溶液が酸−性であるために発生する装置金属
材料の腐食などに対しても、少なからぬ効果があると考
えられる。It is thought that it has a considerable effect on corrosion of metal materials of equipment, which occurs due to the acidity of the zinc sulfate aqueous solution.
かかる硫酸亜鉛水溶液は、0.01重量%から飽和溶解
寂までの濃度で用いることができるが、好ましく#′i
0.1〜30重量囁で用いるとよい。Such an aqueous zinc sulfate solution can be used at a concentration from 0.01% by weight to saturated dissolution, but preferably #'i
It is recommended to use 0.1 to 30 weights.
本発明の反し系では1反り液中に不溶塩基性硫酸亜鉛が
存在しなければならない。そのためその不溶塩基性硫酸
亜鉛の共存する量および水溶液の量によっても異なるが
1反応系が微アルカリ性から酸性の状態で行われるのが
好ましい。さらに好ましくは中性から酸性の状態で行わ
れる。In the warping system of the present invention, insoluble basic zinc sulfate must be present in the warping solution. Therefore, it is preferable that one reaction system be carried out in a slightly alkaline to acidic state, although this varies depending on the amount of the insoluble basic zinc sulfate coexisting and the amount of the aqueous solution. More preferably, it is carried out in a neutral to acidic state.
本発明方法における部分還元反応は1通常、液相M′f
4法にて連続的ま友は回分的に行なわれるが。The partial reduction reaction in the method of the present invention is usually carried out in a liquid phase M'f
In the 4th method, continuous friendship is done in batches.
固定相式でも行なうことができる0反応条件は。0 reaction conditions that can also be carried out using a stationary phase method.
使用する触媒や添加物の種類や童によって適宜選択され
るが1通常、水素圧は1〜200 kglctdG。The hydrogen pressure is usually 1 to 200 kglctdG, although it is selected appropriately depending on the type of catalyst and additives used and the temperature.
好ましくは10〜100 kglcriGの範囲でろり
。Preferably in the range of 10 to 100 kglcriG.
反応温度は室温〜250 G、好1しくは100〜20
0Cの範囲である。ま九1反応時間は、目的とするシク
ロヘキセン類の選択元や収率の実質的な目標値を定め、
適宜選択すればよく、特に制限はないが1通常、数秒な
−し数時間である。The reaction temperature is room temperature to 250 G, preferably 100 to 20 G.
It is in the range of 0C. The reaction time is determined by determining the selection source of the desired cyclohexene and the actual target value of the yield.
It may be selected as appropriate, and although there is no particular restriction, it is usually several seconds to several hours.
(発明の効果)
本発明によれば、シクロオレフィンを従来罠ない高い選
択元、収ぶて得ることができ、さらに。(Effects of the Invention) According to the present invention, cycloolefins can be obtained in a highly selective manner that is not available conventionally.
安定し九触媒系となシ、工業的に極めて価値の高いもの
である。It is a stable catalyst system and has extremely high industrial value.
(実施例)
次に、実施91全もって本発明をさらに詳細に説明する
が1本発明は、これらの実施例に限定されるものではな
い。(Example) Next, the present invention will be described in more detail with reference to Example 91, but the present invention is not limited to these Examples.
実施例1〜3
Ru (0H)sを水中において加圧水素にょシ還元し
て辱次金属ルテニウム触!t(平均結晶子径5o^)(
J、5 f、 Cruxs粉末(平均粒径2,1 μ)
2.55’。Examples 1 to 3 Ru(0H)s was reduced in water using pressurized hydrogen and exposed to metal ruthenium! t (average crystallite diameter 5o^) (
J, 5 f, Cruxs powder (average particle size 2,1 μ)
2.55'.
表1に示す塩基性硫酸亜鉛を亜鉛としてS O#!9゜
2よびZn5O,・7H,Oノ18%水溶液280 d
k、fタン製の内容積1tのオートクレーブに仕込み、
攪拌下水素で置換して150cまで昇温後、ベンゼン1
40−を圧入し、全圧50kg/cmGに保つように水
素t−浦給し、150c、60分間水素「ヒ反応全行つ
九。反応後、急冷して有機・白層を分取し、ガスクロマ
トグラフィーで分析した結果ヲ表1に示す。副生物はシ
クロヘキサンでちっ之。SO#! Basic zinc sulfate shown in Table 1 is used as zinc. 9゜2 and Zn5O, 7H, O 18% aqueous solution 280 d
K and F were placed in an autoclave with an internal volume of 1 ton made of tan,
After purging with hydrogen while stirring and raising the temperature to 150C, benzene 1
After the reaction, the hydrogen was heated at 150° C. for 60 minutes. After the reaction, it was rapidly cooled and the organic white layer was separated. The results of gas chromatography analysis are shown in Table 1.The by-product was cyclohexane.
