JPS636358B2 - - Google Patents

Info

Publication number
JPS636358B2
JPS636358B2 JP53133889A JP13388978A JPS636358B2 JP S636358 B2 JPS636358 B2 JP S636358B2 JP 53133889 A JP53133889 A JP 53133889A JP 13388978 A JP13388978 A JP 13388978A JP S636358 B2 JPS636358 B2 JP S636358B2
Authority
JP
Japan
Prior art keywords
liquid
heating element
heat
discharge
ejection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53133889A
Other languages
Japanese (ja)
Other versions
JPS5559977A (en
Inventor
Koji Sato
Yasushi Takatori
Toshitami Hara
Yoshiaki Shirato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13388978A priority Critical patent/JPS5559977A/en
Priority to US06/084,748 priority patent/US4330787A/en
Priority to DE19792944005 priority patent/DE2944005A1/en
Priority to DE2954687A priority patent/DE2954687C2/en
Publication of JPS5559977A publication Critical patent/JPS5559977A/en
Priority to US06/324,991 priority patent/US4459600A/en
Publication of JPS636358B2 publication Critical patent/JPS636358B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/1433Structure of nozzle plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14024Assembling head parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14032Structure of the pressure chamber
    • B41J2/1404Geometrical characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14387Front shooter

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

【発明の詳細な説明】 本発明は液体を熱エネルギーの作用によつて吐
出口から吐出させて記録を行なう装置に関する。 ノンインパクト記録法、中でも所謂インクジエ
ツト記録法は記録時の騒音がほとんどないこと、
高速記録が可能なこと或いは普通紙上に特別な定
着処理を必要とせずに記録が行なえること等大き
な利点を有しているので、最近活発に研究開発が
行なわれている。 この記録方法に用いられる装置としては、所謂
インクと称される着色した液体を吐出させ、液滴
として飛翔させる為の吐出口(吐出オリフイス)
と液体が流入する為の流入口とを有する記録ヘツ
ドが使用される。そして該記録ヘツドには、吐出
オリフイスから液体を吐出させる方法によつて
種々のタイプのものがある。 例えば、外部に設けられた液体の供給タンクか
ら液室内へ加圧した状態で又は自然供給(毛細管
現象を利用した供給等)の状態で液体を供給し
(但し、前記の加圧は圧力のみでは吐出口から吐
出しない程度の加圧である。)、液室内の液体と、
吐出オリフイス前方に設置されている電極との間
に電圧印加し、静電的に液体を吐出オリフイスか
ら吐出させるタイプのものがある。 このタイプの記録ヘツドは、構造は単純である
が、システム全体としての構成が複雑で、液滴の
発生及びその飛翔方向の電気的制御に高度な技術
及び精度が要求されるという欠点がある。そして
更に高速記録化には不欠可な記録ヘツドのマルチ
オリフイス化が困難であるという欠点もある。 或いは別のタイプの記録ヘツドとしては、機械
的振動法によつて液体を吐出させ、液滴として飛
翔させるものもある。即ち、このタイプのもの
は、液体が供給される液室の容積をピエゾ振動素
子の機械的振動によつて信号に応じて変化させ、
これにより液体を液滴として吐出させるものであ
る。その具体的構造は、USP3747120 IEE
Transactions on Industry Applications Vol
IA−13、No.1、January/Februry 1977等に開
示されている。 この様な記録ヘツドは、システム全体の構造は
極めて単純である。しかし、ピエゾ振動素子の機
械的振動で液滴を発生する為に、高速記録に於け
る応答性に難点がある事、又液室の形成ピエゾ振
動素子の設置等加工上に問題がある事及び小型化
が難しい事等の理由から、高密度マルチオリフイ
ス化が極めて困難であつて高速記録化が難しい。 この様に従来の記録ヘツドの多くのものは、構
造上、加工上、高速記録化上、高密度マルチオリ
フイス化上、更にはシステム全体の構成上等の点
に於いて本質的なしかし解決されるべき問題点を
有している。 本発明は上記の点に鑑みてなされたもので、吐
出効率、吐出応答性或いは吐出安定性、長時間連
続記録性に優れた記録装置を与えることを主な目
的とする。又本発明の別な目的は、製作が容易で
実用的な高密度マルチオリフイス化タイプの記録
装置を与えることにある。 本発明の液体噴射記録装置は所定の方向に液体
を吐出して飛翔液滴を形成する為の吐出口の複数
と、該吐出口の複数に夫々連通し屈折部を有する
液路を具備し、該屈折部が、液体に熱による状態
変化を生起させ該状態変化に基づいて前記吐出口
より吐出される液体の前記飛翔液滴を形成するた
めの発熱体から発生する熱エネルギーが液体に作
用する部分である熱作用部の複数を有し、該熱作
用部に至るまでの液路が前記熱作用部の複数に共
通とされ、前記液体の吐出方向に平行な軸上のベ
クトルと、該ベクトル又はその延長線が前記発熱
体の発熱面と交叉する点を通る発熱面に対する垂
直線上のベクトルとで形成される夾角Ψが45゜以
下であり、前記発熱体に電気的に接続され、所定
方向に液体を吐出させるのに、選択的に前記発熱
体の各々を駆動する駆動信号を前記発熱体に供給
する為の信号供給手段とを具備する事を特徴とす
る。 この様に、複数の熱作用部に液体を供給する為
の供給流路を共通にしておき、又該流路より前記
熱作用部に液体が流入する方向と、前記熱作用部
より吐出オリフイス方向に流出する方向とを異な
る様にし、又発熱体を、その発熱面が吐出オリフ
イスのある方向に向く様に設置すると、熱エネル
ギーが液体を吐出させる為に有効に使われ、殊に
吐出効率、吐出応答性及び長時間連続記録性が著
しく改善される。 又、本発明の装置は、構造上極めてシンプルで
あつて、微細加工が容易に出来る為に装置自体を
従来に較べて格段に小型し得、又その構造上のシ
ンプルさと加工上の容易さから高速記録には不可
欠な高密度マルチオリフイス化が極めて容易に実
現し得る事、更に加うればマルチオリフイス化に
於いて、その記録ヘツドの吐出オリフイスのアレ
ー(array)構造を所望に従つて任意に設計し
得、従つて、バー状とすることも極めて容易に成
し得る事、等々顕著な特長を有する。 以下本発明を図面を以つて説明する。 第1図は、本発明記録装置に於ける記録原理を
説明する為の説明図である。 記録ヘツド1内には供給タンク(不図示)、供
給管(不図示)、或いはフイルター(不図示)等
の手段を通じて液体3が供給されている。尚、該
液体に対してはポンプ等の適当な加圧手段によつ
てそれだけでは吐出オリフイス2から吐出されな
い程度で圧力Pが加えられることもある。 この図に示されている様に、熱エネルギーを発
生する手段である発熱体4は発生する熱エネルギ
ーが液体3に作用する部分である熱作用部5内に
設置される。 該熱作用部5は、発熱体4が発生する熱エネル
ギーが液体3に与えられて熱作用部5に於ける液
体は状態変化(液体積膨張或いは気泡の発生等)
を起す部分である。 本発明の本質的な特徴は、第1図よりも明白な
様に、液体3が、供給流路6より熱作用部5に流
入する方向と、熱作用部5より吐出オリフイス2
方向に流出する方向とが屈折している(即ち、吐
出口に連通する液路が屈折している。)ことであ
り又、発熱体4の発熱面SGが吐出オリフイス方向
に向いていることであつて、斯かる特徴故に、本
発明の所期の目的が効果的に達成される。 この点を、更に詳述するならば、供給液路6の
熱作用部5付近の部分の中心軸XO(供給流路6
より熱作用部5に流用する方向と平行)と点Oを
中心に線分XOを角度θだけ右回転させた軸であ
つて熱作用部5より吐出オリフイス2方向に流出
する方向に平行なYO(第1図に示される様に熱
作用部5と吐出オリフイス2との間に吐出流路7
が設けられてある場合には、吐出液路7の熱作用
部5付近の部分の中心軸としても良い)とが挾む
角θを有する様に、熱作用部5、供給流路6、吐
出オリフイス2、とが配置される。熱作用部5に
ある液体に熱エネルギーを供給する為発熱体4は
その発熱面が吐出オリフイス2方向に向く様に熱
作用部5に配置される。殊に、発熱体4の発熱面
は、熱作用部5の吐出オリフイス2側の断面AB
に略々対向する様にされ、且つ吐出オリフイス2
の中心軸(図に於いては、軸YOと同一となつて
いる)と略々垂直になる様発熱体4が熱作用部5
に配置されるのが望ましいものである。 上記の角度θ及び発熱体表面方向は記録ヘツド
の設計に於いて図に示される様な角度以外に種々
の値をとることができる。 しかし、θがあまりO゜又は180゜に近いと発熱体
熱作用部、供給流路、吐出オリフイス等の形成が
容易でなくなるばかりか、本発明の所期の目的が
効果的に達成され難くなるので、通常は30゜≦θ
≦150゜とするのが好ましく好適に45゜≦θ≦135゜、
最適にはθを略々90゜とするのが望ましいもので
ある。 同様に第1図を用いて発熱体の方向について述
べれば軸Yo上のベクトルと、軸YO上又はその延
長線が発熱体4の発熱面と交差する点を通る発熱
面に対する垂直線上のベクトルとで該両ベクトル
の基準点を前記交差点とした時に形成される爽角
4が、通常の場合45゜以下、好ましくは30゜以下、
殊には略々O゜となる様に選択されるのが望まし
いものである。 θ=90゜、=0゜とされる場合には、実用上発
熱体、熱作用部、供給流路及び吐出オリフイスの
形成が容易であるという点でも最も好ましい。
尚、発熱体4としては、例えばZrB2、HfB2等の
材料で形成される。 今、発熱体に外部から信号が印加されると、該
発熱体は、瞬時に発熱して熱作用部5内の液体に
熱エネルギーを作用させる。その結果、液体には
状態変化(体積膨張或いは気泡の発生)が生じて
吐出オリフイス2から所定の方向に所定量の液体