表 1
実施例4〜11
Cr、O,粉末の代りに表2に示す平均粒子径を有する
酸化物粉末2.52を用り次他は、実施例1と同様にし
て反応させ次。その結果を表2に示す。Table 1 Examples 4 to 11 The reaction was carried out in the same manner as in Example 1 except that 2.52 mm of oxide powder having the average particle size shown in Table 2 was used in place of the Cr, O, and powders. The results are shown in Table 2.
表 2 また、実施例1〜11において、反応終了後。Table 2 Moreover, in Examples 1 to 11, after the completion of the reaction.
反「6器を開放し、観察し九ところ、いずれの場合も触
媒およびば化物粉末はよく分散しており、#l!果もみ
られず、チタン壁面への触媒の付着もほとんどなかつ友
。When I opened the 6 vessels and observed them, I found that the catalyst and baride powder were well dispersed in all cases, and no results were observed, and there was almost no adhesion of the catalyst to the titanium wall.
比較例1
CrtO,粉末2よび塩基性硫酸亜鉛を使用しなかった
他は、実施例1と同様の操作を行い、30分間反応を行
なつ次。ベンゼンの転化にハロ 7.o%で、シクロヘ
キセンの選択層は52.9%、シクロヘキセン収、IC
35,4%であつ友。Comparative Example 1 The same operation as in Example 1 was carried out except that CrtO, powder 2 and basic zinc sulfate were not used, and the reaction was carried out for 30 minutes. Halo for benzene conversion 7. o%, the selective layer of cyclohexene was 52.9%, cyclohexene yield, IC
Atsutomo at 35.4%.
ま九1反応終了後1反応器を開放し、襞県したところ、
触媒の凝集がみられ、チタン壁面に触媒の付着が発生し
てい友。After the first reaction was completed, the first reactor was opened and folded.
Agglomeration of catalyst was observed, and catalyst adhesion occurred on the titanium wall.
比較例2
Cr、 O,粉末を使用しなかつ比他は、実施例1と同
様の操作を行い、60分間反C’を行なった。ベンゼン
の転化本は56.4%で、シクロヘキセンの選択層は7
3.2%、シクロヘキセン収ぶ41.3%であった。Comparative Example 2 The same operation as in Example 1 was carried out except that Cr, O, and powder were not used, and anti-C' was carried out for 60 minutes. The conversion rate of benzene is 56.4%, and the selective layer of cyclohexene is 7
It was 3.2%, and cyclohexene was 41.3%.
筐九1反「6終了後1反I5器を開放して貌祭したとこ
ろ、触媒の凝集はほとんどみられ々かつ几が。Kakuku 1st ``After 6th, I opened the 1st 5th vessel and performed a ritual ceremony, and found that there was almost no agglomeration of the catalyst, and it was still solid.
チタン壁面に触媒の付着がみられた。Adhesion of catalyst was observed on the titanium wall surface.
比較例3〜8
通常の含浸性により酸化物に塩[ヒルテニウムを吸着さ
せ、水素還元全行なって調製したルテニウムを1重量囁
担持させた水素化触媒5.Ofを用い。Comparative Examples 3 to 8 A hydrogenation catalyst in which one weight of ruthenium prepared by adsorbing a salt [hirthenium] on an oxide through normal impregnation and carrying out hydrogen reduction was carried out.5. Use Of.
Cr、0st−添加しない他は、実施例1と同様の操作
金行い、607)間反応尽せ之。その結果を表3に示す
。The same procedure as in Example 1 was carried out except that Cr and 0st were not added, and the reaction during 607) was exhausted. The results are shown in Table 3.
表 3
これらよシ1本発明における酸化物を添加する系は1通
常の担持触媒の系とは全く異なるものであることが明白
である。Table 3 It is clear that the system in which oxides are added in the present invention is completely different from the conventional supported catalyst system.