が吐出される。 この様に、本発明に於いては熱作用部をその間
に有する液体の流路(液路)に屈折部を設け、熱
作用部にある液体に発生する熱エネルギーを効果
的に作用させるのに設けられる発熱体の発熱面を
吐出オリフイスに対向させて設置すると、圧力変
化が吐出方向に効果的に伝わる。従つて供給流路
内方向に、熱作用部に於ける液体の状態変化に基
く圧力変化が伝わる効果(所謂バツク圧効果)が
抑制され、吐出効率が向上する。又、マルチオリ
フイス化した場合に隣接する熱作用部にバツク圧
が伝わつて相互干渉することもなく、吐出安定性
も改善される。 更には、熱エネルギーが効率良く液体の吐出に
利用されるので、発熱体の駆動エネルギーを低減
することができ、省エネルギー化、発熱体素子の
耐久性の向上等に於いても好ましい結果が得られ
る。 そして本発明の装置を次に述べる様な発熱体基
板、供給流路プレート、吐出流路プレート等のブ
ロツクから成る構造にした場合には、上記の利点
に加えて構成上特に好ましい結果が得られる。 例えば、第2図aに示す様に、発熱体基板8に
は7個の発熱体11、発熱体11に通電する為の
7本の選択電極12及び共通電極13が設けられ
ている。又、供給流路プレート9には、溝14が
形成されており、吐出流路プレート10には発熱
体11に位置と数が対応する様に細溝15が形成
されている。そしてこれらのブロツクを一体化す
ると、第2図bにその断面図を示す様な装置が形
成される。即ち、発熱体基板8及び供給流路プレ
ート9によつて各々の発熱体に共通の供給流路2
0が、供給流路プレート9の端面と吐出流路プレ
ート10によつて吐出流路21がそれぞれ形成さ
れる。又、供給流路20と吐出流路21との間に
は破線で示される熱作用部22が形成され該熱作
用部22の液体に効果的に熱エネルギーを作用さ
せる様に発熱体11が配置される。供給流路プレ
ート9には、供給流路20に外部から液体を供給
する手段、例えば供給液室23を形成する為のブ
ロツク16が付設され、ブロツク16には外部の
貯蔵タンクより液体を供給液室23に導入する為
のパイプ17が付設される。18及び19は、必
要に応じて設けられる吐出オリフイス板(図に於
いては細溝15に対応して7個の吐出オリフイス
が設けられている)及びエア抜きパイプである。 第3図は第2図で説明した記録ヘツドを内蔵し
た、本発明の装置を説明する為の模式的斜視図で
ある。 この図に於いて、24は電極リード基板(第2
図には示されていない)であり、該基板上24に
選択電極及び共通電極用のリード線25及び26
が設けられている。更に発熱体基板8の下面には
ヒートシンク27が設けられている。 選択電極のリード線25及び共通電極のリード
線26は7個の発熱体11を各々駆動する為に各
発熱体にパルス電圧等の駆動信号を供給する為の
駆動信号発生手段Pと電気的に接続されている。
駆動信号発生手段Pには、記録すべき情報の信号
Sが入力される様になつていて、該信号Sが駆動
信号発生手段Pに入力される様、該手段Pより駆
動信号が出力され、該駆動信号に基いて選択され
た発熱体が駆動されて、液体が吐出オリフイスよ
り吐出し、記録が実行される。パイプ17は、そ
の端部が延長されても良いし又、他の導入パイプ
CPと接続されても良いが、液体Lが貯蔵されて
いる貯蔵槽R内の液体Lと連通されている。従つ
て、各吐出オリフイスより吐出された分の液体
は、貯蔵槽Rよりパイプ17を通じて各々の熱作
用部に補給される。 上記の例では、供給流路プレート9の端面を供
給流路基準軸1に対してほぼ90゜にしθ=90゜ψ=
0゜とした例について述べたが、θ及びψを種々変
えた例えば第4図a,b,c及びdの様なものも
上記の例と同様の手順で作成される。但し第4図
aにおいて28は、発熱体11の設置角度φを調
節する為の部材である。第4図a及びbは供給流
路の基準面より上に発熱体を設ける例c及びdは
少なくとも発熱体の一部が基準面より下になる様
な例である。 又、供給流路内への圧力損失(バツク圧)を少
なくする目的で第4図eに示す様に供給プレート
9の熱作用部22の近傍に凸部29を設けると、
吐出効率の点で更に好ましい結果が得られる。 或いは、前述の第2図の例では、供給流路20
を与える溝14を供給流路プレート9側に形成す
る場合について説明したが、溝14を発熱体基板
8に形成しても良い。 更に可能ならば、供給流路プレート9及び吐出
流路プレート10を同一部材とし、これに供給流
路及び吐出流路をエツチング、電子ビーム加工或
いはレザー加工等の技術により形成しても良い。 本発明の装置は、吐出効率或いは吐出応答性が
改善される。又、発熱体或いは電極の設置が容易
に行なえる構造である。一般に、この様な装置の
供給流路は極めて微細構造を有するものであり、
発熱体の様な素子を吐出効率、吐出応答性等を向
上させる目的で流路内に又は近接して設置するこ
とは非常に困難である。更には、電極及び電極リ
ードの取り出しに於いても多くの制約を受けるも
のである。ところが本発明の装置は、微細構造の
高密度マルチオリフイス化を容易に行なうことが
できること、発熱体、電極或いは電極リード等の
設置が容易な構造であること等多くの利点を有す
るものである。 以下の実施例で本発明を更に詳細に説明する。 実施例 第3図に示す様な装置の記録ヘツドを以下の要
領で作成した。 ガラス板にエツチングにより深さ70μmの凹部
(溝)14を形成し、第2図aに示す供給流路プ
レート9とした。又、ガラス板にマイクロカツタ
ーにより幅100μm、深さ150μmピツチ250μmの
多数の溝15を形成し、吐出流路プレート10と
した。 一方、発熱体基板8は、保温性及び平滑性を目
的としたベース層29、発熱体11、電極12及
び13、及び絶縁保護膜30を基本構成としてい
る。0.6mmのAl2O3基板上にベース層としてSiO2
厚さ3μスパツタリングし、ZrB2を厚さ800Å、電
極としてAlを厚さ5000Å積層した後、選択ホト
エツチングで幅85μm長さ130μmの発熱体11を
250μmのピツチで形成した。続いてSiO2を厚さ
1μmでスパツタリングして絶縁保護膜を形成し
た後、基板の裏側にヒートシンク27を設置し
た。こうして形成された発熱体基板8の平面図を
第5図に示す。この図で、11(11−1〜11
−7)は複数の発熱体、12(12−1〜12−
7)は選択電極、13は共通電極である(ここで
は7コの発熱体及び選択電極が設けられる例が示
されている)選択電極12及び共通電極13は、
第3図に示す様に発熱体基板8の一端まで伸びて
形成され、図示されていないコネクターに接続さ
れる。又、厚さ100μmのモリブデン部材に直径
60μmの孔250μmで形成して吐出オリフイス板1
8とした(吐出オリフイス板18は、吐出流路が
所望の形状、径を有していて適当な径の液滴が吐
出するならば必ずしも必要ではない)。 更に外部のタンクから供給される液体を供給流
路に導入する為のブロツク16、パイプ17及び
エア抜きパイプを作成した。 上記の供給流路プレート9、吐出流路プレート
10、発熱体基板8等を一体化した。 この記録ヘツドを用いて水域いはトルエンを主
成分とする下記の液体を用いて記録を行なつた。 第6図により液滴吐出動作を簡単に説明する。
13及び12の電極にパルス状の信号を印加する
と、発熱体11が発熱する。そして供給流路20
から供給される液体は、破線で示される熱作用部
22で、熱エネルギーの作用を受け急激な状態変
化(体積膨張或いは気泡の発生)を生ずる。これ
により吐出流路21内の液体は圧力変化を生じ吐
出オリフイスから吐出される。発熱体の発熱が停
止すると、液体は元の状態(体積減少或いは気泡
の消失)に戻るので外部情報信号に従つた液滴が
吐出される。 吐出効率、吐出応答性、長時間連続記録性が良
好で、しかも鮮明な画像が得られた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus that performs recording by ejecting liquid from an ejection port by the action of thermal energy. Non-impact recording methods, especially the so-called inkjet recording methods, produce almost no noise during recording.
Recently, research and development have been actively conducted on this method, as it has great advantages such as being capable of high-speed recording and being able to perform recording on plain paper without the need for special fixing treatment. The device used in this recording method is an ejection orifice that ejects a colored liquid called ink and causes it to fly as droplets.
A recording head is used which has an inlet for liquid to enter. There are various types of recording heads depending on the method of ejecting liquid from the ejection orifice. For example, the liquid may be supplied from an external liquid supply tank into the liquid chamber under pressure or through natural supply (supply using capillary action, etc.) (However, the above pressurization cannot be done by pressure alone. ), the liquid in the liquid chamber, and
There is a type in which a voltage is applied between an electrode installed in front of the discharge orifice, and liquid is electrostatically discharged from the discharge orifice. Although this type of recording head has a simple structure, it has the drawback that the overall system configuration is complex and requires a high degree of skill and precision in electrically controlling the generation of droplets and the direction of their flight. Another drawback is that it is difficult to create a multi-orifice recording head, which is essential for high-speed recording. Another type of recording head uses a mechanical vibration method to eject liquid and fly it as droplets. That is, this type of device changes the volume of the liquid chamber into which liquid is supplied in accordance with a signal by mechanical vibration of a piezo vibrating element.
This causes the liquid to be ejected as droplets. Its specific structure is USP3747120 IEE
Transactions on Industry Applications Vol.
It is disclosed in IA-13, No. 1, January/February 1977, etc. The entire system structure of such a recording head is extremely simple. However, since droplets are generated by the mechanical vibration of the piezo vibrating element, there are problems with responsiveness during high-speed recording, and problems with processing such as forming the liquid chamber and installing the piezo vibrating element. Due to the difficulty of miniaturization, it is extremely difficult to create high-density multi-orifices, and it is difficult to achieve high-speed recording. In this way, many of the conventional recording heads have essential but unsolved problems in terms of structure, processing, high-speed recording, high-density multi-orifice, and overall system configuration. There are some issues that need to be addressed. The present invention has been made in view of the above points, and its main object is to provide a recording device that is excellent in ejection efficiency, ejection response or ejection stability, and long-term continuous recording performance. Another object of the present invention is to provide a high-density multi-orifice type recording device that is easy to manufacture and practical. The liquid jet recording device of the present invention includes a plurality of ejection ports for ejecting liquid in a predetermined direction to form flying droplets, and a liquid path that communicates with each of the plurality of ejection ports and has a bent portion, The bending portion causes a state change in the liquid due to heat, and based on the state change, thermal energy generated from a heating element acts on the liquid to form the flying droplets of the liquid that are ejected from the ejection port. a plurality of heat action parts that are parts, a liquid path leading to the heat action parts is common to the plurality of heat action parts, a vector on an axis parallel to the discharge direction of the liquid, and a vector on an axis parallel to the discharge direction of the liquid; or an included angle Ψ formed by a vector on a line perpendicular to the heat generating surface passing through a point where the extension line intersects with the heat generating surface of the heat generating element is 45 degrees or less, and is electrically connected to the heat generating element and directed in a predetermined direction. The heating element is characterized by comprising a signal supply means for supplying a drive signal to selectively drive each of the heating elements to cause the heating element to eject the liquid. In this way, the supply channel for supplying liquid to a plurality of heat effecting parts is made common, and the direction in which the liquid flows from the flow path to the heat action part, and the direction from the heat action part to the discharge orifice. By setting the heating element in such a way that its heating surface faces the direction of the discharge orifice, the thermal energy can be used effectively to discharge the liquid, and the discharge efficiency, especially, can be improved. Ejection response and long-term continuous recording properties are significantly improved. In addition, the device of the present invention has an extremely simple structure and can be easily microfabricated, so the device itself can be made much smaller than conventional devices. High-density multi-orifice formation, which is indispensable for high-speed recording, can be realized extremely easily, and in addition, in multi-orifice formation, the array structure of the ejection orifices of the recording head can be arbitrarily configured as desired. It has remarkable features such as being able to be designed and therefore very easily made into a bar shape. The present invention will be explained below with reference to the drawings. FIG. 1 is an explanatory diagram for explaining the recording principle in the recording apparatus of the present invention. A liquid 3 is supplied into the recording head 1 through means such as a supply tank (not shown), a supply pipe (not shown), or a filter (not shown). Note that the pressure P may be applied to the liquid by an appropriate pressurizing means such as a pump to such an extent that it cannot be discharged from the discharge orifice 2 by itself. As shown in this figure, a heating element 4, which is a means for generating thermal energy, is installed in a heat acting section 5, which is a portion where the generated thermal energy acts on the liquid 3. In the heat acting section 5, thermal energy generated by the heating element 4 is applied to the liquid 3, and the state of the liquid in the heat acting section 5 changes (liquid volume expansion, generation of bubbles, etc.).