実施例12
触媒としてあらかじめ亜鉛を含有させたルテニウムの還
元物(亜鉛含有量7o重its、平均結晶子径a a
X )o、s yを使用し九他は、実施例1と同様の操
作を行い、60分間反るさせ友。ベンゼンの転化”IA
Fi68.9%で、シクロヘキセンの4択!u80,4
%、シクロヘキセン収率55.4%であつ九。Example 12 Reduced product of ruthenium containing zinc in advance as a catalyst (zinc content 7 o weights, average crystallite diameter a
X) Using o, sy, the same operation as in Example 1 was carried out, and the mixture was allowed to warp for 60 minutes. Conversion of benzene”IA
Fi68.9%, 4 choices of cyclohexene! u80,4
%, cyclohexene yield was 55.4%.
実施例13
ZnSO4・Zn (OH)t ’t”−亜鉛として1
00η用い、また、Zn5O,・7H,0の18%水浴
液のかわシに水を使用し几他は、実施例3と同様の操作
を行ない。Example 13 ZnSO4・Zn (OH)t't''-1 as zinc
The same procedure as in Example 3 was carried out by Rin et al. using 00η and using water as a 18% water bath solution of Zn5O,.7H,0.
90分間反応させ友。ベンゼンの転rヒぶは50.8優
で、シクロヘキセンの選択率は63.5%、シクロヘキ
セン収率32.3 %であった。Let it react for 90 minutes. The benzene conversion rate was 50.8%, the cyclohexene selectivity was 63.5%, and the cyclohexene yield was 32.3%.
また、実施例13で反り終了後、スラリーを濾過1回収
し比後、濃塩酸を加えて触媒シよびCrtへ上に存在す
る亜鉛1ヒ合物を溶解し、この溶液中の亜鉛およびイオ
ウをプラズマ発光分元分析去によって定量し九ところ、
亜鉛は95!n9であシ、イオウは18ダであつ友。こ
れより固体塩基性硫酸亜鉛の共存が明らかである。In addition, after the warping was completed in Example 13, the slurry was filtered and recovered, concentrated hydrochloric acid was added to dissolve the zinc compound present on the catalyst and Crt, and the zinc and sulfur in this solution were removed. It was determined by plasma emission spectrometry analysis,
Zinc is 95! I am n9 and Ioh is 18 da and my friend. This clearly shows the coexistence of solid basic zinc sulfate.
比較例9
使用触媒量をa、o s yとし、 Cr、O,粉末お
よび塩基性硫酸亜鉛を使用しなかつ之以外は、実施例1
5と同様の操作を行い、30分間反応させた。Comparative Example 9 Example 1 except that the amount of catalyst used was a, o sy, and Cr, O, powder, and basic zinc sulfate were not used.
The same operation as in 5 was performed, and the reaction was allowed to proceed for 30 minutes.
ベンゼンの転化率は66.1%、シクロヘキセン選択惠
2.3係、シクロヘキセン収峯1.5係であつ九。The conversion rate of benzene was 66.1%, cyclohexene selectivity was 2.3%, and cyclohexene convergence was 1.5%.
実施例14
実施例1と同じ触媒(平均結晶子径5oλ)1.5?、
酸化物粉末(平均粒子径0.55μ) 7.5 P。Example 14 Same catalyst as Example 1 (average crystallite diameter 5oλ) 1.5? ,
Oxide powder (average particle size 0.55μ) 7.5P.
Zn5O,−SZn (OH)1 f亜鉛として0.6
f、およびZn5O,・7H1018%水溶液151d
i、内面VCf7 o 7 ’:y−ティングを施し次
内容積400−のオートクレーブに仕込み、水素で全圧
を50 kg/cdGとし、160Ci’(おいて高速
で攪拌しながら200時間保持しえ。スラリーを回収、
洗浄後、X線回折法によシ触媒金属ルテニウムの平均結
晶子径を測定し九ところ、いずれの酸化物を用い次場合
も55A以下であり、はとんど変化がなかつ友。Zn5O, -SZn (OH)1 f0.6 as zinc
f, and Zn5O, 7H 1018% aqueous solution 151d
i, inner surface VCf7 o 7': Y-ting and then charged into an autoclave with an internal volume of 400 cm, a total pressure of 50 kg/cdG with hydrogen, and kept at 160 Ci' for 200 hours while stirring at high speed. Collect slurry,
After washing, the average crystallite diameter of the catalytic metal ruthenium was measured by X-ray diffraction, and it was 55A or less in all cases using any oxide, showing almost no change.
次に、酸化物としてCr!osを添加し友スラリー回収
物のy3を用いて、実施例1と同条件になるようく添加
物など液組成t−調整して反応を行なったところ、反応
速度1選択率ともほとんど変化はなかつ次。Next, as an oxide, Cr! When a reaction was carried out by adding os and using Y3, a recovered slurry, and adjusting the liquid composition such as additives to the same conditions as in Example 1, there was almost no change in reaction rate or selectivity. Next.
比較例10
酸化物粉末およびZ n S 04・4Zn toH)
、 klle用しなかった他は、実施例14と同様の操
作を行なったところ、回収し次触媒金属ルテニウムの平
均結晶子径は78Aと大きく増加しており、触媒の経時
的変化が明らかであった。Comparative Example 10 Oxide powder and ZnS 04.4Zn toH)
When the same operation as in Example 14 was carried out except that KLL was not used, the average crystallite diameter of the recovered catalytic metal ruthenium greatly increased to 78A, and the change in the catalyst over time was clear. Ta.
te、回収物の尾を用いて、実施例1と同条件となるよ
うに添加物など液組成を調整して反応を行なつ念ところ
、反応速度が約Hに低下し友。However, when the reaction was carried out using the tail of the recovered material and adjusting the liquid composition such as additives so that the conditions were the same as in Example 1, the reaction rate decreased to about H.
比較例11
酸化物粉末を便用しなかつ友他は、実施例14と同様の
操作全行なったところ、回収した触媒金属ルテニウムの
平均結晶子径は61Aであつ几、ま几、回収物の号を用
いて実施例1と同条件となるように、添加物など液組成
を調整して反応を行なつ之ところ、反応速度が約374
に低下した。Comparative Example 11 All the same operations as in Example 14 were carried out without using oxide powder, and the average crystallite diameter of the recovered catalyst metal ruthenium was 61A. When the reaction was carried out by adjusting the liquid composition such as additives so that the conditions were the same as in Example 1, the reaction rate was about 374.
It declined to .
実施例14および比較例10.11より、本発明方法に
おける触媒系が極めて安定なものであることが明白であ
る。It is clear from Example 14 and Comparative Examples 10.11 that the catalyst system in the method of the invention is extremely stable.
Claims (7)
分還元するに際し、200A以下の平均結晶子径を有す
る金属ルテニウムを主成分とする水素化触媒粒子を用い
、該触媒粒子とは別に、チタン、ニオブ、タンタル、ク
ロム、鉄、コバルト、アルミニウム、ガリウム、ケイ素
より選ばれた少なくとも1種の金属の酸化物を添加し、
さらに、少なくとも1種の固体塩基性硫酸亜鉛の共存下
、中性または酸性の条件下に反応を行なうことを特徴と
するシクロオレフィンの製造法。(1) When partially reducing monocyclic aromatic hydrocarbons with hydrogen in the coexistence of water, hydrogenation catalyst particles containing metal ruthenium as a main component and having an average crystallite diameter of 200A or less are used. Separately, an oxide of at least one metal selected from titanium, niobium, tantalum, chromium, iron, cobalt, aluminum, gallium, and silicon is added,
Furthermore, a method for producing a cycloolefin, characterized in that the reaction is carried out under neutral or acidic conditions in the coexistence of at least one solid basic zinc sulfate.
ニウムの還元物である特許請求の範囲第1項記載のシク
ロオレフィンの製造法。(2) The method for producing a cycloolefin according to claim 1, wherein the hydrogenation catalyst is a reduced product of ruthenium containing zinc in advance.
ウムに対し0.1〜50重量%である特許請求の範囲第
2項記載のシクロオレフィンの製造法。(3) The method for producing a cycloolefin according to claim 2, wherein the zinc content in the hydrogenation catalyst is 0.1 to 50% by weight based on ruthenium, which is the main component.
〜0.3重量倍である特許請求の範囲第1項記載のシク
ロオレフィンの製造法。(4) The amount of oxide added is 1 x 10^-^3 relative to water
The method for producing a cycloolefin according to claim 1, wherein the amount is 0.3 times by weight.
0μである特許請求の範囲第1項記載のシクロオレフィ
ンの製造法。(5) The average particle diameter of the oxide to be added is 0.005 to 10
The method for producing a cycloolefin according to claim 1, wherein the cycloolefin has a particle diameter of 0μ.