This is the part that causes As is clearer from FIG.
The direction in which the liquid flows out is bent (that is, the liquid path communicating with the discharge port is bent), and the heat generating surface S G of the heating element 4 is oriented toward the discharge orifice. And because of these features, the intended purpose of the present invention is effectively achieved. To explain this point in more detail, the central axis XO of the portion of the supply liquid path 6 near the heat acting section
YO, which is an axis obtained by rotating the line segment XO to the right by an angle θ around point O, which is parallel to the direction in which the flow flows from the heat action part 5 toward the discharge orifice 2. (As shown in FIG.
is provided, the heat acting part 5, the supply flow path 6, and the discharge liquid are arranged so that the central axis of the part of the discharge liquid path 7 near the heat acting part 5 has an angle θ between them. Orifice 2 is arranged. In order to supply thermal energy to the liquid in the heat effecting part 5, the heating element 4 is arranged in the heat effecting part 5 so that its heat generating surface faces toward the discharge orifice 2. In particular, the heat generating surface of the heat generating element 4 has a cross section AB on the discharge orifice 2 side of the heat acting part 5.
and the discharge orifice 2
The heating element 4 is attached to the heat acting part 5 so that it is approximately perpendicular to the central axis (in the figure, it is the same as the axis YO).
It is desirable that the The above-mentioned angle .theta. and the surface direction of the heating element can take various values other than the angles shown in the figure in designing the recording head. However, if θ is too close to O° or 180°, not only will it be difficult to form the heating element heat acting part, supply channel, discharge orifice, etc., but it will also be difficult to effectively achieve the intended purpose of the present invention. Therefore, normally 30°≦θ
Preferably ≦150°, preferably 45°≦θ≦135°,
Optimally, it is desirable that θ be approximately 90°. Similarly, to describe the direction of the heating element using FIG. 1, there are two vectors: a vector on the axis Yo, and a vector on a line perpendicular to the heating surface passing through the point where the axis YO or its extension intersects the heating surface of the heating element 4. The angle 4 formed when the reference point of both vectors is set to the intersection is usually 45° or less, preferably 30° or less,
In particular, it is desirable that the angle be selected to be approximately O°. When θ=90° and =0°, it is most preferable from the point of view that it is practically easy to form the heating element, the heat acting part, the supply channel, and the discharge orifice.
The heating element 4 is made of a material such as ZrB 2 or HfB 2 , for example. Now, when a signal is applied to the heating element from the outside, the heating element instantaneously generates heat and applies thermal energy to the liquid in the heat effecting section 5. As a result, a state change (volume expansion or generation of bubbles) occurs in the liquid, and a predetermined amount of liquid is ejected from the ejection orifice 2 in a predetermined direction. In this way, in the present invention, a bent part is provided in the liquid flow path (liquid path) having a heat acting part therebetween, so that the thermal energy generated in the heat acting part can be effectively applied to the liquid. When the heat generating surface of the provided heat generating element is installed facing the discharge orifice, pressure changes are effectively transmitted in the discharge direction. Therefore, the effect (so-called back pressure effect) of pressure changes based on changes in the state of the liquid in the heat acting section being transmitted in the direction in the supply flow path is suppressed, and the discharge efficiency is improved. Furthermore, when multi-orifices are used, back pressure is not transmitted to adjacent heat-acting parts and they interfere with each other, and discharge stability is also improved. Furthermore, since thermal energy is efficiently used for discharging liquid, the driving energy of the heating element can be reduced, and favorable results can be obtained in terms of energy saving, improvement in the durability of the heating element, etc. . In addition to the above-mentioned advantages, when the device of the present invention is structured as follows, consisting of blocks such as a heating element substrate, a supply flow path plate, and a discharge flow path plate, particularly favorable results can be obtained in terms of the structure. . For example, as shown in FIG. 2a, the heating element substrate 8 is provided with seven heating elements 11, seven selection electrodes 12 for supplying electricity to the heating elements 11, and a common electrode 13. Further, grooves 14 are formed in the supply passage plate 9, and narrow grooves 15 are formed in the discharge passage plate 10 so as to correspond in position and number to the heating elements 11. When these blocks are integrated, a device as shown in cross-section in FIG. 2b is formed. That is, a common supply channel 2 for each heating element is provided by the heat generating element substrate 8 and the supply channel plate 9.
0, a discharge passage 21 is formed by the end face of the supply passage plate 9 and the discharge passage plate 10, respectively. Further, a heat acting part 22 shown by a broken line is formed between the supply channel 20 and the discharge channel 21, and the heating element 11 is arranged so as to effectively apply thermal energy to the liquid in the heat acting part 22. be done. The supply channel plate 9 is provided with means for supplying liquid from the outside to the supply channel 20, for example, a block 16 for forming a supply liquid chamber 23, and the block 16 is provided with a means for supplying liquid from the outside to the supply channel 20. A pipe 17 is attached for introducing into the chamber 23. Reference numerals 18 and 19 denote a discharge orifice plate (in the figure, seven discharge orifices are provided corresponding to the narrow grooves 15) and an air bleed pipe, which are provided as necessary. FIG. 3 is a schematic perspective view illustrating an apparatus of the present invention incorporating the recording head described in FIG. 2. In this figure, 24 is an electrode lead board (second
), and lead wires 25 and 26 for the selection electrode and the common electrode are provided on the substrate 24.
is provided. Further, a heat sink 27 is provided on the lower surface of the heat generating substrate 8. The lead wire 25 of the selection electrode and the lead wire 26 of the common electrode are electrically connected to a drive signal generating means P for supplying a drive signal such as a pulse voltage to each heat generating element in order to drive each of the seven heat generating elements 11. It is connected.
A signal S of information to be recorded is inputted to the drive signal generation means P, and a drive signal is outputted from the means P so that the signal S is inputted to the drive signal generation means P. The selected heating element is driven based on the drive signal, liquid is ejected from the ejection orifice, and recording is executed. The pipe 17 may have an extended end or may be connected to another inlet pipe.
Although it may be connected to the CP, it is communicated with the liquid L in the storage tank R in which the liquid L is stored. Therefore, the amount of liquid discharged from each discharge orifice is supplied from the storage tank R to each heat acting section through the pipe 17. In the above example, the end face of the supply channel plate 9 is set at approximately 90 degrees with respect to the supply channel reference axis 1, and θ=90°ψ=
Although the example in which the angle is 0° has been described, the ones shown in FIG. 4 a, b, c, and d, in which θ and ψ are variously changed, can also be created using the same procedure as in the above example. However, in FIG. 4a, 28 is a member for adjusting the installation angle φ of the heating element 11. Figures 4a and 4b are examples in which the heating element is provided above the reference plane of the supply channel; c and d are examples in which at least a part of the heating element is below the reference plane. Furthermore, in order to reduce the pressure loss (back pressure) in the supply flow path, if a convex part 29 is provided near the heat acting part 22 of the supply plate 9 as shown in FIG. 4e,
More favorable results can be obtained in terms of discharge efficiency. Alternatively, in the example of FIG. 2 described above, the supply channel 20
Although the case has been described in which the grooves 14 giving the same are formed on the supply channel plate 9 side, the grooves 14 may also be formed on the heat generating substrate 8. Furthermore, if possible, the supply channel plate 9 and the discharge channel plate 10 may be made of the same member, and the supply channel and the discharge channel may be formed thereon by techniques such as etching, electron beam processing, or laser processing. The device of the present invention has improved ejection efficiency or ejection response. Furthermore, the structure allows for easy installation of the heating element or electrodes. Generally, the supply channel of such a device has an extremely fine structure,
It is extremely difficult to install an element such as a heating element within or close to the flow path for the purpose of improving ejection efficiency, ejection response, and the like. Furthermore, there are many restrictions on the removal of electrodes and electrode leads. However, the device of the present invention has many advantages, such as being able to easily form a fine structure with a high density multi-orifice structure, and having a structure that allows easy installation of heating elements, electrodes, electrode leads, etc. The invention will be explained in further detail in the following examples. EXAMPLE A recording head for an apparatus as shown in FIG. 3 was prepared in the following manner. A concave portion (groove) 14 having a depth of 70 μm was formed in the glass plate by etching to obtain the supply channel plate 9 shown in FIG. 2a. Further, a large number of grooves 15 each having a width of 100 μm, a depth of 150 μm, and a pitch of 250 μm were formed on the glass plate using a micro cutter to form a discharge channel plate 10. On the other hand, the heating element substrate 8 basically includes a base layer 29 for the purpose of heat retention and smoothness, a heating element 11, electrodes 12 and 13, and an insulating protective film 30. SiO 2 was sputtered to a thickness of 3 μm as a base layer on a 0.6 mm Al 2 O 3 substrate, ZrB 2 was laminated to a thickness of 800 Å, and Al was laminated to a thickness of 5000 Å as an electrode, and then selective photoetching was performed to form a heat generating layer of 85 μm in width and 130 μm in length. body 11
It was formed with a pitch of 250 μm. Then add SiO 2 to the thickness
After forming an insulating protective film by sputtering with a thickness of 1 μm, a heat sink 27 was installed on the back side of the substrate. A plan view of the heating element substrate 8 thus formed is shown in FIG. In this figure, 11 (11-1 to 11
-7) is a plurality of heating elements, 12 (12-1 to 12-
7) is a selection electrode, and 13 is a common electrode (here, an example is shown in which seven heating elements and selection electrodes are provided).The selection electrode 12 and the common electrode 13 are:
As shown in FIG. 3, it is formed to extend to one end of the heating element substrate 8, and is connected to a connector (not shown). In addition, a molybdenum member with a thickness of 100 μm has a diameter
Discharge orifice plate 1 with 60μm holes and 250μm holes.
8 (the discharge orifice plate 18 is not necessarily necessary if the discharge flow path has a desired shape and diameter and droplets of an appropriate diameter are discharged). Furthermore, a block 16, a pipe 17, and an air bleed pipe for introducing liquid supplied from an external tank into the supply channel were created. The above-mentioned supply channel plate 9, discharge channel plate 10, heating element substrate 8, etc. were integrated. This recording head was used to record water and the following liquid containing toluene as its main component. The droplet ejection operation will be briefly explained with reference to FIG.
When pulsed signals are applied to the electrodes 13 and 12, the heating element 11 generates heat. and supply channel 20
The liquid supplied from the pump undergoes a sudden change in state (volume expansion or generation of bubbles) under the action of thermal energy at a heat acting portion 22 indicated by a broken line. This causes a pressure change in the liquid within the discharge flow path 21 and is discharged from the discharge orifice. When the heating element stops generating heat, the liquid returns to its original state (reduction in volume or disappearance of bubbles), and therefore droplets are ejected in accordance with the external information signal. Ejection efficiency, ejection response, and long-term continuous recording performance were good, and clear images were obtained. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置の原理を説明する為の説
明図、第2図a,bは本発明の装置の主要部であ
る記録ヘツドの好適な実施態様を示す為のもので
あつて、第2図aは模式的組立図、第2図bは破
断線X′Y′で切断した場合の切断面図、第3図は、
第2図a,bで示した記録ヘツドを内蔵する本発
明装置の模式的斜視図、第4図a,b,c,d,
eは、各々主要部である記録ヘツドの別の態様例
を示す部分断面図、第5図は、発熱体基板の平面
図、第6図は本発明装置の記録ヘツド部の一部を
示す拡大説明図である。 1……記録ヘツド、2……吐出オリフイス、3
……液体、4,11……発熱体、5,22……熱
作用部、6,20……供給流路、7,21……吐
出流路、8……発熱体基板、9……供給流路プレ
ート、10……吐出流路プレート。
FIG. 1 is an explanatory diagram for explaining the principle of the device of the present invention, and FIGS. 2a and 2b are diagrams showing preferred embodiments of the recording head which is the main part of the device of the present invention. Figure 2a is a schematic assembly diagram, Figure 2b is a sectional view taken along the breaking line X'Y', and Figure 3 is a
A schematic perspective view of the apparatus of the present invention incorporating the recording head shown in FIGS. 2a, b, and 4a, b, c, d,
e is a partial sectional view showing another embodiment of the recording head which is the main part, FIG. 5 is a plan view of the heating element substrate, and FIG. 6 is an enlarged view showing a part of the recording head part of the apparatus of the present invention. It is an explanatory diagram. 1... Recording head, 2... Discharge orifice, 3
...Liquid, 4,11...Heating element, 5,22...Heat action section, 6,20...Supply channel, 7,21...Discharge channel, 8...Heating element substrate, 9...Supply Channel plate, 10...Discharge channel plate.

Claims (1)

【特許請求の範囲】 1 所定の方向に液体を吐出して飛翔液滴を形成
する為の吐出口の複数と、該吐出口の複数に夫々
連通し屈折部を有する液路を具備し、該屈折部
が、液体に熱による状態変化を生起させ該状態変
化に基づいて前記吐出口より吐出される液体の前
記飛翔液滴を形成するための発熱体から発生する
熱エネルギーが液体に作用する部分である熱作用
部の複数を有し、該熱作用部に至るまでの液路が
前記熱作用部の複数に共通とされ、前記液体の吐
出方向に平行な軸上のベクトルと、該ベクトル又
はその延長線が前記発熱体の発熱面と交叉する点
を通る発熱面に対する垂直線上のベクトルとで形
成される夾角Ψが45゜以下であり、前記発熱体に
電気的に接続され、所定方向に液体を吐出させる
のに、選択的に前記発熱体の各々を駆動する駆動
信号を前記発熱体に供給する為の信号供給手段と
を具備する事を特徴とする液体噴射記録装置。 2 発熱体の発熱面が吐出口方向(前記夾角Ψが
0゜の方向)に向いている特許請求の範囲第1項の
液体噴射記録装置。
[Scope of Claims] 1. A liquid crystal display device comprising: a plurality of ejection ports for ejecting liquid in a predetermined direction to form flying droplets; and a liquid path having a bent portion communicating with each of the plurality of ejection ports; The bending part is a part where thermal energy generated from a heating element acts on the liquid to cause a state change in the liquid due to heat and form the flying droplets of the liquid to be ejected from the ejection port based on the state change. , a liquid path leading to the heat acting part is common to the plurality of heat acting parts, and a vector on an axis parallel to the discharge direction of the liquid, and a vector or The included angle Ψ formed by a vector on a line perpendicular to the heating surface passing through the point where the extension line intersects with the heating surface of the heating element is 45 degrees or less, and it is electrically connected to the heating element and A liquid jet recording apparatus characterized by comprising: signal supply means for supplying a drive signal for selectively driving each of the heat generating elements to the heat generating elements to cause the liquid to be ejected. 2 The heating surface of the heating element is directed toward the discharge port (the included angle Ψ is
0° direction).
JP13388978A 1978-10-31 1978-10-31 Liquid injection recorder Granted JPS5559977A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13388978A JPS5559977A (en) 1978-10-31 1978-10-31 Liquid injection recorder
US06/084,748 US4330787A (en) 1978-10-31 1979-10-15 Liquid jet recording device
DE19792944005 DE2944005A1 (en) 1978-10-31 1979-10-31 LIQUID JET RECORDING DEVICE
DE2954687A DE2954687C2 (en) 1978-10-31 1979-10-31 Ink jet recording head
US06/324,991 US4459600A (en) 1978-10-31 1981-11-25 Liquid jet recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13388978A JPS5559977A (en) 1978-10-31 1978-10-31 Liquid injection recorder

Publications (2)

Publication Number Publication Date
JPS5559977A JPS5559977A (en) 1980-05-06
JPS636358B2 true JPS636358B2 (en) 1988-02-09

Family

ID=15115460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13388978A Granted JPS5559977A (en) 1978-10-31 1978-10-31 Liquid injection recorder

Country Status (1)

Country Link
JP (1) JPS5559977A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581570A (en) * 1981-06-29 1983-01-06 Canon Inc Liquid injecting recording head
JPS588661A (en) * 1981-07-09 1983-01-18 Canon Inc Liquid jet type recording head
JPS588660A (en) * 1981-07-09 1983-01-18 Canon Inc Liquid jet type recording head
US4528577A (en) * 1982-11-23 1985-07-09 Hewlett-Packard Co. Ink jet orifice plate having integral separators
JPS60208247A (en) * 1984-03-31 1985-10-19 Canon Inc Liquid jet recording head
JP2635043B2 (en) * 1986-04-28 1997-07-30 ヒューレット・パッカード・カンパニー Thermal ink jet print head
ES2095862T3 (en) * 1989-09-18 1997-03-01 Canon Kk HEAD FOR PRINTING BY LIQUID JETS AND APPARATUS FOR PRINTING BY LIQUID JETS USING IT.
ATE144192T1 (en) * 1991-03-20 1996-11-15 Canon Kk LIQUID JET RECORDING HEAD AND LIQUID JET RECORDER COMPRISING SAME
CN114953745B (en) * 2022-07-28 2022-10-25 杭州宏华数码科技股份有限公司 Method, apparatus, and medium for controlling inkjet printing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3177800A (en) * 1962-06-28 1965-04-13 Sperry Rand Corp Immersed spark gap printer
JPS5155237A (en) * 1974-07-19 1976-05-14 Silonics Mushogekikirokuhoho

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3177800A (en) * 1962-06-28 1965-04-13 Sperry Rand Corp Immersed spark gap printer
JPS5155237A (en) * 1974-07-19 1976-05-14 Silonics Mushogekikirokuhoho

Also Published As

Publication number Publication date
JPS5559977A (en) 1980-05-06

Similar Documents

Publication Publication Date Title
US4680595A (en) Impulse ink jet print head and method of making same
JP3139511B2 (en) Inkjet recording head
KR0144654B1 (en) Ink jet head
JPS636358B2 (en)
JPS636356B2 (en)
JPS636357B2 (en)
US5898448A (en) Ink ejecting device having ink chambers of differing shapes
JP3407514B2 (en) Liquid ejection device
JPH04353459A (en) Ink jet printing head
JPH0530630B2 (en)
JPH0339835B2 (en)
JPH06126943A (en) Ink jet recording head and apparatus
JPH0411389B2 (en)
JPH0234781B2 (en) INKUJETSUTOKIROKUYOHETSUDO
JP3774967B2 (en) Inkjet recording head
JP2001063055A (en) Ink jet printing head
JP3185428B2 (en) Inkjet print head
JP3189573B2 (en) Multi-nozzle inkjet head
JP3019465B2 (en) Inkjet head
JP2985434B2 (en) Droplet ejector
JPH10193592A (en) Liquid jet apparatus
JP3099514B2 (en) Inkjet head
JP3143918B2 (en) Inkjet head
JP2001277504A (en) Ink jet head and method for manufacturing the same
JPS63197649A (en) Ink jet recording head