対し、亜鉛として1×10^−^4〜1重量倍である特
許請求の範囲第1項記載のシクロオレフィンの製造法。(6) The method for producing a cycloolefin according to claim 1, wherein the amount of coexisting solid basic zinc sulfate is 1×10^-^4 to 1 times the weight of zinc relative to the hydrogenation catalyst.
の範囲第1項記載のシクロオレフィンの製造法。(7) A method for producing a cycloolefin according to claim 1, wherein the reaction is carried out in the presence of an aqueous zinc sulfate solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61206763A JPS6363627A (en) | 1986-09-04 | 1986-09-04 | Production of cycloolefin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61206763A JPS6363627A (en) | 1986-09-04 | 1986-09-04 | Production of cycloolefin |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6363627A true JPS6363627A (en) | 1988-03-22 |
JPH037646B2 JPH037646B2 (en) | 1991-02-04 |
Family
ID=16528682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61206763A Granted JPS6363627A (en) | 1986-09-04 | 1986-09-04 | Production of cycloolefin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6363627A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1048349A1 (en) * | 1999-02-09 | 2000-11-02 | Chinese Petroleum Corporation | Catalyst comprising a metal of group VIII supported on zinc and gallium oxide and its use in the partial hydrogenation of aromatic hydrocarbons |
US7919659B2 (en) | 2004-07-09 | 2011-04-05 | Asahi Kasei Chemicals Corporation | Catalyst for cycloolefin production and process for production |
-
1986
- 1986-09-04 JP JP61206763A patent/JPS6363627A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1048349A1 (en) * | 1999-02-09 | 2000-11-02 | Chinese Petroleum Corporation | Catalyst comprising a metal of group VIII supported on zinc and gallium oxide and its use in the partial hydrogenation of aromatic hydrocarbons |
US7919659B2 (en) | 2004-07-09 | 2011-04-05 | Asahi Kasei Chemicals Corporation | Catalyst for cycloolefin production and process for production |
Also Published As
Publication number | Publication date |
---|---|
JPH037646B2 (en) | 1991-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0220525B1 (en) | Process for producing cycloolefins | |
JPH03134106A (en) | Microcrystalline amorphous metal and/or alloy powder and metal and/or alloy dissolved in organic solvent in the absence of protective colloid | |
US4923837A (en) | Hydrogenation catalyst | |
TW201345610A (en) | Oxidative dehydrogenation of olefins catalyst and methods of making and using the same | |
US4374758A (en) | Preparation of stable tellurium-containing solution from metallic tellurium and process for producing tellurium-antimony containing oxide catalyst using said solution | |
WO2010073481A1 (en) | Process for preparing ruthenium catalyst for use in production of cycloolefin, and process and apparatus for producing cycloolefin | |
CN105903473B (en) | A kind of hydrotalcite precursor method prepares the method and its application of M-Sn intermetallic compound | |
CN112916010B (en) | Cu for selective hydrogenation of alkyne y /MMgO x Catalyst and preparation method thereof | |
JPS6363627A (en) | Production of cycloolefin | |
KR100286911B1 (en) | Process for producing cycloolefin | |
US5656761A (en) | Method for pretreating a catalyst slurry and a method for the continuous partial hydrogenation of a monocyclic aromatic hydrocarbon by using the pretreated catalyst slurry | |
JP2892233B2 (en) | Method for partial hydrogenation of monocyclic aromatic hydrocarbons | |
CN106268794B (en) | A kind of preparation method and the catalyst that is prepared of this method of the catalyst preparing cyclohexene for partial hydrogenation of benzene | |
JPH0816073B2 (en) | Method for producing cycloolefin | |
JPS6245544A (en) | Production of cycloolefin | |
JPS62205037A (en) | Production of cycloolefin | |
JPS63152333A (en) | Partially hydrogenating method | |
JPH0639399B2 (en) | Partial hydrogenation method for monocyclic aromatic hydrocarbons | |
JPS63243038A (en) | Production of cycloolefin | |
JPH0335298B2 (en) | ||
JPS63159329A (en) | Production of cycloolefin | |
JPH035371B2 (en) | ||
JPS6281332A (en) | Production of cycloolefin | |
JP4025411B2 (en) | Method for producing cycloolefin | |
CN111822003A (en) | Iron-based catalyst and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |